Resenhas IME-USP 2002, Vol. 5, No. 4, 377 - 390.

Invariant Ideals of Abelian Group Algebras
Under the Action of Simple Linear Groups !

D. S. Passman

Abstract: Let & be a group that acts on an abelian group
V. Then & acts on the commutative group algebra K[V],
and we are concerned here with classifying the ®-stable ideals
of If[V]. Specifically, we discuss recent work related to linear
group actions. For example, we consider the case where 1V is a
vector space over a division ring IJ and where & = D* is the
multiplicative group of ). However, for the most part, we are
concerned with infinite, locally finite, quasi-simple groups &
of Lie type and their finite-dimensional representations. We
first discuss the known results for rational representations and
then we move on to describe the techniques required to deal
with &-modules V' that are not rational.
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1. INTRODUCTION

If  is a nonidentity group, then the group algebra K[$)] always has at least
three distinct ideals, namely 0, the augmentation ideal wK|[$], and K[$] itself.
Thus it is natural to ask if groups exist for which the augmentation ideal is the
unique nontrivial ideal. In such cases, we say that wK|[$)] is simple. Certainly
£ must be a simple group for this to occur and, since the finite situation is easy
enough to describe, we might as well assume that $ is infinite simple. The first
such examples, namely algebraically closed groups and universal groups, were of-
fered in [BHPS]. From this, it appeared that such groups would be quite rare. But
A. E. Zalesskil has shown that, for locally finite groups, this phenomenon is really
the norm. Indeed, for all locally finite infinite simple groups, the characteristic 0
group algebras K[$)] tend to have very few ideals. See [Z4] for a survey of this
material. Additional papers of interest include [HZ3], [LP], [Z2] and [Z3].

While some work still remains to be done on the simple group case, it never-
theless makes sense to move on to the next stage of this program by considering
certain abelian-by-(quasi-simple) groups. Specifically, these are the locally finite
groups § having a minimal normal abelian subgroup V with §/V infinite simple
(or perhaps just close to being simple). Note that & = §/V acts as automor-
phisms on V, and hence on the group algebra K[V]. Furthermore, if I is any
nonzero ideal of K[f)], then it is easy to see that I N K[V] is a nonzero &-stable
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ideal of K[V]. Thus, for the most part, this second stage is concerned with clas-
sifying the ®-stable ideals of K[V]. Even in concrete cases, this turns out to be
a surprisingly difficult task. Fortunately, there has been some recent progress on
this problem, and our goal here is to survey the results of [BE], [OPZ], [PZ1],
[PZ2] and [P]. For the most part, the methods used in these papers are quite
different from the usual group ring techniques.

2. MULTIPLICATIVE ACTION OF DIvISiION RINGS

Recall that a field is said to be locally finite or absolute if every finite subset
generates a finite subfield. In other words, F is locally finite precisely when it is a
subfield of the algebraic closure of a finite field. Now suppose that W is a finite-
dimensional vector space over an infinite locally finite field and let & = GL(W)
act naturally on W. Then $§ = W x & is an infinite locally finite group and
an example of the type of second-stage group described above. In particular, it
would be of interest to determine the GL(W)-stable ideals of the group algebra
K[W]. Notice that in this case, ® contains F*, the multiplicative group of F', and
consequently every &-stable ideal of K[W] is also F*-stable. Thus it is reasonable
to first study the F*-stable ideals of K[W], and we proceed to do this in a fairly
general setting.

To this end, let D be a division ring of any characteristic and let V' be a right D-
vector space. Then G = D* acts as automorphisms on V by right multiplication
and consequently G acts on any group algebra K[V]. Note that if A4 is a D-
subspace of V, then A is G-stable and hence the augmentation ideal wK[A]-K[V]
is a G-stable ideal of K[V]. We start with the following elementary lemma since
its proof gives an indication of both the action of G and the structure of K[V].

Lemma 2.1. Let D be a division ring and let V be a right D-vector space. If
char K # char D, then any D*-stable ideal of K[V] is semiprime.

Proof. If char D = p > 0, then V is an elementary abelian p-group. In particular,
if char K # p, then we know that K[V] is a commutative von Neumann regular
ring. Hence every ideal of K[V] is semiprime.

On the other hand, if char D = 0, then we must have char K = ¢ > 0 for some
prime q. Let I be a D*-stable ideal of K[V] and suppose by way of contradiction
that v/7 > I. Then we can choose an element o € /7T \ I of minimal support size,
say n+ 1. Thus a = kozo + k121 + - - - + knzy, with zg,21,...,2, € V and with
ko, k1,...,kn € K\ 0. Without loss of generality, we may assume that ko = 1.
Since a € VT is mlpotent modulo I, we can suppose that 9" € I for some integer
s> 0. Of course o9’ = kI 20 + kI 28 + .- + k328

"Now charD = 0 so D* D Q' where Q is the ﬁeld of rational numbers, and
hence 1/¢* € D*. Thus d = 1/¢* acts on V by taking the unique ¢°th root of
each element in this uniquely divisible group, and d acts trivially on the field
K. Since a? € I and I is d-stable, we see that 8 = (a?)% € [ and 8 =
k2o + k;"'zl + -+ + k4 z,. Obviously supp a = supp 3, and note that kI = ko
since kg = 1. Thus a — 8 has support size < n, and a — § = o mod I. In
particular, o — 8 € VT \ I, contradicting the minimality of n. We conclude that
VT = I, as required. a

If char K = char D, then there are certainly D*-stable ideals of K[V] that are
not semiprime. In particular, the semiprime hypothesis in the following key result
applies only to those situations.
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Theorem 2.2. Let D be an infinite division ring and let V be a finite-dimensional
right D-vector space. Furthermore, let G = D* act on V, by right multiplica-
tion, and hence on the group algebra K[V]. Then every G-stable semiprime ideal
of K[V] can be written in a unique manner as a finite irredundant intersection

Ni_, wK[Ai]-K[V] of augmentation ideals, where each A; is a D-subspace of V.
As a consequence, the set of these G-stable semiprime ideals is Noetherian.

The proof of this result is contained in a series of papers. To start with, [BE]
handles D = @, the field of rational numbers, with a proof using valuation-
theoretic techniques reminiscent of the arguments in [Bg], but somewhat more
subtle. Next, [PZ1] handles infinite locally finite fields F', building up the result
from the finite field case using the usual infinite paths in trees and compactness
properties. Note that the result in the finite field case differs from that given in
‘Theorem 2.2. On the one hand, we have

Lemma 2.3. Let F be a finite field and let V be a finite-dimensional F-vector
space, viewed multiplicatively. Assume that char F # char K, and let G = F*
act on V. Then every G-stable ideal of K[V] contained in wK[V] is a finite
intersection of augmentation ideals wK[A)-K[V] with A an F-subspace of V.

On the other hand, unlike the infinite case, when F' is finite there are F'*-stable
ideals of K[V] not contained in wK[V]. Furthermore, the ideals contained in
wK[V] are not uniquely writable as finite irredundant intersections of augmen-
tation ideals. Indeed, it is precisely this failure of uniqueness that causes much
of the difficulty in the work of [PZ1]. Finally, [OPZ] handles arbitrary division
rings via going-up and going-down type results. Specifically, it is shown that if
D has an infinite central subfield satisfying the conclusion of Theorem 2.2, then
the same is true of D. Furthermore, if D is an infinite subdivision ring of £ and
if E satisfies the conclusion of Theorem 2.2, then so does D. As an immediate
consequence of this key result, we have

Corollary 2.4. Let F be an infinite field and suppose V is a finite-dimensional
F-vector space. If char F' # char K, then wK[V] is the unique proper GL(V)-
stable ideal of K[V]. In the remaining cases, when char F = char K, then wK[V]
is at least the unique proper GL(V)-stable semiprime ideal of K[V].

As was mentioned previously, the semiprime hypothesis is definitely required
in Theorem 2.2. Furthermore, the conclusion that I is a finite intersection of
augmentation ideals cannot be replaced by I being a finite product of such ideals.
Indeed, we have

Example 2.5. Suppose char D = char K and let V' be any right D-vector space
having a proper D-subspace B. Then I = wK[B]-K[V]+ wK[V]? is a D*-stable
ideal of K[V] that is neither a finite intersection nor a finite product of augmen-
tation ideals wK[A;]-K[V], with each A; a D-subspace of V.

This example and Lemma 1.1 are both contained in [P]. We close this section
by briefly describing the relevant structure when V is an infinite-dimensional D-
vector space. As will be apparent, there is less precise information here, and in
fact the best we can do is

Theorem 2.6. Let D be an infinite division ring and let V be a right D-vector
space of arbitrary dimension. If G = D® acts on V, then every G-stable semiprime
ideal of K[V] can be written as an intersection (), wK[A;]-K[V] of augmentation
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ideals, where each A; is a D-subspace of V. In particular, every such proper ideal
is contained in wK[V].

Again, the semiprime assumption can be dropped when char D # char K.

3. RATIONAL REPRESENTATIONS OF GROUPS OF LIE TYPE

Corollary 2.4 offers an example of a group GL(V) of Lie type acting rationally
and irreducibly on the vector space V. However, our main concern here is with
somewhat smaller groups like SL(V'). Recall that a group G is said to be quasi-
simple if G/Z(G) is a nonabelian simple group and if G is equal to its commutator
subgroup [G,G]. For example, if V is a finite-dimensional vector space over an
infinite field F with dimp V' > 2, then PSL(V) is simple and hence SL(V) is
quasi-simple. Such groups of Lie type do not contain subgroups that act like the
multiplicative group F'* on V, but they do contain subgroups, the maximal tori,
which act appropriately at least on certain subspaces of V. Indeed, this is the
basic idea for an attack that was suggested in the paper [HZ2]. We start with
some definitions and recall some old results.

Let V be an arbitrary group and let H act as automorphisms on V. Then H
is said to act in a unipotent or unitriangular fashion on V if there exists a finite
subnormal chain 1 = VpaVj 4. -aV; = V of H-stable subgroups such that H acts
trivially on each quotient V;41/V;. The following two lemmas are slight variants
of results in [RS] and [Z1], respectively.

Lemma 3.1. Let H act in a unitriangular manner on V, and let J C I be
H -stable ideals of the group ring K[V]. If I # J, then there erists an element
a € I\ J such that H centralizes « modulo J.

Proof. Let 1 = Vg aVj a-.-aV; = V describe the unitriangular action of H on
V. We proceed by induction on ¢, the result being clear for ¢t = 0 since K[1] = K.
Assume the result holds for ¢ — 1, and choose ¥ € I'\ J so that supp~y meets
the minimal number, say n + 1, of cosets of V;_;. By replacing v by yy~! for
some y € supp v if necessary, we can assume that 1 € supp+y. Thus we can write
¥ =9+7121+ -+ Ynn with 0 # i € K[V;-1] and with 1, z4,..., 2, in distinct
cosets of V;_;. Now define

I'={ag |a=ap+ 121+ -+ anzy € I with o; € K[V;_1]}, and
J' ={Bo|B=PBo+Prz1+ -+ Bnzs € J with §; € K[V;_1]}.

Then I' and J' are ideals of K[V;_,], since V;—y <V, and I’ O J’. Furthermore,
since H acts trivially on V/V;_,, we see that I’ and J' are H-stable. Note also
that in the above notation, if oy = fg, then a — § is an element of I whose
support meets at most n cosets of V;_;. Thus the minimality of n+ 1 implies that
a—f € J and hence that o € J. In particular, it now follows that 4 € I\ J’. By
induction, there exists an element oo € I’ \ J’ centralized mndulo J’ by H, and
let @« = ag + @121 + -+ - + @y 2, be its corresponding element in I. Then aq ¢ J’
implies that o ¢ J. Furthermore, if ¢ € H, then a? —a has its 0-term in J’. Thus,
by the above remarks, a9 — & € J, and hence H centralizes & modulo J. O

Again, let V is an arbitrary group and I is an ideal of the group algebra K[V].
If U 1s a normal subgroup of V, then (I N K[U])-K[V] is an ideal of K[V], and we
say that U controls I whenever I = (I N K[U])-K[V]. In other words, this occurs
precisely when I N K[U] contains generators for /. As is well-known, there exists
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a unique normal subgroup C(I), called the controller of I, with the property that
U 4V controls I if and only if U D C(I). In particular, if U; and U, control I,
then so does their intersection Uy NU,. Furthermore, if H acts on V and stabilizes
I, then H stabilizes C([).

Lemma 3.2. Let H act in a unitriangular manner on the arbitrary group V with
Z =Cy(H)aV, and let I be an H-stable ideal of K[V]. If I is not controlled by
Z, then there exists an element o € K[Z]\ (I N K[Z]) and an element v e V\ Z
having only finitely many H -conjugates modulo Z, such that a-wK[T] C INK[Z],
where T = {v*~! | z € Ny(vZ)} is a subgroup of Z. Furthermore, for any
z,y € Ng(vZ), we have v*¥~1 = ¢v®~1.¥~1,

As an immediate consequence of Lemma 3.1 and the work of the preceding
section, we have

Proposition 3.3. Let D be an infinite division ring and suppose that V is a finite-
dimensional D-vector space. If char D # char K, then wK|[V] is the unique proper
GL(V)-stable ideal of K[V]. If, in addition, D = F is a field and dimp V > 2,
then wK[V] is the unique proper SL(V)-stable ideal of K[V].

Proof. Write & = GL(V) or SL(V) as a group of matrices and let B be the
subgroup of & consisting of all upper triangular matrices with diagonal entries
equal to 1. Then P acts in a unitriangular manner on V with Cy () = Z = D*.
Suppose I # 0 is a G-stable ideal of K[V]. Then, by Lemma 3.1 with J = 0 and
H = B, there exists a nonzero element o € I that is centralized by . Since D
is infinite, it is easy to see that a € K[Z] and hence I N K[Z] is a nonzero ideal
of K[Z]. Next, let T be the subgroup of & consisting of diagonal matrices. Then
T normalizes Z and hence it stabilizes I N K[Z]. Furthermore, since dimg V > 2
when & = SL(V), we see that T acts on Z as D* acts on D*. We therefore
conclude from Theorem 2.2 that I N K[Z] = wK[Z] and, since & is transitive on
the nonidentity elements of V, the result follows. a

To proceed further, we restrict our attention to locally finite groups. In other
words, we let & be a quasi-simple group of Lie type defined over an infinite locally
finite field F' of characteristic p > 0. If F is algebraically closed, then & is an
algebraic group and the structure of & and its rational irreducible representations
is given, for example, in [St]. On the other hand, if F is just an arbitrary locally
finite field, then & is the direct limit of groups of the same Lie type defined over
finite subfields of F. Thus we can again obtain information about & and its
rational representations by lifting the known results on finite groups contained in
[St]. In particular, & has a Sylow p-subgroup B, playing the role of the group of
upper triangular matrices in the preceding argument, and Ng(B) = P x T where
% is the analog of a maximal torus. Furthermore, if V is a finite-dimensional
irreducible &-module, then Cy (P) = V; is a one-dimensional subspace of V on
which ¥ acts via the homomorphism 7: € — GL(V}).

Suppose that V is a vector space over the field E of characteristic p > 0. Since
we want V' to contain no proper ®-stable subgroup, it follows that the representa-
tion ¢: & — GL(V) cannot be realizable over a smaller field. In particular, since
& is a locally finite group and char E > 0, we know that F must be the field gen-
erated by x(®), the character values of ®. Furthermore, as was shown in [PZ2],
E is also generated by n(T), when we identify GL(Vp) with E*, and hence E C F.
In addition, when ¢ is a rational representation of &, then the latter paper offers a
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rough description of 5(%), sufficient to handle the problem at hand. For the most
part, if & is a group of rank n, then n(%) = {z*25% - - - 24 | z1,22,...,2, € F*}
where ay,as,...,a, are nonnegative integers depending upon the weight of the
representation. Of course, in some of the twisted cases, (%) also involves the
known field automorphisms which define &. Thus, for the most part, £ = F and
|F* : n(%)| < oo. With this, and some additional work to handle the specific field
automorphisms, the arguments of Proposition 3.3 can be extended to yield the
main result of [PZ2], namely

Theorem 3.4. Lel & be a quasi-simple group of Lie type defined over an infinite
locally finite field F' of characteristic p > 0 and let V be a finite-dimensional
vector space over a field E of the same characteristic with dimgV > 2. Let
¢: & = GL(V) be a rational irreducible representation, and assume that E is
generated by x(®), the character values of & associated with ¢. If K is a field of
characteristic different from p, then wK|[V] is the unique proper &-stable ideal of
the group algebra K[V].

4. PoLYNOMIAL FORMS

The remainder of this survey is concerned with the contribution of paper [P] to
this problem. As we will see later on, the nonrational irreducible representations
of groups of Lie type involve arbitrary field automorphisms. For example, if & is
as in the preceding discussion, then 7(%) = {z{*23? .- 23" | 21, 29,..., 2, € F*}
where each a; is a sum of field automorphisms. Thus, it is necessary to study
functions of the form 8: z — 291272 ... 2% and we first work in the more general
context of division rings D of finite characteristic p > 0. In particular, # is a map
from D to D, and we let 1,03, ..., 0x be endomorphisms of this ring. We begin
with a rather general result.

Proposition 4.1. Let V be a right D-vector space and let G be a subgroup of the
multiplicative group D*. Then G acts as automorphisms on V, by right multipli-
cation, and hence on the group algebra K[V] with char K # char D.

. IfGNX # B for every subgroup X of finite index in the additive group
D, then every nontrivial G-stable ideal of K[V] is contained in wK[V].

ii. Suppose GN (X + a) # 0 for every subgroup X of finite index in Dt and
for every element a € D. If V = D is one-dimensional, then wK[V] is the
unique proper G-stable ideal of K[V].

Proof of the first part. By extending the field, if necessary, we can assume that
K is algebraically closed. Suppose, by way of contradiction, that I is a proper
G-stable ideal of K[V] not contained in wK[V]. Since V is an elementary abelian
p-group, there exists a finite subgroup A of V with I N K[A] € wK[A)], and
hence the ideal structure of K[A] implies that e4 € I, where e4 is the principal
idemé)otent of K[A]. Furthermore, since I is G-stable, we have (e4)9 € I for all
geG.

Recall that K[V] is a commutative von Neumann regular ring, and hence so
is K[V]/I. In particular, K[V]/] is semiprimitive and consequently there exists
an irreducible representation A of K[V] with A(J) = 0. Since K is algebraically
closed, it is easy to see that A: K[V] —+ K and that A is determined by a linear
character A: V' — K*. Furthermore, if L = ker A, then |V : L| < p < co. Now
define the residual Ly C D by Ly = {d € D | Ad C L}, so that Ls = (e La
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where Ly = {d € D | ad € L}. Since L, is the kernel of the additive group
homomorphism D — V/L given by d — ad + L, we see that L, is a subgroup of
D* of finite index. Since |4| < oo, it follows that |D* : L4| < oo.

Finally, let ¢ € G and note that (e4)? = e4s = ey is the principal idempotent
of the subgroup A? = Ag of V. Furthermore, we know that e44 € I C ker A and
therefore the restriction of A: V' — K* to Ag cannot be the principal character.
In other words, Ag Z ker A = L and, by definition, this says that g ¢ L,. We
have therefore shown that GN L4y = @ and this contradicts the assumption that
G N X # @ for all subgroups X of Dt of finite index. O

The proof of part (ii) is similar, but more subtle, since we have to deal with
nonprincipal idempotents. Specifically, we show that if I is a nonzero G-stable
ideal of K[V] properly smaller than wK[V], then there exist two distinct finite
subgroups A C B of V and a nonprincipal linear character A: V — K*® with
ker A = L such that G is disjoint from L4 \ Lp. But why must L4 be properly
larger than Lp? The answer is that these residuals can in fact be equal if dimp V >
2. However, when dimp V = 1, then we know from Theorem 2.2 that no such
ideal I can exist for G = D*. Thus, since the above condition can be shown to be
equivalent to the existence of I, we see that D* cannot be disjoint from L4 \ Lpg,
and therefore L4 must be properly larger than Lp, as required. At present, part
(ii) does not seem to have applications to the problem at hand. But part (i) can
be used effectively. We first need some definitions.

Let 3 be a ring, let A be an infinite left 3-module and let S be a finite abelian
group. For convenience, let Z{A) denote the set of all infinite 3-submodules of A.
We say that a (not necessarily linear) function f: A — S is eventually null if every
infinite submodule B of A contains an infinite submodule C with f(C) = 0. Obvi-
ously the zero function is eventually null and so also is any group homomorphism
whose kernel is a 3-submodule. Indeed, in the latter situation, the finiteness of S
implies that f~1(0) is a submodule of finite index in A. It is, of course, easy to
see that a finite sum of eventually null functions is eventually null.

We are concerned with functions which are called polynomial forms on A. By
definition, a polynomial form of degree 0 is the zero function, and for n > 1, we
say that f: A — S is a polynomial form of degree < n if and only if:

i. f(a) = 0 implies that f(3a) = 0.

ii. For each a € A, the function g,(z) = f(a+z)— f(a) — f(z) is a finite sum

of polynomial forms of degree < n — 1.

It is clear from (ii) above that the polynomial forms of degree < 1 are precisely the
group homomorphisms from A to S whose kernels are 3-submodules of A. Now
suppose that R is an infinite ring, fix ro,71,...,7n € R and let ¢1,09,...,0, be
endomorphisms of R. Furthermore, let 3 be a central subring of R stable under
each 0;, and let A = R* denote the additive subgroup of R so that A is naturally a
3-module. If p: A — S is a group homomorphism whose kernel is a 3-submodule
of A, then the map f: A — S given by f(z) = p(roz? r1z%ry - -rp_12°"r,) is
certainly a polynomial form on A of degree < n. The key result here is

Theorem 4.2. Let A be an infinite 3-module, let S be a finite abelian group, and
let f: A— S be a finite sum of polynomial forms. Then f is eventually null.

It is easy to see by example that f(A) need not be a subgroup of S. Further-
more, A need not have a submodule B of finite index with f(B) = 0. Again, let
3 be an arbitrary ring and let f: A — S be a polynomial form. Choose f(B)
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to have minimum size over all submodules B of finite index in A. Then for any
submodule C of finite index in A, we have f(C) O f(C'NB) = f(B) since CNB
is a submodule of B having finite index in A. In other words, f(B) is the unique
minimum value over all such C, and we call f(B) the final value of f. In view of
the preceding comments, it would be interesting to know whether the final value
of a polynomial form f is necessarily a subgroup of S.

We can now apply the preceding results to some particular groups G of interest.
Specifically, let D be an infinite characteristic p division ring, and let oy, 09, ...,0,
be n > 1 endomorphisms of D. Furthermore, fix a nonzero element d € D and
consider the map

0: z+— dz?z%...2%

from D to D. Note that there no gain in considering more general product expres-
sions for 8 like dpz?'d 27?dy - - -dp_127"d, with 0 # d; € D. Indeed, if 0 £d € D
and if o is an endomorphism of D, then 2°d = dd~'2°d = dz??. Thus each of the
d; factors above could be moved to the left at the expense of multiplying each o;
by a suitable inner automorphism.

Let us return to the given map @ and observe that §(D*) C D*. If A is any
infinite subgroup of D, we let G = G(A) = (0(A4*)) be the subgroup of D*
generated by 8(A®). Of course, G acts as automorphisms on any right D-vector
space V' by right multiplication, and hence G acts as automorphisms on any group
algebra K[V]. The following result is proved in [P].

Theorem 4.3. Let D, V, G = G(A), and K be as above with A an infinite
subgroup of D* and with char D = p > 0. If char K # p, then all proper G-stable
ideals of the group algebra K[V] are contained in the augmentation ideal wK[V].
Furthermore, 0(A®) and G(A) are infinite.

Proof. By Proposition 4.1(i), it suffices to show that G N X # @ for all additive
subgroups X of Dt of finite index. To this end, let X be given and consider the
function f: A — D*/X given by f = pf where p: DY — D* /X is the natural
epimorphism. Then f is a polynomial form with A viewed as a module over GF(p).
Therefore, Theorem 4.2 implies that f is eventually null and consequently there
exists an infinite subgroup B of A with f(B) = 0. By definition of f, this implies
that 8(B*) C X and hence that GN X # 0. O

5. REPRESENTATIONS AND FIELD AUTOMORPHISMS

It remains to discuss the nonrational finite-dimensional representations of lo-
cally finite groups of Lie type. For convenience, we list the properties of the
representation ¢: & — GL(V) that are needed for the proof. As is to be ex-
pected, two possibly different fields come into play here. Indeed, F is the field of
definition of the group &, while E' is the field of character values.

Hypothesis 5.1. Let F' D E be infinite locally finite fields of characteristicp > 0,
let V be a finite-dimensional E-vector space withdimg V > 2, and let & be a group
that acts on V by way of the homomorphism ¢: & — GL(V). Assume that
i. P is a p-subgroup of & with Cy (B) = Evy, and Evp-¢(B) = V.
it. T is a subgroup of & that stabilizes the line Evo, and the action of T on this
line factors through its homomorphic image® = (F*)! = F*xF*x..-xF*.
Indeed, for each i = 1,2,...,t, there exists a function 6;: F = E C F
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Tyl 04,2

given by 0;(z;) = z{ "'zl - -z; "™ with

‘L’Q'q;(.?:l, ZQysosy zt] = 91 (tl)ez(:ﬂz) LT -ﬂg(i‘t)ﬂu

forall (x1,22,...,2¢) € T. Here @ denotes the induced action of T on vy,
each n; > 1, and each o, ; is a field automorphism of F. In addition, E
is the linear span of the product 61 (F®)02(F*®) - -0.(F*).

ui. P 15 generated by one-parameter subgroups P, = {9 | ¢ € F} such that
the matriz entries of ¢(g;) are all F-linear sums of expressions of the
form xF1azF2 ... where the k; are automorphisms of F and m > 0. Of
course, these entries are contained in E, and g»-gy = gp4y forallz,y € F.

Note that P plays the role of a Sylow p-subgroup of & and, because it is a
p-group, it necessanly acts in a unitriangular manner on V. Thus P must have
nonzero fixed points in V, but the fact that these fixed points consist of just
one line Fvg is an additional necessary assumption. Next, we see that T is the
analog of a maximal torus, presumably in the normalizer of 8. In any case, we
know that it acts on the line Evy via homomorphisms from F* to E® given by
products of field automorphisms. Of course, we expect P to be generated by one-
parameter subgroups, but here the action of these subgroups is no longer rational,
but rather involves sums and products of field automorphisms. One technique for
dealing with such expressions is to view products of field automorphisms as linear
characters.

To this end, let ¥ be a finite subfield of F' and let k1, ks, ..., K, be m > 0 field
automorphismsof F. If§ : F — Fis given by £(z) = 2 2%2...z%m  then certainly
E(F) CFandé: F° — §° is a multiplicative homomorphism from 3’ to a field. In
other words, £ is a linear character of the group. For convenience, if x and £ are
such linear characters of §*, then we use [x,£&] = 3", c5e x(¥)€(y™") to denote the
unnormalized character inner product. Certainly, character orthogonality implies
that [x,£] = 0if x #&, while [x,x] =|3"| = |§] — 1 = —1 mod p. Of course, the
inner product [, ] extends by linearity to a function on sums of characters. Here
is a sample argument.

Lemma 5.2. Let F be an infinite locally finite field and let ¥(z): F = F be a
map that can be written as a finite F-linear combination of functions of the form
E(:r:] = zF1g"®2 ... g% where each k; is a field automorphism and m > 0. Assume,
in addition, that ¥(0) = 0.

i. If U(F) is finite, then ¥(F) = 0.

it. If ¥(z) is an additive map with ¥(F) # 0, then F is a finite sum of F-
translates of its additive subgroup U(F), that is F = Y j_, by ¥(F) for
suitable field elements by, bs, ..., by.

Proof. Say ¥(z) = Z‘,_ a;§;(z) with a; € F. By combining terms if necessary,
we can clearly assume that, as functions, the £;(z) are all distinct. In particular,
there is at most one &;(z) given by the empty product, and then, since ¥(0) =0
this term cannot appear in ¥(z). In other words, &;(0) = 0 for all i and hence,
since these functions are distinct, then differ on nonzero elements. It follows that
there exists a finite subfield § C F such that the various &;(z) give rise to distinct
linear characters & : §* — §°.
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For each y € 3°, define ¥, (z) = ¥(y~'z) for all z € F. Then

t t
Uy(z) = Y abi(y™'z) = Y aibi(y™")éi().
i=1 i=1
Thus, for any fixed subscript j, we have
t t
Y &Y () =) Y LG ) aiki(z) = Y6, & -aiki(z)
yeF® i=1lyeg* i=1
where [€;,&;] denotes the unnormalized character inner product. In particular,
character orthogonality yields

(%) > &)Yy () = —a;éj(z) forallz€F.
yEF®

(i) If ¥(F) is finite, then each ¥y (F) is finite and hence, by the above, a;&;(F)
is finite. But &;(F) is infinite, by Theorem 4.3, and hence we must have a; = 0
for all j. In other words, ¥(F) = 0.

(ii) Now suppose that ¥(z) is additive with W(F') # 0, and let the subscript j
be chosen with a; # 0. Since each ¥ (z) is clearly also an additive function, it
follows from (x) that a;&;(z) is additive and hence so is §j(z). But &;(z) is given
to be a multiplicative function, so it is an endomorphism of the locally finite field
F, and hence an automorphism. In particular, §;(F) = F, so (*) yields

Y EGWE(F) = Y &(v)¥y(F) 2 —ajéi(F) = F,
yeEF* yEF*®
as required. O

The following is, in some sense, the main result of paper [P]. The argument
here is quite different from that of Theorem 3.4.

Theorem 5.3. Let F D E, V and & satisfy Hypothesis 5.1, and let K be a field of
characteristic different from p. Then the augmentation ideal wK[V] is the unique
proper &-stable ideal of the group algebra K[V].

Outline of the proof. Use the notation of Hypothesis 5.1, set Z = Evy = E+, and
let I be a proper ®-stable ideal of K[V]. We first note that I is not controlled by
Z. Indeed, it follows from parts (i) and (ii) of the hypothesis that Z contains no
nonidentity &-stable subgroup (see, for example, the last paragraph of the proof
of Lemma 6.1). In particular, if Z D C(I) then C([), being &-stable, must be the
identity subgroup and consequently I = 0 or K[V], a contradiction.

Next, since 3 is a p-group, it acts in a unitriangular manner on V' and hence, by
Lemma 3.2, there exists an element a € K[Z]\(INK[Z]) and an element v € V\ 2
having only finitely many PB-conjugates modulo Z, such that a-wK[T] C INK[Z].
Here T = {v*~! | € Ngp(vZ)} is a subgroup of Z and, for all z,y € Ng(vZ), we
have v®¥~1 = y*=1.9¥~1 We study the configuration a-wK[T] C I N K[Z].

The goal now is to show that 7' is actually a large subgroup of Z = E*+. To this
end, choose a one-parameter subgroup P, of B that does not centralize v. Since
v has just finitely many P,-conjugates modulo Z, part (iii) of the hypothesis
and Lemma 5.2(i) easily imply that 93, centralizes v modulo Z and hence B,



Invariant Ideals of Abelian Group Algebras 387

normalizes the coset vZ. Furthermore, the various linearity conditions alon§ with
Lemma 5.2(ii) show that T"a; + T"az + -+ -+ T"ax = F*, where T" = {v*~! |z €
PBg} and where a4, ay, ..., ax are suitable elements of F. But 7" C T C E C F, so
we conclude that Tb1 +Tbo+ -+ Th = Et for suitable elements bl,bz, vy bk €
E. Indeed, since E is the llnea.r span of the product 6, (F*)02(F*)---0,(F*), we
can assume that each b; is the vo-eigenvalue of an element y; € T.

At this point, the action of T comes into play in a completely different manner.
Unfortunately, this argument is really quite technical, so we cannot discuss it
here in full detail. Roughly, we assume that K is algebraically closed and we
consider those irreducible representations A: K[Z] - K with A(JNK[Z]) = 0 and
A(a) # 0. There must, of course, be representations of this sort, and we show, with
a good deal of work, that any such A is necessarily the principal representation of
K|Z]. In particular, since A(a) # 0, we now know that a ¢ wK[Z].

Finally, let 8 = a®W)q%W)...a#Ws) and note that 8 ¢ wK[Z] since the
augmentation ideal is a prime ideal of K[Z]. Furthermore, a®¥9). K[T¢Wi] C

I N K[Z] and hence BwK[Z] C I N K[Z], since Z = E+ = ¥, Th; = 3, T¢W).
Now if J = {y € K[Z] | v- wK[Z] C INK[Z]}, then J is certainly a T-stable ideal
of K[Z], and J Z wK|[Z] since B € J. Thus, Theorem 4.3 implies that J = K[Z]
and, in part.lcula.r that 1 € J. Consequently wK[Z] C I N K[Z] C I and, since I
is -stable and Z¢(®) = V, we conclude that wK[V] C I, as required.

6. NONRATIONAL REPRESENTATIONS OF GRoOUPS OF LIE TYPE

At this point, it is necessary to apply a number of known results on the repre-
sentation theory of groups of Lie type.

Lemma 6.1. Let ® be a quasi-simple group of Lie type defined over an infinite
locally finite field F' of characteristic p > 0, and let W be a finite-dimensional
F-vector space on which ® acts both nontrivially and absolutely irreducibly. Then
there exists a subfield E of F' of finite index and a &-stable E-subspace V' of W
such that
i. V has no proper &-stable subgroup.
u W=FQ@gV.
uai. F D E, V and & satisfy Hypothesis 5.1.

Proof. By results of [BT] and [HZ1], we have W = W{* ®p W3 ? ®p -+ - ®@F W*,
where each W; is a rationally irreducible F[&]-module and where each o; is a field
automorphism. Now let P be a Sylow p-subgroup of & and let T be a maximal
torus of & contained in Ng(B). As we have already mentioned, P centralizes a
unique line Fwp in W, and therefore wo = w{' @ w3? @ - - - ® wi*, where each wj;
with 7 > 11s a highest weight vector in W;. Thus, by the description of the action
of T on each W; given in [PZ2], we see that T acts on Fwg by way of the functions
6y,0,,...,0,: F — F of Hypothesis 5.1(ii). Furthermore, if E is the subfield of F
spanned by the product 8y (F*)02(F*®)---0:(F*), then it follows fairly easily that
(F : E) < oo and that E is the linear span of the product 6y (E*)82(E*)---0,(E*).

Next, results of [PZ2] imply that E is equal to the field GF(p)[x] generated by
all values x(®) of the group character x: & — F corresponding to ¢. Thus, since
& is locally finite and char F' = p > 0, the representation associated with W is
actually realizeable over E. In other words, there exists a &-stable E-subspace
V C W with W = F®g V. This proves (ii), and of course & must act nontrivially
and irreducibly on gV since it acts nontrivially and irreducibly on pW.
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Since P is a p-group, it acts in a unitriangular manner on V' and hence Cy (‘) #
0. Indeed, since F ®g Cy (B) C Cw (P), it follows that Cy (P) is a line Evg in
V and, without loss of generality, we can assume that wy = vg € V. With this,
we now understand the action of ¥ on Fvg. Furthermore, as can be seen for
example in [St], P is generated by one-parameter subgroups P, determined by
root vectors, and each such subgroup acts on each W; via polynomial maps. Of
course, in the twisted cases, the defining field automorphisms also come into play.
Thus, since FQr V =W = W' ®@r W3? ®F - - - @r W.*, we can now conclude
that F D E, V and & satisfy Hypothesis 5.1.

Finally, suppose U is a nonzero &-stable subgroup of V. Then 0 # Cy () C
Cv (B) = Evo. Furthermore, T acts on Cy (B) and, since E is the linear span of the
product 8y (E*)62(E*) - - -0:(E*), it follows that Cy (B) = Eve. As a consequence,
we have U D Evg-¢(®) = V, and the proof is complete. O

It is now a simple matter to bring all these ingredients together. Indeed, with
Jjust a bit more work on the representations of &, the preceding lemma and The-
orem 5.3 combine to yield

Theorem 6.2. Let & be a quasi-simple group of Lie type defined over an infinite
locally finite field F' of characteristic p > 0, and let V be a finite-dimensional
vector space over a characteristic p field E. Assume that & acts nontrivially on
V' by way of the representation ¢: & — GL(V), and that V contains no proper
&-stable subgroup. If K is a field of characteristic different from p, then wK[V]
is the unique proper &-stable ideal of the group algebra K[V].

It follows easily from the celebrated result of [Be], [Bo], [HS] and [T] that any
quasi-simple, infinite, locally finite linear group is a group of Lie type defined over
an infinite locally finite field F' of the same characteristic p. Thus, the preceding
theorem yields

Corollary 6.3. Let V be a finite-dimensional vector space over a field E of char-
acteristic p > 0 and let & be an infinite locally finite subgroup of GL(V). Assume
that & is quasi-simple and that it stabilizes no proper subgroup of V. If K is a
field of characteristic different from p, then the augmentation ideal wK|[V] is the
unique proper &-stable ideal of the group algebra K[V].

Finally, we return to the original problem of studying ideals in group algebras
of locally finite abelian-by-simple groups. Recall that if V' is a normal abelian
subgroup of £, then §/V acts on V' by conjugation.

Corollary 6.4. Let V be a finite-dimensional vector space over a field E of char-
acteristic p > 0, and let V be a minimal normal abelian subgroup of the locally
finite group $). Assume that $/V is an infinite quasi-simple group that acts faith-
fully as an E-linear group on V. If K is a field of characteristic different from
p ond if I is a nonzero ideal of K[$), then I D wK[V]-K[$)] and hence I is the
complete inverse image in K[$)] of an ideal of K[H/V].

Proof. Let 0 # I < K[$)] and suppose, by way of contradiction, that I N K[V] = 0.
Note that V acts in a unitriangular manner on § since it centralizes both V' and
$/V. Thus since Cg (V) = V a9 and since V does not control 7, it follows from
Lemma 3.2 that these exists 0 # a € K[V] and h € $\ V with a-wK[T] = 0 and
with T = [h, V], the commutator group determined by the action of h on V. But
T is a nonzero E-subspace of V, so T is infinite, and hence a-wK[T] = 0 implies
that e = 0, a contradiction.
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We now know that I N K[V] is a nonzero $/V-stable ideal of K[V]. Further-
more, since V' is a minimal normal subgroup of §, it is clear that & = §/V
stabilizes no proper subgroup of V. Consequently, Corollary 6.3 implies that
INK[V] DwK[V],so I DwK[V]-K[$] and the result follows. O

In particular, any information on the lattice of ideals of K[$)/V] carries over
immediately to information on the lattice of ideals of K[].

We remark, in closing, that there is still much to be done on variants of this
particular question. Two problems which immediately spring to mind are: (1)
Can the results on general polynomial forms or even on the special polynomial
forms we consider be improved so that Proposition 4.1(ii) becomes applicable? It
might help if one can prove that the final value of a polynomial form f: A — S
1s necessarily a subgroup of S. Of course, a positive solution here would lead to
a more direct proof of Theorem 5.3. (2) Can Theorem 6.2 be extended to handle
modules V' that are completely reducible rather than just simple? In this case,
one would hope for an answer analogous to that given in Theorem 2.2. At first
glance, both of these problems appear to be quite difficult, but one never knows.
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