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On the Birkhoff approach to classical mechanics

Marcelo H Kobayashi and Waldyr M Oliva

Abstract:The notion of Birkhoffian allows the introduc-
tion of the intrinsic concepts of reversibility, reciprocity, reg-
ularity, affine structure in the accelerations, conservation of
energy, as well as the Principle of Gibbs-Appell on the en-
ergy of the acceleration. The Birkhoff systems generalize the
Lagrangian systems either regular or not, being possible to
provide an external characterization for the latter within this
framework: the so called inverse problem of Lagrangian me-
chanics. It is also possible to introduce, in a natural manner,
the notion of constrained Birkhoff systems beyond the clas-
sical affine constraints. Symmetry and reduction as well as
conservation of volume are analyzed for constrained and un-
constrained Birkhofl systems.

1 Introduction

Let us consider a Lagrangian system of equations (see Abraham & Marsden
(1978))

QF(g.4,4) = daL—§£=0, F==il e s (1)

dt 9¢'  dq
corresponding to an autonomous C?-Lagrangian function L = L(g, ¢). We point
out the following properties of the left hand side of such equations.

i) They define a second order system of ordinary differential equations (may be
in implicit quasi-linear form)

5L . #L. .. 6L ;
QL(QQQ) -aqjaq J 3(,"-7‘3(}‘?}—.{% =0, 3:1,...,?’1, (2}

ii) Under the so called Legendre condition, that is,

det (82—[' # 0 everywhere 3
840" P %)

the Lagrangian L is regular (Abraham & Marsden (1978)) and the system
in i) can be solved for §; so one obtains, in the neighborhood of each point
(g0, 0, Go), a system in explicit form

i =k(g,4), i=1,...,n (4)

Remark that regularity means det ( 51 ) # 0, everywhere.
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iii) The left hand sides QF(g,4,4), i = 1,...,n, have covariant character. In
fact, let § = (¢*) be another system of position coordinates and construct,
analogously, the functions

Qf =Qf7,49, 1=1...,n

After a C? change of coordinates given by ¢* = ¢*(¢*,...,§*), k=1,...,n,
one obtains

= aq’ X
Q!I'L=Qf‘a_q-lfl 31!=19”'!ns {5]
with the right hand sides being functions of (g,¢,q) through the “natural”
transformation:
¢ =g ...
. a k-
¢t = o (O . (6)
ﬁk:agjaqrq_rqv'i'%g?qj: j,k,l"zl,...,ﬂ
iv) The Lagrangian system Qf‘(q,gi,q'] = fi 'ge?[:- - galf =0,i=1,...,n,is “con-

servative” in the sense that the “work” (ff Q;‘dq'j ) done along a piecewise

C' path AC = (q(t), ¢(t)) by the functions QF(q, ¢, ) is independent of the
path taken, and so it depends only upon the values of (¢!, ...,¢",4",...,¢")
at A and C'. In other words, the Lagrangian system (1) satisfies the “Prin-
ciple of the conservation of energy”.

The qguantity

oL ..
Er(q,9) = 55¢ —L 7
L(9:9) = 55 (7)
is the “energy” of L and is conserved along any path defined by a solution

q(t) of (1).

In 1927, G.D. Birkhoff, is his celebrated book Dynamical Systems (see Birkhoff
(1927)) extended the properties 1) to iii) to a (not necessarily Lagrangian) system
of second differential order equations

Qi(‘hé!ﬁ)zor i:l,...,n, (8)

with a physical interpretation for the n functions @; as “generalized forces” and
Qi(q,4,¢)dq" as an “elementary work” done by these forces. Following Birkhoff,
the generalized forces are assumed to have the covariant character, that is,

Q:=Q;%, T="Tyuims ()
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for any natural change of coordinates of type (6). Regularity means, as above,

det (%%‘-) # 0, everywhere. If, moreover, these forces satisfy the Principle of the

conservation of energy (iv), in the sense that the work ( ff Q;d¢’ ) done, along

a piecewise C'! path, by the generalized forces Q;(q,q,§), is independent of the
path, then (8) is called a conservative system.! Birkhoff gave also another char-
acterization for the principle of conservation of the energy through a fundamental
identity (see Birkhoff (1927), p.16, equation (4)).

In Birkhoff (1927) it is also introduced the notions of reversibility

Qi(g,4,4) = Qi(e,—4,49),
and “affine” generalized forces, that is,
Qi(9,4,4) = aij(g, Q)& +bilg,9), ii=1,...,n; (10)
it is defined the “Principle of reciprocity” characterized by the symmetry condition

aij(q;é):aji(QIq.): i!j:l!"'ln‘l (11}

and it is considered from (10) those forces @; for which
as=10:049), 1,i=32,...50 (12)

Moreover, he proved that most of these notions do not depend on the “natural
coordinates” (g, ¢, §) used in their definitions, that is, they are invariant under the
transformations given in (6).

Finally, Birkhoff considered the so called “inverse problem of Lagrangian me-
chanics” by giving an external characterization for regular and non-singular (in
his terminology) Lagrangian systems, that is, systems defined by the nowadays
called “classical Lagrangians”:

1 ," .
L= 39i(9)d'¢’ —U(q) (13)
with det(gi;(q)) # 0 everywhere (see Theorem 3 in the present paper).

After the seminal work of Smale in Smale (19704) and Smale (19706) and
the publication of a series of books like those by Godbillon (1969), Abraham &
Marsden (1978), Arnold (1989), Gallavotti (1983), Marsden (1992), Marsden &
Ratiu (1999) and Oliva (2002) among others, the subject of Geometric Mechanics
became more and more well posed and popular. In the present paper we come back
to the Birkhoff approach to classical mechanics presenting all his ideas from the

!'Remark made by Birkhoff in Birkhoff (1927), p. 4:“I presented the results here obtained at
the Chicago Colloquium in 1920. The following treatment of the Principle of the conservation
of energy differs essentially from any other which I have seen”.
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viewpoint of differential geometry and proving new results which will be discussed
in the sequel.

As we will see in §2, given a smooth, connected n-dimensional manifold M, one
starts by considering the tangent bundles (TM, M, ny) and (T(TM), TM, rrm).
The 2-jets manifold J*(M) is a 3n-dimensional submanifold of T(TM) defined as

J3(M) = {z € T(TM) | 7rm(z) = Tru(2)}

Trwv being the tangent map of ny.

Call 77 := 7rMm|s2(m) = Trm|s2(m)- The second order vector fields ¥ on TM
are such that Tnv(Y,) = v, for all v € TM, so any such Y has values on J2(M)
and we can identify any second order vector field with a cross section X of the
bundle 7; : J*(M) = TM because Y = i o X, where i : J2(M) — T(TM) is the
canonical inclusion.

A local system of coordinates (U, ¢), ¢ = (¢*,...,q"), for M induces natural
local coordinates ((nv o 7)7%(U); 4, 4, §) for J?(M).

A Birkhoffian (sce §3) is a special Pfaffian form w on J?(M) such that in the
natural local coordinates is written as w = Qi(g,q,¢)dg’. One can show that
(J2(M), TM, 7;) is an affine bundle and a Birkhoffian w induces a morphism &
from (J2(M),TM, 7;) into the cotangent bundle (T*M, M, ;) (see Proposition
2). When w restricted to each fiber is an affine map we say that the Birkhoffian
w is affine. Any Birkhoffian w induces also a map @ (see Proposition 4) such that
to each z € J2(M), @(z) is a bilinear map defined on T,M in the following way:

@(2)(up, wp) := % [W(z +tAsup)wp], o

where v = 75(2), p = ™m(v), up, w, € T,M and A,u, is the vertical lifting of
up € TpM to Ty (TM). In natural local coordinates, if w = Qi(g,4,4)dg* and
up = u’%,— (p), wp = w’;:,%—, (p), we have

aQ; Coan
@(z)(up,wp) = 3_?3 (9,4, ¢)w’w'.

When &(z) is symmetric for all z € J2(M), w is said to satisfy the Principle of
reciprocity, that is, %%l = %%’4 , Vi,j=1,...,n, in natural local coordinates.
When &(z) is non-degenerate (as a bilinear form) for all z € J2(M), that is,

det (%.?;"-) # 0 everywhere in natural local coordinates, w is said to be regular

provided that for each v € TM, there exists z € le(v} such that @(z) = 0.

The Principle of the conservation of energy is introduced for a Birkhoffian w
(see Definition 13) and it is shown that w is conservative if and only if there exists
a smooth function E, : TM — R (the energy of w) such that

(X*w)Y =dE,(Y)
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for all second order vector field Y = i o X on TM. That is equivalent, in natural
local coordinates, to the identity

_0E, .  OE,

Qi(g,9,9)d" = a0 ¢ T g ¢

(see Proposition 5).

Any smooth Lagrangian function L : TM — R defines a Birkhoffian wy that
satisfies the principle of reciprocity, is affine and is the unique Birkhoffian such
that

X*wy, =iyd(dyL) +d(Z(L) — L)

for all second order vector field Y = io X on TM. Here Z(L) — L is the energy of
wy, where Z is the Liouville vector field, defined by Z(v) = A,(v) € T,(TM) for
all v € TM. In natural local coordinates one can write

Ly = (i _‘?.I"_ — _6_1‘, i
L= Vat a¢ ~ aq
so wy is regular if, and only if, L is a regular Lagrangian.

The paper follows with a concrete Example 1 corresponding to the equations
modelling the flight of rigid airplane. It is not conservative, in general, so does not
fit into the Lagrangian formalism. Also, it has an implicit character and cannot
be included into the general Godbillon approach (see Remark 5). Thus, in a sense,
Birkhoff formalism extends not only the Lagrangian and Godbillon approaches but
also includes many mathematical-physical models (conservative or not) involving
implicit second order equations.

The notion of normal Birkoffian (see Definition 9 and Example 2) includes
classical Lagrangian systems (kinetic energy minus potential energy).

The Gibbs and Gibbs-Appell functions as well as the Gibbs-Appell principle
are also introduced in the context of Birkhoff systems (see Definition 12). These
concepts are usually associated with constrained mechanical systems, where it
provides a simple form for deriving the equations of motion. Their derivation goes
back to the works of Gibbs (Gibbs (1879)) and Appell (Appell (19005), Appell
(1900a)). It can be found in classical texts as Pars (1965) and more recently they
have been generalized to regular Lagrangian systems within a geometric framework
in Lewis (1996) (see also the references therein).

The principle of the conservation of energy is completely described and char-
acterized locally as well as globally. The Birkhoffian w = w;, defined by a smooth
Lagrangian has its main properties showed in Proposition 7. The Principle of
determinism holds for any regular Birkhoffian (see Theorem 1).

The inverse problem of the Lagrangian mechanics is the search for necessary
and sufficient conditions for a Birkhoffian w to be equal to a Birkhoffian wy, cor-
responding to a Lagrangian function L. This problem has known a long history,
dating back to Helmholtz. The reader is referred to Anderson & Thompson (1992)
and the references therein for a throughout treatment on the subject. The main
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ingredient of the modern treatment is the so called variational bicomplex of dif-
ferential forms on the infinite jet bundle of some fibred manifold # : £ — M.
Roughly speaking, one of the differentials in the variational bicomplex may be
identified with the Euler-Lagrange operator, while the other differential provides
the intrinsic characterization of the Helmholtz conditions (see also Massa & Pagani
(1994)). However, following Birkhoff’s ideas we propose to give a simpler exter-
nal characterization of Lagrangian systems. The case of a classical Lagrangian is
developed in Theorems 2 and 3 and the general Lagrangian case is considered in
Theorem 5. The first case is related with the property of an associated Gibbs-
Appell function and the more general case with the classical Helmholtz conditions
(see Definition 14) whose geometrical (intrinsic) meaning is also described (see
Theorem 4). We also deal with the extension of the classical Liouville’s Theorem
to the non-conservative case (see Remark 10).

In section 4, we extend the notion of Birkhoff systems to constrained Birkhoff
systems. The constraint is defined as an affine sub-bundle of the affine bundle
J?(M). The Principle of d’Alembert-Birkhoff is introduced (see Definition 19) and
the existence and uniqueness for regular constrained systems (see Definition 18) is
proved in Theorem 6. The Gauss Principle of least constraint is also introduced in
the context of constrained Birkhoff systems (see Definition 21) and the equivalence
for affine and symmetric Birkhoffians between this principle and the d’Alembert-
Birkhoff principle is proved in Proposition 12. The notion of reaction field is
also introduced (see Definition 20). The constrained inverse problem is proved
in Corollary 2. We close this section with a proof of the Liouville theorem for
classical affine constraints and classical Lagrangian systems.

The last part of the paper concerns the study of symmetry and reduction of
Birkhoff systems. The action of a Lie group G, the momentum mapping and
the implications for the symmetry and reduction of Birkhoff systems are also
considered. A version of the Noether theorem is proved (see Proposition 13) for
Birkhoff systems admitting a momentum mapping, generalizing the Lagrangian
situation and can be effected even in the non-conservative case (see Proposition 16
and the concrete example that follows, which considers the rigid body model of an
artificial satellite orbiting around the Earth under the influence of the gravity and
drag, only). We also give a characterization for the concept of Lagrangian function
invariant under the tangent action (see Theorem 10). The paper ends with a
generalization to constrained Birkhoff systems of the symmetry and reduction
procedures developed for the unconstrained Birkhoff systems.

2 Preliminaries

Let M be a smooth finite-dimensional differentiable connected manifold, dimM =
n,and ny : TM — M, 734 : T*M — M denote the tangent and cotangent bundles of
M, respectively. If (U,q',...,q") is a local coordinate system in U C M, then ¢ :
TU = 771(U) — R defined as ¢*(v) = dg¢’(v) for all v € TU enable us to construct
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natural local coordinates (TU,¢' o nm,...,¢" © Tm, ¢}, .. .,¢"). For simplicity we
write (TU, q,4) with the identification ¢* ~ ¢ o 7m. Analogously, using 7ry :
T(TM) :— TM, one can construct natural local coordinates for T(TM): (T(TU) =
ffﬁiorﬁl(U);qo‘m‘M,q'rorrM,dq,dé), where dg' means dryg' and dg' means dpvg’.
Also, for simplicity, we keep denoting this last natural system of coordinates by
(T(TU); g,4,dg,dg).

Denoting by Tmy the tangent map of ny we obtain the following “rhombic”
commutative diagram:

T(TM)
il
T™™ ™™
M
In natural local coordinates we set

Tr

T(TM) —> TM or (g,q,dg,d¢9) — (g,dq)
T(TM) % TM or (¢,4,dg,dd) — (g,4)

2.1 The vertical vector bundle

For each v € TM, define the vector space
Vu(M) = {§ € To(TM) | (Trm(v)) € = 0},

to be the set of tangent vertical vectors at v € TM. So, it is well defined the
vector bundle V(M) £ TM where p = 7rMly vy and p 1 (v) = V,(M) for each
veTM.

In natural coordinates (g, ¢, dg,dg) of T(TM), V(M) is defined by dg = 0, that
is, the elements of V(M) are given, locally, in natural coordinates, by (g, ¢,0,dq).
The elements of the n-dimensional vector space V,(M) are called the tangent
vertical vectors at v € TM.

2.1.1 The Liouville vector-field Z on TM
The Liouville vector-field is the vector field Z on TM defined by
Z(v) = Ayv € T, (TM)

where A, v is the vertical lifting (see, for example, Marle (1995)) of v € T, (,)M
to T, (TM). The (natural) local expression of the Liouville vector field at v € TM
is Z(v) = t}:i("’)a'%'-'(”)! where, unless otherwise stated, we use the summation
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convention throughout. On the other hand the flow of Z through (¢,¢) € T™M
satisfies the ODE:‘ %% = p, %% = q, with initial conditions ¢(0) = ¢o and ¢(0) = go.
So, q(t) = qo and ¢(t) = goe'. In other words, Z generates the one parameter group
of homotheties of TM and vanishes on the zero section of TM and only there.

2.2 The 2-jets manifold J?(M)
Let us introduce, now the following 3n-dimensional manifold
J*(M) = {z € T(TM) | 7rm(2) = Tru(2)}

Restricting 7rm and Ty to J?(M) one obtains, 75 := PrM| g2y = T g2 0)-
That is, we have the following commutative diagram:

J*(M)
7'mliy xmﬂm)
™ - ~TM

R
M

We also define 8 = fum : J2(M) = M by B(z) := (mm o 7rm)(2) for all z € J2(M).

In natural local coordinates the elements of J%(M) are of the form (g, ¢, ¢,dg),
because (g,d¢) = (g,4). We denote by § := dg|s>(m). The cross sections (resp.
local cross sections) of 77 : J*(M) — TM are identified with the so called second
order vector fields (resp. local second order vector fields). Recall that any vector
field Y on TM is a second order vector field if and only if Trm(Y,) = v for
all v € TM. Also, for any cross section X of 75 : J2(M) — TM there is a
unique second order vector field ¥ on TM which satisfies ¥ = i o X, where
i: J?(M) = T(TM) is the canonical embedding. In local natural coordinates a
second order vector field can be represented as

D DS
Y=qa—¢+fJ(q,Q)a—‘j,‘-

For the sake of simplicity, we may also write

a

4 0 =
Y=q§§+q-ég.

The vertical space V,(M) acts transitively on 77 '(v). Indeed, if £ € V,(M)
and z € J2(M), one uses the sum of T, (TM) to construct £ + z € JZ(M). In fact,
in local natural coordinates we have

(9(v), 4(v), 0,dq(€)) + (9(v), 4(v), 4(2), d4(2)) = (q(v), 4(v), 4(2),dg(z + £))-

It is easy to check the axioms of an affine space:
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L&+ (&+2)= (6 +6&)+2 6,6 € V,(M), z€ JZ(M);
2. 04z = z, for all z € J2(M);
3. given z,z € JZ(M), there exists a unique £ € V,(M) such that z + £ = z.

Proposition 1. 77 : J2(M) = TM is an affine bundle, modelled by the vertical
vector bundle p : V(M) = TM (see Goldschmidt (1967) and Lewis (1996)).

Definition 1. Let f: N — N be a smooth map of manifolds; we define the affine
bundle morphism J*f : J2(N) — J?(N) by:

2 f(z) = T*f(2)
for all z € J?(N).

3 Birkhoff systems

Looking at the diagram
J2 M) I TM ™ M
the mapping 8 = ny o 77 : J2(M) = M is a smooth fibration.

Definition 2. A Birkhoffian of the configuration space M is a smooth Pfaffian
form w on J%(M) such that, for any p € M, we have i5w = 0, where i, : 71 (p) —
J*(M) is the embedding of the submanifold 3~ (p) into J*(M). The pair (M,w)
is said to be a Birkhoff system.

From the last definition it follows that, in natural local coordinates (g, ¢, ¢) of
J*(M) (g represents dg|;a(yy), a Birkhoffian w is given by w = Qi(q, ¢, §)dq’.

Proposition 2. A Birkhoffian w of the configuration space M induces a smooth
morphism & between affine bundles such that the following diagram is commuta-
tive:

J*(M)

™M
T ™

™ ———M

Proof. Let z € J*(M), v = 75(2) and p = my(v). For any w, € T,M one defines
@p(wp) = w,(pz) where p, € T,J*(M) is any vector such that B.(z)(g:) = wp.
@p is well defined because, if i, € T.J?(M) also satisfies B.(z)(ji;) = w, =
Be(2)(pz), one sees that Bu(z) (iz — pz) = 0, that is, fi, — p, is tangent to 871 (p)
at z € A~ (p). So w,(ji: — p:) = 0 and then w,(j;) = w, (u.). O
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Remark 1. Given a Birkhoff system (M,w), then, for each cross section X of
J?(M), we have (X*w)é = &(X)(Tmué), for all vector fields £ on TM. Indeed, in
local natural coordinates (q, ¢, §), if X(q,4¢) = (¢,4,4x), then

(X*w)é = Qi(q,9, ix)€" = &(X)(Tmmé)
_gi 8 i 8
whereﬁ_ﬁ'w + & 5 -
Definition 3. The differential system D(w) associated to a Birkhoffian w of M
(see Oliva (1970)) is the set (may be empty) given by
D(w) :={z € J* (M) | w(z) =0} .

Let I be an open interval of R. Any smooth curve ¢ : t € I — ¢(t) € M defines
a lifting T (l;-gi) L 1= J2(M).

A motion of w is a smooth curve ¢ whose lifting to J*(M) has image contained
in D(w).

Locally, in natural coordinates, if w = Q;dg’, the differential system D(w) is
characterized by the following implicit system of second order ODE:

Qi(g=o(t),4=o(t),i=6(t)) =0

for all i = 1,...,n, and motions of w are the solutions ¢ = ¢(t) of the implicit
system of ODE above.

Definition 4. A Birkhoff vector field associated to a Birkhoffian w of the configu-
ration space M is a smooth second order vector fieldY =io X, X : TM — J2(M)
such that Im X C D(w), that is, whose base curves on M are motions of w, or
equivalently, if X*w = 0. Analogously, one defines the notion of local Birkhoff
vector-fields.

Definition 5. A Birkhoffian w is regular if w(z) s non-degenerate for all z €
J?(M) and for each v € TM, there exists z € 75 ' (v) such that &(z) = 0.

Locally, this means that
0Qi, . ]
det -—\4:9, 0
[6;:1 (9,4,9) T #
and for each (g, ¢), there exists ¢ such that Qi(¢,¢,4) =0,7=1,...,n. Note that
the Birkhoffian w = efdz of R is such that det [%%] = e® # 0, but is not regular,
since there is no (z,2,%) € J?(R) such that Q(z,#,2) = 0. In other words, we

can not dispense with the second requirement in the previous definition.

Lemma 1. Let (E,||||) be a Banach space and f : U — E a C'-mapping defined
on an open convez set U C E. If for all v € U the derivative D f(v) € End(E) 1s
injective, then there exists at most one v € E such that f(v) = 0.
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Proof. Suppose, by contradiction, that there are two distinct points vo,v; € E,
such that f(vg) = f(vy) = 0. Given a continuous linear functional ¢ € E', we
define the smooth function g, : [0, 1] = I as follows

9o 1t p(f(vat + (1= D)wo)).

By Rolle’s Theorem and a corollary of the Hanh-Banach Theorem (see Corol-
lary 2, p. 108 in Yosida (1980)), there is a sequence (¢;), i € N of continuous
linear functionals and a sequence of vectors (w;), i € I satisfyving

ledl =1 & wi(wi) =0,i=0,...,

po(w) = |lwl] &  ei(wio1) = |lwica]|,i=1,...,

and
w; = Df(vie; + (1 — ei)ve) - w.

with, ¢; €]0,1[. for all i € N. By compactness of the unit interval, there is a
converging subsequence ¢;, €]0,1[, k € N, say ¢;, — ¢ € [0,1]; smoothness of f
vields

wi, = Df(vies, + (1 — ¢ )vo) - w — @ :=Df(vie+ (1 —c)vg) - w,

whence
0 = @iy (wi,) = @iy (Wi, — Wiy—1) + @iy (Wi —1) = ||@]].
Thus,
w=Df(vie+ (1 —¢)vg) - w=0

which contradicts the hypothesis of Df being injective everywhere on U/ and the
proof is complete. 0

Theorem 1 (The principle of determinism). If a Birkhoffian w of M 1is
reqular, then it satisfies the principle of determinism, that is, there exists a unique
Birkhoff vector field Y = io X associated to w such that Im X = D(w).

Proof. Applying Lemma | to the local representative of w restricted to each fiber
of 7y : J2(M) = TM, (Q1(9.¢,),-..,Qnlq,q,-)) : B” = R", yields a unique z
in Definition 5; then, by using the Implicit Function Theorem locally in natural
coordinates to the system of ODE Q;(¢,¢,¢9) =0,i=1,..., n, we see that D(w) is
locally equivalent to a smooth second order system of ODE in normal form, that
is, of the type
q =f'(q.9)

for all i = 1,....n. The existence and uniqueness of the solution as well as the
differentiable dependence of solutions with respect to initial conditions, show the
existence and uniqueness of a Birkhoff vector field ¥ = i o X such that Im X =
D(w). O
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Let p : TM — TM be the mapping TM 3 v — —v € TM. Besides the
mapping between affine bundles & defined above, we may also define the map-
ping & : J(M) — T*M, between affine bundles, making the following diagram
commutative:

@
JA((M) ————T*M

poTy ™

™ M

™

Definition 6. A Birkhoffian w of the configuration space M is said to be a re-
versible or to satisfy the principle of reversibility if & = @.

In local coordinates this condition is equivalent to Q;(q,¢,¢) = Qi(g,—4,q),
and from this we obtain,

Proposition 3. Let (M,w) be a Birkhoff system with a reversible Birkhoffian w
and let ¢(t) be an integral curve of a Birkhoff vector field Y. Then, p o e(—t) is
also an integral curve of Y. Thus, F_;(z) = p(Fi(p(z))), where F; s the flow of
Y.

Proposition 4. A Birkhoffian w of the configuration space M induces a smooth
morphism @ between fibres bundles such that the following diagram 1s commutative

JA(M) ——— = TY(M)

& (72)
™ ——M

where T3 (M) = Upem T (T,M) is the smooth vector bundle of bilinear forms on
TM.

Proof. Let z € J*(M), v =7,(z) and p = nm(v). For any pair of vectors u,, w, €
Ty M one defines

B(2)up ) 1= 7 {6 e+ A )|

where A, u, is the vertical lifting of u, to T, (TM). It is easy to check that &(z)
is bilinear. O
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In natural coordinates, taking up, = u'g%,-i and wp = w 2| we can write
P P

aqt
for w = @Q;dg*:

aQ:

: ww
dg

2=(q(2).4(2).4(2))

w(z)(up, wp) =

Definition 7 (The principle of reciprocity). A Birkhoffian w satisfies the
principle of reciprocity if &(z) is symmetric for all z € J*(M).

Locally, this means that ]
46;._ 98
o 9§
for:all 2, 9=1. ...;m

Definition 8. A Birkhoffian w 1s said to be affine with respect to accelerations if
the mduced morphism w restricted to each fibre of 77 : J*(M) — TM is an affine
map.

To write the local expression of a Birkhoffian affine with respect to accelera-
tions, we start by fixing a second order vector field S : TM — J?(M). To say that
w is an affine map when restricted to each fibre of 77 : J?(M) — TM, means that
there exists a smooth map

v € TM = 5, € Hom (V, (M), T3, M)
such that for each z € 77! (v) we have

@(z) = @(S(v)) + Sulz — S(v)). (14)

In local natural coordinates, if z = (¢,4,4), S(v) = (¢,4.¢) and a;;(q,¢) is
the matrix of S, with respect to the basis (3/d¢'), and (dq"]m(‘,] of V,(M) and

T3, ()M, respectively, we can write (14) in coordinates:
Qi(9,4,d) = Qi(q.4.4) + aij(q,4) [¢7 — §']
or )
Qi(q: 'j: Q) = bi(qu QJ + a‘fj(?r Q)qJ
where

bi(q.4) = Qilq.4.9) — aij (g, )¢’

Exzample 1. In its generality, Birkhofl systems define second order implicit differ-
ential equations, which find applications in, for example, flight dynamics, extremal
problem from singularity theory and dynamical inequalities occurring in control
theory (see LeMasurier (2001) and Davydov (1995) for the latter two).

As a concrete example, consider the model equations of a rigid airplane moving
through a quiescent medium. Assuming a flat, stationary Earth, the configuration
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space is the Euclidean group SE(3) = SO(3)®R®. In local coordinates given
by a normal Cartesian coordinate system attached to the surface of the Earth
(zE,yE, 28) € R3, the standard aeronautical Euler angles (¢,6, %) €]0, 27[ x ]1-
7/2, 7 /2] x |0, 27[ called bank, elevation and azimuth, respectively, (u, v, w) € R3
the components of the velocity vector along the body axis, (p,¢,r) € R3 the
roll, pitch and yaw rates, respectively, and (u,v,w,p,¢,7) € R® with an obvious
meaning we obtain: wy = Q;¢', i = 1,...,6, with U C J?(SE(3)) the open set
corresponding to the image of the domain of the above local coordinates, the Q;
given in the following way:

e Translational dynamics

Q1 = X —mgsinf — m(i+ quw—rv)
Q2 = Y —mgcosfsing —m(v+ ru— pw)
Qs = Z—mgcosficosg—m(w+pv— qu)

where X, Y and Z are the components of the resultant of the aerodynamical
and thrust forces along the body axis, m is the mass of the airplane assumed
to be constant, g is the acceleration of the gravity;

e Attitude dynamics
Q4 = L- .'-:3.9 4- Izz(f.' + pQ') + (Iy e Iz)qr

M - Iyq + Izr(rz = p2) + (L — I-T)rp
QG = N- ]37"+ t’z:(ﬁ"" qr) + {Ix - Iy)??

e
I

where L, M and N are the roll, pitch and yaw aerodynamical and thrust
moments, respectively, and I;;, i, j = &,y, 2 denote the components of the

inertia tensor with respect to the body axis. Here ¢!, i=1,...,6, are
¢! = cosfcosypdrp + cosfsindye — sinfdzg
€2 = (singsinfcosty) — cos ¢siny)dzg +
(sin ¢ sinf sin ¢ + cos ¢ cos ¢ )dyg + sin ¢ cos fdzg
€ = (cos¢sinfcost +singsing)deg +

(cos ¢ sin fsin ¢ — sin ¢ cos ¥)dyg + cos ¢ cos Odzg
¢ = d¢—dysind
€ = dfcosé+ dicosfsing
¢ = dicosfcosd — dbsin .

Note that the coordinate system (zg,yg,z2g,,0,¢,u,v,w,p,q, 7,4, 0,W,p,q,7)
for the manifold J2(SE(3)) is not a natural local coordinate system. In classical
literature, “non natural” coordinates are often referred to as quasi-coordinates
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(see, for example, Pars (1965)). Yet, this prefix is a little misleading, since in
general, any local coordinate for J?(M) is valid whether natural or quasi and in
some cases, as in present example, the latter may facilitate the writing of and the
computations with the equations of motion.

The aerodynamic forces and moments are very hard to estimate in general.
However, in many applications, these forces and moments are assumed to be
functions of position, velocity and also acceleration. For example, it is common to
assume that the lift force is a function of the airplane speed, the angle of attack
a, the pitch rate ¢, the altitude zp, some control variables and also of &. Because
tan o, = u/w, with e, = o + constant, we conclude that even for this elementary
model, the system is an implicit second order system of differential equations.

Since these forces and moments depend on the acceleration and are non con-
servative, problems of this type do not fit into the Lagrangian formalism (it is not
conservative in general). Also, since they have an implicit character, which may
not be quasi-linear, they can not be included into the general approach put forward
by Godbillon (see Remark 5). Thus, in a sense, the Birkhoff approach extends
the Lagrangian approach to many mathematical-physical models (conservative or
not) involving implicit second order differential equations.

We saw that, for each z € J*(M), @&(z) is a bilinear form of T$(7,M) where
p=B(z) = (nmo1s)(2).

Definition 9. A Birkhoffian w of the configuration space M is said to be normal
if @ 1s constant along the B-fibres, that is, if rZaL,j_l(p) is constant, for each p € M.

Note that, when w is normal, @ defines a unique section g,, € 75/(M) of (79 )y :
T3(M) = M; in fact, if p € M: g, (p) :=@(2), for any z € 3~ 1(p).

If, in natural coordinates, w is locally written as w = Qi(g¢, ¢, §)dq¢’, the fact
that w is normal means that %%(q.(j.r'j) = ai;(q). that is, ";(‘j; depends only on

g=1a"s-.-14")-

Ezample 2. If the configuration space M has the structure of a pseudo-Riemannian
manifold

M, (1 )g);

the function 7" = %( )g : TM — IR is called the kinetic energy; given a smooth
potential function U : M — B the Lagrangian function L = 7' — I/ o 7y is called a
classical Lagrangian and the corresponding Birkhoffian w is normal with respect
to the g-fibres.

Definition 10 (The Gibbs function). Given a Birkhoffian w of the configu-
ration space M and a fived smooth second order vector field S on 'TM, the Gibbs
function for the data (w,S):

&:J2(M) > R
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is the smooth function given by
1
6() = 5(2)(z,2)

where s = S(v), v = 75(z) and z € T,M, p = ny(v) being the unique vector such
that A\yz = z — s.

Definition 11 (The Gibbs-Appell function). Let w and S be as above, fir a
vertical section £ : TM — V(M) and consider the data (w,S,€). Let z € J*(M)
and define the bilinear form G(z) : V,(M) x V,(M) - R by

G(z)(m &) = @(2)(2,y)

where v = 15(2), 2,y € TpM, p = nm(v) and A,z = 5, A,y = (. The Gibbs-Appell
function associated to (w,S,€) has the following definition, for all z € J*(M):

f(z) = 8(2) + G(2)(§v, 2 — S(v)), v =1y(2).

Definition 12 (The Gibbs-Appell principle). A Birkhoff vector field Y =
ioX, X : TM — J?(M), associated to a Birkhoffian w (Im X C D(w)) satisfies
the Gibbs-Appell principle corresponding to the data (w, S, &) if, for all v € TM,
Y (v) is a stationary point of the Gibbs-Appell function of (w,S,&) restricted to

75 (v).

3.1 The principle of the conservation of energy

Lemma 2. Given two vectors u,v € TM there exists a piecewise smooth path® + :
[0,1] & M such that nv(u) = ¥(0), nm(v) = (1) and %(0) =u and Td—;l(l) =

Proof. Since M is connected, TM is also connected and it suffices to show the result
for TR™, with normal Cartesian coordinates (¢°,¢*). Denote by (g0 = ¢(u), §o =
g(u)) and (q1 = q(v),q1 = q(v)). Then, it is enough to consider for the path
74 (t) = ¢'(7(t)) the Hermite interpolating polynomial:

Yo(t) = (14 2)(1 — t)q5 + [1+ 2(1 — 1)]t%q} + t(1 — )%gp — £2(1 — t)g;

for all t € [0, 1]. Now, for a general interval [to, ;] one considers the re-paramete-
rization 1 — :1;_:‘”; O
Lemma 3. Let E be a C'-function on TM. Then, E is constant on TM, if and
only if dE(Y) = 0, for all second order vector fields Y on TM.

2We say a continuous path v : [0,1] =+ M is piecewise smooth if it is C* for all but a finite
number of points in the unit interval.
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Proof. If E is constant, then d£ = 0. Conversely, assume dE(Y) = 0, for all

second order vector fields ¥ on TM. Given two vectors u,v € TM, let v be a

piecewise smooth path connecting u to v, that is, y(0) = nv(u), v(1) = mm(v),

T{;‘ = u and 22 ‘ = v, which by Lemma 2 always exists. Let t5 € [0,1] be
t=0 =1

a point of regulant.v of 4. Then,

£ (sG] o () - ()=

where Y is some germ of second order vector field on TM such that Y(%}(ig)}

3;‘;: (to). So, by continuity E is constant along v and so EF(u) = E(v). O

Let w be a Birkhoffian of a smooth manifold M. Given a pair of vectors
u,v € TM and any piecewise smooth path joining these two vectors, v : [0,1] — M,
let 0 =1; < --- < tny, = 1be a partition of the unitary interval where + is smooth

on its cells, the sum
t|+1 T'\‘
i) & Z f dt dt

is called the total work from u to v over 7.

Definition 13. A Birkhoffian w of M is said to be conservative or to satisfy the
Principle of the conservation of energy, if for any pair of vectors u,v € TM the
total work from u to v does not depend on the piecewise smooth path connecting
them.

Remark 2. Consider a conservative Birkhoffian w. For a fixed u € TM one defines
a work W, such that W,(v), for all v € TM, is the total work done between u
and v. Given u,v,w € TM one has W, (v) + W, (w) = Wy (w), so (W, — W, ) is a

constant.

Proposition 5. A Birkhoffian w of M is conservative if and only if there exists a
smooth function E, : TM — R (called energy of w) such that (X*w)Y =dE,(Y)
for all second order vector fields Y = io X on TM.

Proof. We start by observing that the condition (X™w)Y =dFE,(Y) for all second
order vector fields ¥ = io X on TM implies that on each local natural coordinate
system, the fundamental identity (see Birkhoff (1927), p.16, equation (4)):

i OB OB
Qi{qsq:‘;')q 6 r <1 = aq )

holds. Then w is obviously conservative.
Conversely, suppose w is conservative and fix a vector u € TM. Given v € TM,
define E¥(v) = Wy(v). Clearly, this yields a well defined a function EY : TM — R.
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1. Ej : TM — R is smooth.

It is enough to prove it locally. So, let (U, q) be a local chart and v € TU.
By definition we have

1
E4(w) = E%(v) + / Qu(3(t), 40 (1), 54 (1) ()el,

where v, is the path in the proof of Lemma 2 connecting v to any other
point w in the local chart (TU,(q,q)). The smoothness follows from the
smoothness of vy, with respect to the coordinates of v.

2. (X*w)Y =dE%(Y) for all second order vector fields Y = io X on TM.

Again we prove the result locally. Thus, let Y = 10 X be a second order

vector field. Take a base integral curve = : ,€) =+ M of Y at a point
v € TM, that is, v(0) = nm(v), %lt =0 =" and ;‘;7} =Y (v) (note that

7MY (v) = v). Denote by g(v) = go, §(v) = go and G(X(v)) = do . Then,
E% (1a(0), (1) = E2(v) + fo Qi) 40D, 5 (D)3 (D,

for all t € [~¢,d], where 7, = g(7) and E%o(%(t),%() = B (Z®).
Taking the derivative of the previous equation with respect to ¢ yields

OE s aB . .. ) . »
R ek AOR A CHORAORAONHC)

t € [—¢, €. Finally, at t = 0 we get
OFE, . .  OEY,

6q,‘ 9o ¥ aq QD = Qi (q[)! qo, qO)QG:

and the proof is complete.

O

Remark 3. If w satisfies the principle of the conservation of energy and Y = i0 X
is a smooth second order vector field, such that X*w = 0, then

dE,(Y) = (X*w)Y =0.
This means that E, is constant along trajectories of ¥ on TM (see Definition 4).

Let us recall the notion of fibre derivative (see, for example, Abraham &
Marsden (1978)). Let f be a smooth function on TM; the fibre derivative of
[, Ff : TM — T*M, is the smooth morphism defined as follows

Ff(v)w = %f{v—ktw) .
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for all v, w € T, M, with p = nv(v) = nm(w). With the fibre derivative we define
the vertical differentiation d, f (see Godbillon (1969)) of a function f on TM, as
the 1-form on TM given by

dy fu)w = Ff(u)Trm@
for all w € TM and for all @ € 5y (u). In local natural coordinates,

of

d,f = 3 dq'.

Proposition 6. Given a smooth (Lagrangian) function L : TM — IR, there exists
a unique Birkhoffian wp which satisfies

X*wy, =iyd(d,L) +d(Z(L) — L) (15)

for all second order vector fields Y = io X on 'TM, Z being the Liouuville vector
field.

Moreover. in local natural coordinates we have
= (i oL _ ?E) 4ot
L=\ a¢ ~ag ) 1

Proof. In a local natural coordinate system and up to some obvious identifications
we can write

YV ;o‘(“‘q-d—a-j-l-q;;i,
dd, L = aaja qu Adg? + 62"28{‘;3.d¢‘/\dq1,
ixdd,L = a‘;,. Ef;_f g f)ff(..f;j fdg + aj i’ - 5?,.?823. PR,
dl = %dqwg—;dq*’,
ST .
Z(L) = g-;-
d(Z(L)) = a‘%rﬂdq"—ka?f;qjdjd:j"+g—;dé"

As usual, we first prove uniqueness. Hence, suppose a Birkhoffian exists, which
satisfies (15) for any second order vector field ¥ =i o X. Then, using the above
local expressions we get,

g = (L0l OLY
Qilg,q.9)dq" = (dt a7 aqi) d



20 Marcelo H Kobayashi and Waldyr M Oliva

for all (¢, 4¢,§) € J2(U), which prove uniqueness.

As for the existence, it is enough to define locally the Birkhoffian by the previ-
ous expression and show that this definition extends to a (global) 1-form wy,; but
this is a classical result. O

Remark 4. The previous proposition gives an intrinsic characterization of the so
called Euler-Lagrange operator. Actually, the latter is w;. Therefore, in a sense,
w of a Birkhoffian w is a generalization of the Euler-Lagrange operator for general
implicit second-order mechanical systems.

Proposition 7. The Birkhoffian w = wy, associated to a smooth Lagrangian func-
tion L : TM — IR is affine and satisfies both the principle of reciprocity and con-
servation of energy. The energy of wy, s By, = Z(L)—L. Moreover, wy, is regular
if and only if L s a regular Lagrangian, that is, if FL is a submersion on T*M

Proof. To check that the Birkhoffian wy, associated to a smooth Lagrangian func-
tion L : TM — IR is affine with respect to the acceleration, it is enough to write it
in local natural coordinates,

a%L . 8L .. 6L ;
i =7 ot S o ¥
L= (aq‘*‘aq‘f" * 35og aq") dg’-

It is also easy to see that the Birkhoffian wy, satisfies the principle of reciprocity
since by smoothness

% _ %L _0Q;
0§~ 0¢id¢i — 84t
From Proposition 6, wy, is the unique Birkhoffian such that

X'wp =iydd, L+ dE;

for all second order vector fields ¥ =i o X on TM. Then, since (iydd,L)(Y) =
dd,L(Y,Y) = 0, one concludes that (X*wr)Y = dE.(Y) for all second order
vector fields ¥ =i0 X on TM.

Finally, wy, is regular if, and only if, L is a regular Lagrangian, that is, if we

have g
[a Er :] #0,

everywhere. 0

We recall that a Pfaffian form 7 on TM is said to be semi-basic if, for each v €
TM, 7, € [V,(M)]°, that is 7, (€) = 0 for all £ € V,(M). Locally, * = mi(q,¢)dq".
A force field F is a smooth fiber preserving mapping .# : TM — T*M.

Proposition 8. There is a one-to-one correspondence between semi-basic forms
and force fields.
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Proof. Let 7 be a semi-basic form and define the smooth fibre preserving map
Z. : TM = T*M by Zi(v) = my(&) where v € T, (,yM and &, € T,(TM)
is any vector that projects onto v under Tryv(v); Zr is well defined because is
&fu € T,(TM) is another vector field that projects onto v under Try(v) we have
(Trv(v)) (& —-él,) =0, s0 & — & € Vy(M) and then m, (€, — &,) = 0, that is
7y (€y) = my(€,). Conversely, given a smooth fibre preserving map & : TM —
T*M, that is a field of forces, then there exists a unique semi-basic Pfaffian form
wg such that .2, = mg. Indeed mg = Z*0, where 0y is the canonical Liouville
I-form of T*M, and F=0,(E,) = 0o(F.E,) = 0 for all £, € V, (M) since Z.§, is
tangent to the fibre T7 M. O

Given a semi-basic Pfaffian form 7 we denote by 7 the associated force field.
Remark 5. By Proposition 6 we conclude that Birkhoff systems generalize La-
grangian systems. They also extend the notion of some mechanical systems (non-
conservative, in general) as defined by Godbillon in Godbillon (1969). The latter
defines a mechanical system by a triple (M, 7", 7) where M is a smooth manifold,
called the configuration space, T" is a smooth function on TM, called the kinetic
energy and w is a semi-basic Pfaffian form, called the force field. With these data
Godbillion associates the notion of a dynamical systemm to a second order vector
field Y = i o X which satisfies

iyd(doT) =d(T — Z - T) + .
Indeed, the Birkhoffian w associated to the triple (M, 7', ) is defined by
X'w=ipdd,T)—-d{T-Z-T) — .

for all second order vector fields ¥ =io X.

3.2 The inverse problem of the Lagrangian Mechanics

Let M be a smooth manifold and w be a Birkhoffian of the configuration space
M. In the inverse problem we want to know under which conditions w = wp
for some Lagrangian function L. Let us start with a characterization of classical
Lagrangian systems.

3.2.1 External characterization of classical Lagrangian systems

Theorem 2. Let w be a Birkhoffian of the configuration space M. The following
statements are equivalent:

I. w=wyp where L = -.ul;g — 7 oy 1s a classical Lagrangian.
2. w s such that:

e @(z) is non degenerate, ¥z € J*(M);
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e w satisfies the principle of reciprocity;

e w is affine;

e w 15 conservative;

¢ w 15 normal (so it defines a pseudo-Riemanman metric g, on M);

e the differential system D(w) is the image of a Birkhoff vector field
Y that satisfies the Gibbs-Appell principle for (w, S, &) where S is the
geodesic spray of g, and £(v) = A, grad U, with m{U = E, — —

Remark 6. Note that, as an easy computation shows, when w is normal and
conservative with energy E, there exists a unique function U/ : M — R which
satisfies iU = E — 1g,,.

Proof. 1) = 2) is clear. So, let us assume that 2) holds. To prove that 2) = 1)
it is enough to verify this assertion locally. Now, if w is non-degenerate, satisfies
the principle of reciprocity, is affine, conserves energy and is normal, we get the
following equation in local natural coordinates:

e - OF 3E
(9 ()7 + bilg,9))d" = 3 g e a5 !

where g;;(g) is the metric matrix of g,,. Then

oF
agt
for some U € F(M). Also, from

= 0@ - Ble,d) = 305(@)i ¢ +U(0)

_0E
b et J
(7, 4)d" =%
and %%’f— =Tl + Ijkg.; where T ik are the Christoffel symbols associated with

the Levi-Civita connection of g, for the coordinate system (q',...,¢q") of M, we
obtain, after a simple computation,

bi(a,6) = 953 ()T (@d*d' + g‘TU (a) + Ri(g, )
with R;(q,4)¢* = 0. So,
Q:i(q,4,4) = i (0) (@ + T (a))d* d )+ 20 - + Ri(q,49)-

To complete the proof let us write the Gibbs—AppeIl function for (w,S,€) in
the local natural coordinates (g, ¢, §):

fg,4,4) = 29-3( Q) (@@ + T4 (9)d* ") (@ + Thi(e)d"d') + gg(q + Il(g)d*d)
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Then, differentiating with respect to ¢ and equating to zero yields
) ' = nl
dqt

for the Birkhoff vector field ¥ = i o X, that is, X(¢,¢) = (¢,¢,¢) with ¢ given
by the previous equation. Finally, from X*w = 0 we obtain R;(¢q,q) = 0 for an
arbitrary (q.¢), as required.

@ + T, (q)d ¢ + ¢" (q)

Remark 7. In the last Theorem, the statement 1. implies that the Birkhoffian
w = wy, is regular. The statement 2. shows also that the stationary point Y (v)
is a minimum if and only if the pseudo-Riemannian metric g, is a Riemannian
metric.

In Birkhoff (1927) a different external characterization of classical Lagrangian
systems has been presented. Specifically, apart from regularity, conservation of
energy. reciprocity, the notions of affine and normal Birkhoffian it is used the
condition that the local functions b;(q,¢), ¢ = 1,...,n are quadratic with respect
to the velocities, the principle of reversibility and also the condition: “If by a
particular choice of admissible coordinates, the kinetic energy 7' is made stationary
in the ¢/ at a certain point ¢, then this implies that the Q; are independent of
the velocities.” These conditions correspond to: (i) the Birkhoff vector field Y is
a spray, that is, for all s € 2 and v € TM we have Y (sv) = (sTn), sY (v), where
stm @ TM — TM, given by: v + sv is the vector bundle morphism given by scalar
multiplication by s and (i1) ¥ — S5, where S is the geodesic spray associated to the
metric g, , satisfies Y, — S, = A\, (grad U(p)), with p = mm(v) for all v € TM and
for some function / on M. By a proof analogous to the previous theorem, one
can state:

Theorem 3 (Birkhoff). Let w be a Birkhoffian of the configuration space M.
The following statements are equivalent:
l. w=uwy, where L = %g — U ony is a classical Lagrangian.

2. w 15 such that:

e &(z) is non degenerate, ¥z € J*(M);

e w satisfies the principle of reciprocity;

e w is affine:

e w conserves an energy E;

e w is normal (so it defines a pseudo-Riemannian metric g, on M );

e the Birkhoff vector-field Y 1s a spray such that Y — S, where S is
the geodesic spray associated to the metric g, salisfies Y, — S, =
Av(grad U(p)), with p = ma(e) for all v € TM and myl = F — %;_gfm
(see Remark 6).
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3.2.2 External characterization of general Lagrangian systems

Denote by CX(S?,M), k € N the Banach manifold of all C¥ loops of M, that is,
the set of all maps 4 : S* — M of class C¥, where S! = R/Z. In the sequel, unless
otherwise stated we consider k > 2. Define the Pfaffian form Q : C¥(S', M) —
T*C*(S*, M) as follows: given v € C¥(S', M) and a Birkhoffian w:

_ . T Ty
Qy)n = —./SIW(E“&? n (16)

for all n € T,C*(S',M) = y*TM. Given a Lagrangian L let us denote by Q,
the Pfaffian form on C*(S', M) corresponding to wy and by % the function on
CK(S!, M) defined by

Ty
L(y) = fs L)
A classical result give us:
Proposition 9. Given a Lagrangian L we have
QL = dck(sllM)}f.

From the previous proposition, we conclude that a necessary condition for a
given Birkhoffian w to be equal to wp, corresponding to some Lagrangian function
L, is that Q is closed, that is, dox(g1 vyQ = 0.

Definition 14. Let w be a Birkhoffian on M. We say that w satisfies the Helmholtz
conditions, if for any natural coordinate system (q,q,§) of J2(M) the following
equalities are verified:

0Q;  0Q;

A T (17)
0Q:  0Q; _ d [0Q: aQJ-)
a9 ta¢ T @ (ac;;:' % ) (18)
Qi _ 0Q; _ _I__C_i_ (3Qi _ 3Qi) (19)
8¢ 9¢* — 2dt \9d¢? 8¢ )

Lemma 4. Let w be a Birkhoffian on M which satisfies the Helmholtz conditions.
Let (¢,4,4) be a local natural coordinate system for J*(M) associated to a local
chart (U, q) of M. Then, for all z € J*(U) and for all pairs u,v € TU, the number

0Q; 0Q; -
01(q,¢, v’ = (Tﬁ(%.mqﬂ}—-a%(qﬂ,qu,qc))u’ =

1d 3Q, s BQJ . i
2dt (W (90, 90, Go) — a—@(qo,%,qa)) wol R (20)
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where q(z) = qo. 4(2) = go, §(2) = o, w = u' 5 (g0) and v = v’ 5% (qo). does not
depend on the coordinate system (q').
Also for all z € J*(U) and any pair u,v € TU the number

. d
da(q.q,q)u’vt = (gff_, (90, G0, Go) + =+ Q = (90, 9o, fi‘u)) vt —

d (3@,

il (g0 g0, Go) + QQ' (g0, go. ‘10)) v eRO(21)

ag'

where q(z) = qo, §(2) = qo, §(2) = Go, u= o’ ?55" (q0) and v = t"v,'—w (g0), does not
depend on the coordinate system (q').

Proof. See Appendix A for a proof. O

Remark & The previous Lemma shows that equations (20) and (21) define mor-
phisms d; : J3(M) = T9(M), i = 1,2. In other words, the Helmholtz conditions
are globally defined and consequently if the Helmholtz conditions hold for a par-
ticular open covering (U;) of coordinate neighborhoods of M, then it holds for any
other coordinate covering.

Theorem 4. Let w be a Birkhoffian on M. Then § defined in equation (16) 1s
closed if and only if w satisfies the Helmholtz conditions.

Remark 9. Note that, in view of the previous Theorem, we conclude that the
geometric content of the Helmholtz conditions corresponds to the closedness of €.

Proof. Let us start with an explicit determination of the manifold structure of
CK(S',M). For this, it is convenient to embed the manifold M into B" for some
N € M, by the Whitney embedding Theorem. For simplicity of notation we may
assume that M C BY and so TM C M x BV, Let M denote the normal bundle
over M, that is, the union M = UpemT#M C M x BV where T+ M is the subset
of BV orthogonal to T,M with respect to the usual inner product of R¥. So, we
have a direct sum T, M @ T;"M = RB" for each p € M and rank M = N — n.

Now, take a tubular neighborhood (I, f) of M in B (see, for example, Cannas
da Silva (2001), Oliva (2002)), that means, a smooth diffeomorphism f : [T — A
from an open neighborhood II of the zero section in M onto an open set A C BV,
M C A, such that f(Qp,) = p for any zero vector O, € M, p € M. If pr, :
M x BV — M is the first projection, the map p = (pry|g)e f1:A 5> Misa
projection (p? = p); the pair (A, p) also represents the tubular neighborhood of
M in BV, The set A is called the tube in BN and II is said to be a tube in M;
they play the same role and can be identified by the diffeomorphism f.

Given ¥y € C¥(S', A), consider Uy C C°(S', A) as the subset of all loops
such that |[y(t) — y0(f)|lco(sr g~y < 7, with » > 0 small enough such that all
loops in this neighborhood are contained in the tube A. By the continuity of the
injection of C¥(S1, BV) into C°(S?,BY) it follows that there exists an open set
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U C C¥(S',A) such that 79 € U and any loop in this neighborhood is contained
in the tube A. Define,

®y : U— CKSLRY)
T=HT— 7

Clearly, the image of @y into the Banach space C¥(S*,R") is an open subset and
(U, ®y) provides an atlas of charts of the manifold structure on C¥(S*, A). Let
us compute, dex(s1,m)-Z (70)7 for 7 € T, Ck(S', M).

Let us extend the Birkhoffian w on M to a Birkhoffian w® on A: w® = J?p*w.
Given v € C¥(S', A) we have

@ (n=- [ QFw D
for all € T,C¥(S', A), where (2*) are the normal Cartesian coordinates of R".
We recall (see Lang (1995)) that from
Q4 : U - C¥(S',RY),
we have, for each vy € U,
(@%)'(7) : CH(S%, R) — C¥(", YY",

which is a continuous linear map. Indeed, for all v € U we have

@yeen=-[ (GEe+5Ee+ 3L a)y.

ne T_fck(sl, A).

Taking into account that Q® extends © (recall that, by its definition, w
extends w), we conclude that the condition for the closeness of €2 is that for all
v € CK(S*, M):

(dox(s1,a)Q7),€ x n) = (Q%) (W& n) — (%) (1)n.€) =0,

for all €, € T,C¥(S*, M). The manifold M has been identified with a submanifold
of RY. So, we can use a chart of RY adapted to the submanifold M. Then, since
v(S') is compact, we can cover it by a finite number of adapted coordinate systems

Fa

(W), 1=1,..., N, such that the previous condition are
Ny-1 tiga BQ“ aQI aQJ
dexpgr Q ; - - J
(dexisr,ay(v),€ x n) E..'(/n (qu q_,ﬁ; qu)??f

(6fjv’+ r‘7’+6Q'r‘r’) ) (22)
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where 0 = 4 < -+ < iy, =1 iq a partition of the unit interval such that
7{[t;,t;+l]) C Vi for each I = 1,..., Ny, (q}) is the local system of coordinates on
Vi and Q!, & and 7 are the local representative on V; of w, € and 7, respectively.

Let us assume that € is closed. Then, given a local coordinate system (V, ¢') we
consider loops v lying entirely on this coordinate neighborhood, that is, N, = 1.

Then, integrating by parts and taking into account the periodicity of 5 and &, we
obtain

' _ Qi ; d (0Qi ; d* (0Qi . :
{(QA)(TJ'E-??)—__/SI ('f?t;_ir % ("%G"’?)‘F—d?;(—é"&}-ﬂ))&T.

Hence,

J Qi d (0Q: ; d* (0Q; ; P
Ll(w”‘a(a—w")w(w”))ﬁ“

0Q; Qi .. 0Q; .\
/ (ﬁq’ U dgl Tﬂ+3ff rj)ﬁ'

and since £ is arbitrary, we obtain

N S W

8Q,
ag | T di \ 3¢ 57" ) =g T T o5

e ik

2

But, 7 is also arbitrary, whence

0 _ 99

2%~ oq
00, 00, _ (0, 00))
9 T o4 @ \o5 T o5
a0; 0Q;  1d aQ; 00
ag¢  9¢ T 24t (d—q-*_W)

and w satisfies the Helmholtz conditions.

Conversely, let us assume that w satisfies the Helmholtz conditions. So, re-
verting the computations above on each local coordinate system we obtain

tig O'Q" : _d Q_Qi ; dE C)Qf i
[ (8- 4 () + 5 (%) )t -
b4 an 0@1 . Q “ X :
'/“ (fh}f ’TJ )h
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for any local section & and 1; of 4*TM over each interval [t;,1;41]. Now, a simple

computation shows that
BQ‘ d 6Q‘ il s aQ’ &=
g | ag | dt2 o ")) T

0@ ;00! 0Qh. QL . 0Q!
( &+ qJEJ q,E") l&zdt( i an g — 3q, rfal

But, using (17) and (18) it is a simple matter to show that

QL . 8qQ: ... 0Q 00! afa‘- o
(1"9"‘ “—?T-'Tfﬁf 99 nel = 99 (’hf; :5:) (Q Q'-?)??z'éf-

o@ ~ oF ' aq Eri 8¢  0d
Finally, the right hand side of the previous equation does not depend on the local
coordinate system and this concludes the proof. O

The previous Theorem shows that the Helmholtz conditions are necessary for
the solution of the inverse problem. But, as the following example shows, they
are not sufficient in general.

Ezample 3. Let M be a manifold with non trivial first de Rham cohomology group
and @ be any closed Pfaffian form on M which is not exact. Then, given a function
T on TM let w be the Birkhoffian defined as

X*'w =X wp + &

for all cross sections X : TM — J?(M). It is clear that on any local coordinate
neighborhood we can define a local Lagrangian function and so w satisfies the
Helmholtz conditions. However, because w is not conservative, there can be no
global Lagrangian function L such that w = wy,.

Definition 15. Let M be a smooth manifold and w a Birkhoffian on M. A smooth
Junction 1 on TM is called a gauge function if wy = 0. In other words, a gauge
function generates trivial dynamics. A local gauge function is defined in an obvious
way.

Let 4 = {¥,} be an open covering of M. A family ¢ = {¥ap) of smooth
functions

Pap : T(¥aN¥s) o R

defined for all & and 8 such that ¥, N ¥g # & is called a cocyele of the covering
M if it satisfies

Yap = —Vpar on T¥NTEp (23)
Yary Yap + Ypy, on TU,NT¥NTY, (24)
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for all a,3 and v such that ¥, N ¥z NV, # 2.

We say that two cocycles ¢ = {tas} and ¥ = {145} are cohomologous if for
each a there exists a local gauge function

$o : TUy - R

which for any pair of indexes a and J such that ¥, N ¥z # @ and any point point
u € TP, NT¥; the following equality holds

Yap() — Yap(u) = a(u) — ¢5(u).

Clearly, the cohomology relation between two cocycles is an equivalence rela-
tion. The corresponding classes are called cohomology classes of the covering il.
We denote by [¢] the cohomology class of the cocycle ¥ and by H!(4l) the set of
all cohomology classes of il.

Definition 16. A smooth Helmholtz covering $ = (U, {¢o}) on a manifold M
consists of an open covering d = (¥,) of M and a family of functions

Yo : TV, 2 R

such that if ¥o NWs # @, then wy, |v,ne, = wy,le.nw,, wherewy, denotes the
local Birkhoffian on W, associated to 1.

The cocycle Yap = tYa — Yp for all ¥, N ¥y is called the Helmholtz cocycle
assoctated with the Helmholtz covering.

Proposition 10. Let M be a smooth manifold and w a Birkhoffian on M. Suppose
w satisfies the principle of reciprocity, is affine and satisfies the Helmholtz cond:-
tions, then for any covering Ul = {¥,} of M we can define a smooth Helmholtz
covering ) = (U, {La}) on M.

Proof. Under the conditions of the Proposition a classical result shows that on

any open set W, € 4 there exits a local Lagrangian function L,, such that, in
local natural coordinates

d 0L, 0OLg

Now, if ¥, N ¥z # & we have

WL lwonty = Wi, |e.ne,,

and the result follows by the R-linearity of the map F(TM) 3 L — wy, € i, (J?*(M)).
O

Theorem 5. Let w be a Birkhoffian of the configuration space M. The following
statements are equivalent:
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1. w =wy, for some function L on TM.
2. w 1s such that:

e w is affine;
e w satisfies the Helmholtz conditions;

o if il = {W,} is any covering of M the associated Helmholtz cocycle {L,}
2s cohomologous to [0].

Proof. (1) = (2) is clear. Now, suppose w is affine and satisfies the Helmholtz
conditions, then given any open covering 4 = {¥,} of M by Proposition 10 it is
defined a Helmholtz covering H = (4, {L4}).

Fix a point v € TM and let © € TM be another point. Now, since M is
connected, TM is connected and also pathwise connected. So, let v be a (compact)
path connecting v to u. Let {¥;,...,¥x_} be a finite open covering of 7y such that
v € TV; and u € TY;,, for some iy,i, € {1,..., Ny}. Then, by the condition
on the cohomology of the Helmholtz covering there exists {¢1,..., o}, ¢; defined
on T¥;, ¢ = 1,..., N, such that L; — ¢; = Lj — ¢; on T¥; N T¥; # &. We
define the value L(u) = L;, (u) — ¢;,(u), that does not depend on ~v. Indeed,
let 7' be another path connecting v to u. Then Ly — ¢ = L;, — ¢;, and so
L'(u) = Lis, — ¢i1, = Li, — ¢i, = L(u), as required.

Hence, it is well defined a function L : TM — IR. Since its restriction to a set
¥, € U coincides with the difference of two smooth functions, it is smooth. Also,
because ¢, are gauge functions we have w|y, = wp_—¢, =wr|y, on any ¥, € Ll

O

Ezample 4. Another important class of Birkhoffians which conserve energy, but,
in general, are not Lagrangians, are the so-called generalized magnetic fields (see,
for example, Wojtkowski (2000)). A closed 2-form b on TM is called a generalized
magnetic field (gmf), if there is a vector bundle morphism B : TM — T*M such
that

b(z,2) = B(Tmuz)(Tmmz)

for all z,z € T(TM).
In this case given a gmf b and a Lagrangian L the Birkhoffian w for the data
(L, b) is the 1-form which satisfies

X"{w e wL) = iyfl,

for all second order vector fields Y = 0 X. Conservation of the energy ' = Z(L)—
L follows at once from X*w(Y) = X*wp(Y)+b(Y,Y) = X*wp(Y) =dEL(Y), for
any second order vector field Y =i0 X.

In local natural coordinates one obtains

d 0L 0L T i
= (Ea_q’_ a—qi+bji(‘110)9‘]) dq
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where b = b;;(q,¢)dg’ Adg’. So, in order to satisfy the Helmholtz conditions we

must have
3[)}-,- 3[‘.!_,;;; ) o e
(G )? =0
ok ~ o = 2787 o T o¢

which are always true when B can be identified with a two-covariant tensor over
M, but clearly do not hold in general.

Remark 10. Liouville’s Theorem states that the flow of a Hamiltonian vector
field preserves the phase volume (see Proposition 3.3.4 in Abraham & Marsden
(1978)). This result can be easily extended to the non-conservative case. Let ¢ be
a symplectic form on TM, = a force field, H a smooth function on TM. Suppose
that the triple (¢, H, ) defines a regular Birkhoffian w on M (for instance, if
¢ = —dd,L for some regular Lagrangian) such that

Y*'w=—iy( +dH —m,
for all second order vector fields Y =i o Y. Denote the phase volume by
Qg :=C/\...I\C,
-
n times

Then, the flow of the Birkhoff vector field ¥ given by Theorem 1 preserves the
phase volume Q¢ if and only if dr A (A ... A{ = 0. Indeed, denoting by © the
N

n—1 times
Lie derivative, we have

OY)U =OY)O)A-..AC+-+CA...AOY)) =n(O(Y))A...AC,
but, by Cartan’s magic formula, we have

O(Y) =iyd( +diy{ =d(dH — 7) = —dm.

4 Constrained Birkhoff systems

Start with (M,w,%) where w is a Birkhoffian of M and ¥ is a smooth constant
rank affine sub-bundle of the affine bundle 7; : J?(M) — TM. By definition there
exists a vector sub-bundle C (7rm|s : C = TM) of 7y lvomy : V(M) = TM and
a second order vector field S : TM — % such that

S)+Cy =%, YveTM
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Ezrample 5. Given a smooth distribution 2 on TM one uses C, := Z, NV, (M)
to construct a vector bundle C = |J, oy Cv that one assumes to have constant
rank; so, if there exits a cross section S : TM — J%(M) N Z one obtains a smooth
constant rank affine sub-bundle ¥ = S + C of J?(M). This affine sub-bundle
is independent of the choice of the cross section S, that is, given another cross
section S’ : TM — J3(M)NZ we have S’ 4 C = S+ C. Indeed, it is an immediate
consequence of S — S’ € C for any two cross sections S : TM — J2(M)N Z
and 8’ : TM — J?(M) N 2. This example is motivated by Weber (1986), who
defined a system of constraints to be a set of m linearly independent 1-forms
Y¥ . P - T*P, k = 1,...,m, where P is a 2n-dimensional smooth manifold
which admits a symplectic structure.

Ezample 6. The usual notion of linear, both holonomic or non-holonomie, affine
constraints or more generally non-linear constraints can be dealt with by defining
the constraint % on a submanifold of TM. For the sake of simplicity in the
exposition, in what follows we present the results for the constraint defined on
TM only.

The annihilator of the vector space C, is the sub-space of T;M, p = mv(v):
C)={aeT)M|a(X;'u) =0,VueC,}.
Definition 17. A motion compatible with € is a smooth curve ¢ : I — M such

that its lifting L. (3;—?) : I = J?(M) has its values on €.

4.1 The d’Alembert-Birkhoff principle for constrained me-
chanical systems

A triple (M, w, €) as above is called a constrained Birkhoff system.
Definition 18. A constrained Birkhoff system (M,w,¥) is regular if:

1. @(z) is non-degenerate for all z € J>(M) and there exists zq € 6, such that
@(z) € Co with v = 75(2);

2. the following bilinear form is non-degenerate:
(a,&) € C2 x C2 = &(z)(a},a') e R
for all z €%, withv = 77(z) and o' defined as a-) = @(z)(at,-) for each
aeC).

Remark 11. We note that a sufficient condition for regularity is that, for each
z € J3(M), @(z) be either positive or negative defined.
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Definition 19. A motion ¢ : I =+ M compatible with € is a d’Alembert-Birkhoff
trajectory for (M,w, %) of its lifting % (%:2) satisfies

T (T 5
The constrained differential system corresponding to the constrained Birkhoff sys-
tem (M,w, %) is the set

D(w,¥) = {z €% |a(z) €CL(,) -

The Birkhoffian w 1s said to satisfy the d’Alembert-Birkhoff principle if for any
point z = -&T:—L:O ";—} of the constrained differential system D(w,¥), the curve v is
a d’Alembert-Birkhoff trajectory.

Theorem 6. Let (M,w,¥) be a regular constrained Birkhoff system. Then, there
erists well defined in a neighborhood of v € TM a local d’Alembert-Birkhoff vec-
tor field, that is, a local smooth second order vector-field whose base curves are
d’Alembert-Birkhoff trajectories of (M,w,¥). '

Proof. We prove the result in local coordinates. Let V' be a coordinate neighbor-
hood where the vector bundle C is the annihilator of some local differential forms,
that is,
C, = Ann(f},...,0"), m<n
for all v € V. In local natural coordinates these differential forms can be written
as: .
P=ddt, v=1,...mi=1..,n

We make the convention that g,y =1,...,mandi,j=1,...,n.

Now, fix a second order vector field § : TM — %, which in local natural

coordinates is given by S(q,q¢) = (q,4¢,ds(q,¢)). Then, in these coordinates the
constraint equations are:

b4 (g, )@ — §(g,4)) =0

or
b5(g,4)¢ +a”(q,4) =0

with a*(g,d) = — (4, 4)d (4 )- |
The Birkhoffian is locally represented asw = Q;(q, ¢, §)d¢*. So, the d’Alembert-
Birkhoff principle is locally equivalent to the following equations:

(g, 9§ + a“(q,9) 0 (26)

for some functions A,.
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Now, let (q,q,qo) be a point which satisfy both (25) and (26) for some Aq.
From regularity of the Birkhoffian and the Implicit Function Theorem there is a
neighborhood of (g, ¢, §o) where we can write

i =Q (0,4,
Substituting this equality into (26) we get the auxiliary functions
h*(q,4,) = b%(q,9)Q (9,4, X) + a“(g, 4)
Differentiating the latter with respect to A we obtain:

oh¥

o, @06 =¥, d)a’*(q,d,Q(q,d, )b (g, 4)

where a;i(g,4,§) = %%- (g.4,4) and a*(q,¢,§) is the inverse of a;;(q, ¢, §). Con-
dition 2 means that % (4,4,A) is an isomorphism in an open neighborhood of
(9,9, Ao). Finally, applying the Implicit Function Theorem we can locally write
Ay = Au(g,9) and the local vector field ¢'(q,¢) = Q*(q,4,A(q,¢)) satisfies the
principle of d’Alembert-Birkhoff as required. O

Corollary 1 (Principle of determinism). If in condition 1. of the definition of
a regular (M, w, €) the element zp € 6, is unique, one can define a global smooth
d’Alembert-Birkhoff vector-field Y = io X and we have Im X¢ = D(w,¥), that
18, the principle of determinism holds.

Next we consider time reversibility of constrained Birkhoff systems (for a con-
strained Lagrangian system, see Gorni & Zampieri (2000)). Let us define the
mapping p2 : J2(M) = J2(M) as

T| Ty(=t)
p(2)= 5| ——

dt|,—o dt
where z = %L:n -r‘-;—}, for some curve 4 : I — M. In local natural coordinates we
have pz(Q! ‘jv Q) — (91 _q‘= Q)

Proposition 11. Let (M,w, %) be a constrained Birkhoff system with a regular
and reversible Birkhoffian w. Suppose p2(€) C € and let c(t) be an integral curve
of a d’Alembert-Birkhoff vector field Yo, then p o ¢(—t) is also an integral curve
of Y. Thus, F_y(z) = p(F(p(z))), where F; is the flow of Ye.

Proof. We prove the result in local natural coordinates (q,q,§). Let ¢ : I — U
denote a local base curve of Y, then using the same notation as in Theorem 6
we have

Qs(®),4(1),4(1)) € Clgey g
b (q(t), 4(1))d" (t) + a”(q(t), 4(t)) = O,
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forall ¢ € I, where Q(g(t),4(0), (1)) = (@1(a(0), (1), §(®), -, @n(a(2),4(0), i(1)).
Define u(t) := ¢(—t), for all ¢t € R such that —t € I; we have to show that
QUu(—1),u(~1),i(—1)) € Clueyac-y
bf (u(=1), u(=1))d’ (=) + a” (u(=t), u(=1)) = 0,

for all t € 1. But, u(—t) = ¢(t), u(—t) = —¢ and @(—t) = §(¢). The result then
follows from:

Qi(u(=1),u(~), u(-t)) = Qi(q(t), —4(t),4(t)) = Qi(a(t),q(?), 4(¢)),
by the hypothesis of reversibility of w; and from

b (u(—t), i(=1))it* (~) + a” (u(=t), u(=1)) = b} (q(t), —4(t))q () + a”(q(t), —4(2))

= b(g(t), 4(1))d" (1) + a”(q(1), 4(1))
=0,

and Cf,(_y) a(—1)) = Clate),—a()) = Clate).iey) Since p2(€) C . =

Definition 20. Let (M,w, %) be a constrained Birkhoff system which satisfies the
principle of determinism. Then, it defines a vector bundle morphism R : TM —
T*M, called the reaction field, such that &(Ye(v)) — R(v) = 0 for all v € TM,
where Y denotes the d’Alembert-Birkhoff vector field.

Definition 21 (Principle of least constraint of Gauss). Let (M,w,%) be a
constrained Birkhoff system. The Birkhoffian w is said to satisfy the principle of
least constraint of Gauss if any d’Alembert-Birkhoff vector field Ye¢ is such that,
for all v € TM, Y (v) is a stationary point of the Gibbs function corresponding to
the data (w,Yy) restricted to 6,, where Yo : TM — J?(M) is the Birkhoff vector
field associated to the (unconstrained) Birkhoff system (M, w).

The case where w = wy, L being a regular Lagrangian function has been
considered in Lewis (1996).

Proposition 12. Let (M,w, %) be a constrained Birkhoff system. Assume w is
affine and satisfies the principle of reciprocity. Then, w satisfies the d’Alembert-
Birkhoff principle if and only if it satisfies the principle of least constraint of
Gauss.

Proof. In local coordinates we have
3011 1 sy samnsars
6(?1 Q:‘I) = Eaij{Q) ‘I)(q —QG)(qJ T q-lgi)

with b;(qd)éj + a*(g,q) = 0 and where (g, ¢, §o) is the local representation of Yj.
Then the requirement that Y (v) be stationary is equivalent to the equations:

S0 = (o) +asla, D) - ) = A

b, ) +a*(g,4) = O
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And the result follows from the symmetry of a;;(q, ¢) = a;i(q, ¢)- O

Erample 7. There is a class of non-linear constraints which provides useful mod-
els in nonequilibrium statistical mechanics: the so called Gauss thermostats, or
isokinetic dynamics (see, for example, Hoover (1986), Ruelle (1999), Gallavotti &
Ruelle (1997) and Wojtkowski (2000)). Given a Riemannian manifold, the equa-
tions of motions are obtained by imposing the conservation of the kinetic energy
and then applying the Gauss least constraint principle for the Birkhoffian asso-
ciated with a classical Lagrangian. By the previous Proposition, this procedure
fits in the proposed formulation and is clearly non-linear. More generally, given
a conservative Birkhoffian w, we may require the constancy of the energy and
derive the equations for the isoenergetic dynamics using the d’Alembert-Birkhoff
principle (in the case of classical Lagrangian see, for example, Wojtkowski (2000)).

Remark 12. It is easy to find counter-examples for the Gauss least constraint
principle, if w is neither affine nor symmetric. For example, let M = R? and
consider the local representation in normal Cartesian coordinates (z,y) of the
_constrained Birkhoff system

% -0 « 0l

Solution of the previous equations is z(t) = —t*+Zot+zo, y(t) = $t*+yot+wo
and A(t) = 1. The equations for the principle of least constraint are

0 1/2| (2] _, |1 & _
i 2+ o aoe
A simple computation shows that the solution which satisfies the principle of
least constraint is z(t) = —1t2 + &ot + 20, y(t) = —%t* + Yot + vo and A(t) = —1.

Corollary 2. Let (M,w, %) be a constrained Birkhoff system. The following state-
ments are equivalent:

1. w = wy, for some regular Lagrangian function L. on TM and w satisfies the
d’Alembert-Birkhoff principle for the constrained Birkhoff system (M,w, %).

2. w 1s such that:

e w is regular;

e w satisfies the principle of reciprocity;
e w is affine;

e w satisfies the Helmholtz conditions;

e if Ul = {¥,} is any covering of M the associated Helmholtz co-cycle
{La} is co-homologous to [0];
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e w satisfies the principle of least constraint of Gauss for (M,w,¥).

Remark 13. Assume that to the conditions of Remark 10 we add a regular con-
straint; then, an analogous computation shows that the flow of the d’Alembert-
Bikhoff vector field Y preserves the phase volume €. if and only if d(R + 7) A
CA...ANC=0.

Nk, s

n—1 times

4.2 A generalization of Liouville’s Theorem for classical
affine constraints

In this subsection we prove a version of the Liouville’s Theorem for classical La-
grangians and classical affine constraints. So, (M, g) is a Riemannian manifold
and the function V on M is the potential energy. We denote by V the associ-
ated Levi-Civita connection. The affine constraint & is defined by a pair (2, X,)
where Z is a smooth, constant rank distribution on M (rank 2 = m) and X, is
a (global) cross section of 2. With (2, X,) we define

o = (2,X,) = {vE€TM |v— Xo(rm(v)) € 2}.

In order to construct a volume form on &7 we start, locally, choosing an adapted

system of coordinates for TM. Let (U, q,...,q") be a local system of coordinates
for M, (&;,...,&,) a local orthonormal basis of vector fields defined on U such
that (£1,...,&m) is a local orthonormal basis of sections of Z and (€, ..., €") its

dual basis; they induce the functions € : TU — R

n
éY S (dorm)d, i=12,...,n (27)
j=1
and one can also consider new local coordinates for TM: (TU;q!,...,¢", &, ..., &").

The affine bundle &/ is an embedded affine subbundle of TM (considered as
an affine bundle modelled by itself) and

@ OTU = {v € TU | &+ (v — Xa(m(v))) = ... = & (v = Xa(nu(v))) = 0}.

Then the restrictions of ¢',...,¢™ &, ..., to the open set & N TU define a
local system of coordinates for & on & NTU; by consequence a volume form on
& N'TU is defined by the restriction Q to & NTU of the (m + n)- form

Q=€e'A... A" AdrmE A ... AdTme™, (28)

where each ¢, in (28), means T3j€', the pull-back of ¢ to TU; so,

€ 2y =) (dhomm)drm(¢’ omm), i=1,...,n. (29)
j=1
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Analogously, we also define the local (n — m) form Q% on U as
QF =@ A L.

To obtain a (global) volume form on & one needs to assume that @/ is ori-
entable as manifold. One way to obtain it is the following:

Definition 22. The affine bundle & = &/(2,X,) on (M, g) is orientable if 2 is
orientable, that is, there exists a differentiable exterior (n—m)-form ¥ on M such
that, for any p € M and 21,...,2p_m € @QJ,' then $p(21,...,2n-m) # 0 if, and
only if, (21,...,%n-m) is a basis of 2.

Remark that in the codimension one case (m = n— 1), & orientable is equiva-
lent to the existence of a globally defined unitary vector field N on M, orthogonal
to Z,, Vp e M.

Let us recall the definition of the total second fundamental form of a distribition
2 (see Kupka & Oliva (2001)). One defines a bilinear vector bundle morphism
Bg : TMxMZ — 2+ where TM xy 2 is the fiber product of the bundles TM
and Z and Z* is the distribution orthogonal complement of 2 with respect to g:
let (X,Y) € T,M x Z, and choose two germs of vector fields at p, X,Y, so that
X(p)=X,Y(p)=Y and Y € Z (that means Y is a germ of section of Z). Then

Bg := Pa [(VxY) (p)]. (30)
This does not depend on the choice of the germs X and Y.

Theorem 7. The (local) volume form Q defined on & N'TU by formula (28) is
invariant under the flow of the d’Alembert vector field X if, and only 1f,

O(X )t =0

and the trace of Bgi|psy,, o+ vanishes (Bgy 1is the total second fundamental
form of @+). If & is orientable, both Q and Q* can be extended to a global
volume on & and a global section of (2)" A---A(21)

v

-
>

n—m-—times

Proof. We use the technique proposed in Kupka & Oliva (2001) for the case with
Xa=0. Let gp : [ap,a1] = U C M be a solution of

PaV;—-
PV df 0!
where Py : TM — & is the orthogonal projection. Define vg : [ag,a1] = TU N Z
as
T
vo = % — X, 0 qo,
then

Vivg = Bg(t-'n, ‘Uo) + BQ(XG, Uu) - Bg.:.(t.'n, Xn) — BQJ. (Xa,Xa), (31]
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so that,

X = Yig-) Y A
ik=1

i=1

i Z ZAakf X°+Z Z X+

i=1 \a=m+l k=1 j=1a=m+1

a v 9
Z Z Ao X3X2 | a3 (32)
a=m+1 g=m+1 *

We want to know under which conditions the volume form €2, given by

Q=e'A... A AdpmE A ... Adpye™

is invariant under X. Let us assume, for a moment, that V = 0; we start by
computing the Lie derivative ©(X)Q

OX)=Y" ' A AOX)E A A AdTmE A ... AdTMmE™+
YL A A AdrmE AL AO(X) drmE A ... AdTmE™
Thus, in order to obtain ©(X)S it is enough to compute O(X)e’ modulo
1 i=1 i+l

n =1
€,..,€ yeeey € )dTM£ s-'-:dTl\'iEfn)

and, analogously, to compute (X )drmé modulo
drmg’, ..., drmg” drmé’, ... drm@@ T dom@@ L drme”

But O(X)e' = ixdrme' + drm(e' (X)), so

O(X)é = ixdrme’ fori=1,...,m
- iXdTM.f"+(dTMX,‘;)I.e'- fori=m+1,...,n
(bserve tht ¢2(X) = X2, =41, ). We s have di = ~350 0 A

k where, with the simplified notation, wk and € mean mwi and TR€*, respec-
twe]y Thus

O(X)e = = @k (X)ek + o F (X )i fori=1,...,m
= Tk (0 + Tha b (Xaf + (ruXi),é for i =mot 1. m

Since wf =Y _ AL " and AL; =0 (w} =0) forallr = 1,...,n, we write

O(X)é —ZA J(X)e = ZA e+ Z AlgXEé. (33)

f=m+1
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for i =1,...,m. Similarly, we have,
O(X)e* =Y ALF+ Y A% X + (drmX D)o € (34)
Jj=1 B=m+1
fora=m+1,...,n.

On the other hand ©(X)drmé = drm(©(X)é) and O(X)& is the component
of X along &. Then, from (32) we obtain

O(X)drmé ——ZA,E drmé — Z Al XodpmE, (35)

=1 a=m+1
Finally, from (33), (34) and (35) we have

o(X)Q = Z ZA + Zn: (drMX$)a + Z ZA s X2 | Q. (36)

a=m+l j=1 a=m+1 a=m+1 f=1

This last equation (36) shows that ©(X)Q = 0 if, and only if,

> A% =0, j=1,...,m (37)

a=m+1

and

Z (drmMX)a + Z ZA 5XE = 0. (38)

a=m+1 a=m+1 =1

The intrinsic interpretation of conditions (37) comes from the consideration of
the total second fundamental form Bg. of the distribution 2+. In fact

tr Bllgiwyor = . Bllaba)= Y Aly=— > A% (39)
a=m+1 a=m+1 a=m+1

where Bgi(z,y) = Z;—1 (z,y)&;, for all (z,y) € TM @ Z+. On the other
hand, an analogous computation shows that condition (38) is equivalent to

O(X) (€™ A---A€") =0 (40)
Thus from (37), (38), (39) and (40) the proof of Theorem 7 follows for V' = 0.

When V' # 0 we have a similar proof because in that more general case, denoting
the vector field by X(V'), one can write

X(V)=X - Zv—'
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where VI = ¢i(grad V), j = 1,...,m. Then, clearly, O(X(V))e = O(X)¢,
i=1,...,nand O(X (V))& =O(X)&@ + V7, j=1,...,m. So, O(X(V))drm& =
O(X)drm& + drmV7; but, we have drpV? = 0 modulo €, ..., €"?, because V
depends only on ¢. Then O(X(V))Q2 = ©(X)Q and the proof is now complete.
O

5 Symmetry and reduction of Birkhoff systems

Definition 23. Let (M,w) be a Birkhoff system and ® : G x M — M be a smooth
action of a Lie group G on M. Denote by g the Lie algebra of the Lie group G
and by g* its dual. We say that a mapping

pu:T™ — g°

is a momentum mapping relative to w for the action ®, provided that for each
Xeg,
du* (V) = (V*w) XFy

for all second order vector fields Y = ioY. Here pX : TM — R, puX(v) =
(u(v), X), v € TM, 1is the component of u along X and X#M is infinitesimal
generator corresponding to X with respect to the tangent action ®T : G x TM —
™, <I>g~ = T®, : TM — TM. The quadruple (M,w, ®, ) will be called a Noether
G-space.

In the present context, Noether’s Theorem is an immediate consequence of the
definitions of Birkhoff vector field and momentum mapping.

Proposition 13 (Noether). Let (M,w,®,u) be a Noether G-space. Then,
is an integral of any Birkhoff vector field Y associated with the Birkhoff system
(M,w), that is, iof Fy is the flow of Y,

polky=p.

Ezample 8. Let G acting smoothly on M by ® : G x M — M, ¢ a symplectic form
on TM, H : TM — R a smooth function, # a smooth semi-basic Pfaffian form
satisfying, fr(prM) =0, for all X € g, where XT#% is the infinitesimal generator
corresponding to X with respect to the action ®° and suppose that the triple
(¢, H,w) defines a Birkhoffian w on M such that

Y'w=—iy(+dH —m,

for all second order vector fields Y = ioY on TM. If (TM, ¢, ®7, i) is a Hamil-
tonian G-space, that is, ®7 is symplectic and

d.ux — ingC



42 Marcelo H Kobayashi and Waldyr M Oliva

for all X € g; and H is ®”-invariant, then g is a momentum mapping for the
Birkhoff system (M,w). Indeed, for each X € g and for each v € TM, we have
H(®7 (exp(tX),v)) = H(v) since H is ®T-invariant. Differentiating at ¢ = 0,
d,H -XT#M(v) =0; so dH(X#) =0 for all X € g. Thus, du*X(Y) = ix,fMC(Y) =

—in{X.‘fM} +dH(Xr¥M) - ?r(erM) = }_"’w(erM) for all second order vector field
Y =ioY and for all X € g.

In particular, if L is a smooth, regular and ®7-invariant Lagrangian on TM,
then, pX(v) = I[’L(U]Xﬁ(m(v)) for all X € g and for all v € TM, is a mo-
mentum mapping for the action. Indeed, from Corollary 4.2.12 in Abraham &
Marsden (1978) we have (dTMpx)Y = —(ix»drMfL)Y = —(iX%a_eMdTMdyL]Y =

(iydrmdo L)Xy + dE(XFEy) = (V*w)XFy, for all second order vector fields
Y =ioY and for all X € g. Here 8, = (FL)* 6o, with 6y : T*M — T*(T*M) being
the canonical Liouville 1-form of T*M.

Remark 14. Let L be a smooth, regular and ®T-invariant Lagrangian on TM,
where ® : G x M — M is some smooth action. Define uy : TM — g* as ,uf (v) =
FL(v) X7 (nv(v)). Then, under the Godbillon formalism, the equation of motion
of pr is

dui (Y) = #(X5)),
in other words, it generalizes Appell’s Theorem on the projection of the linear
momentum (see Appell (1941), p.335) which states that

La derivée par rapport au temps de la projection de la quantité de mouve-
ment sur un aze est égale a la somme des projections sur le méme are des forces
appliquées au mobile.

This shows in passing that py, is a constant of the motion if and only if ﬁ'(Xﬁ) =
0forall X € g. If p: M =+ M/G is a principal bundle with structural group G,
then this condition is equivalent to the force field = being horizontal, that is,
w(ker p) = 0.

Next we prove that, as in the case of the momentum mapping for symplec-
tic actions on symplectic manifolds, the momentum mapping for an equivariant
Birkhoffian is not unique, but defines a unique cohomology class of coadjoint co-
cycles.

Proposition 14. Let (M,w,®, u) be a Noether G-space and assume that the
Birkhoffian w is equivariant with respect to ®° and ®T", where the latter is

@7 :=T"®-1, for all g € G. Define, for g € G and X € g,
Ygx :TM R
L v p (8] (v) = e X (v).
Then g x is constant on TM. We let o : G — g* be defined by o(g) X = g x(v),

for any v € TM, and call it the coadjoint cocycle associated to p. It satisfies the
cocycle identity: o(gh) = o(g) + Ad -1 o(h).
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Proof. We compute the derivative of ¥, x at a second order vector field Y = ioY
on TM
g x (V) = dpX(T®]Y) - dutdor X (v)
= (@) V)w)XE — (V*w)(Ad g X2
= o(@)V)XE - o(V)(Ad - X)E
= o(@'V)XE - o(Y)o, XE
= (@) V)XF - [oF a(v)] x§
= 0
Thus, by Lemma 3, ¥, x is constant on any connected component of TM and

since TM is connected 4 x is a constant on TM.
As for the cocycle identity, we have

o(gh) = pX(@5(v)) — ptdor=r ¥ (v)
= pX(@] 8] (v)) — ptde X (@Fv) +
pAd =1 X (@Ty) — pAdn-1 Ad o1 X ()
= U x (P} (v)) + ¥g,ad,_, x(v)
= o(g)X+o(g)Ad -1 X

O

Proposition 15. Let (M,w) be a Birkhoff system and ® a smooth action of G on
M such that w 1s equivariant with respect to ®7" and 7" . If py and po are two
momentum mappings with cocycles oy and o5, respectively, then [o1] = [o2]. Thus
to any triple (M,w, ®) satisfying the previous conditions there is a well defined
cohomology class [o].

Proof. Under the hypothesis of the Proposition, we have for each g € G,
01(9) — 02(g) = 1 (@5 (v)) — p2(®5 (v)) — Ad jos (1 (v) — pra(v))

for any v € TM. But duf (Y) = (Y*w)X#; = duX (Y), for all second order vector
fields Y and all X € g, so by Lemma 3, py — po = [, for some constant element
Ll € g*. Then,

oi1(g) —oa2(g) =1 — Ad - I,

and o; — o2 is a coboundary. O

The reduction of the dynamics of a Birkhoff system (M, w) with a momentum
mapping g : TM — g* for a smooth action ® : G x M — M can be effected both
in the conservative and non-conservative cases.
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Proposition 16. Let (M,w, ®, 1) be a Noether G-space. Assume w regular, & is
equivariant with respect to @7 and ®T" 1 € g* is a regular value of p (which by
Sard’s Theorem takes place for almost alll), p is an Ad " -equivariant momentum
map and the isotropy subgroup of the coadjoint action G, = {g € G | Ad P 1}
acts freely and properly on p='(l), then, there exists a unique vector field Y; on
u~1(1)/G; which is m-related to the Birkhoff vector field Y, that is, TmY = Yjom,
where m : p~ (1) = p~(1)/G; denotes the canonical projection.

Proof. Under the assumptions of the Proposition, assume there exists a vector
field Y; on p~1(1)/G; which is m-related to the Birkhoff vector field Y, that is,

TmY =Y, 0m, (41)

then, uniqueness of Y} is a consequence of m; being a submersion.
. . ] - 2 -
Now, equivariance of & with respect to ®/ and ®7" means

&(®) z)n = @(2)TBg-17

for all z € J?(M), all € Ts(;)M and all g € G. So, if z € D(w) then G.r(@gzz)q =0

for all n € Tp(;yM, so that @gnz € D(w). But z € D(w) & 2z = Y(v) for some
v € TM, where Y denotes the Birkhoff vector field; thus, by uniqueness of Y we
obtain

37 (Y(v)) = Y(@Tv)

for all ¢ € G. In particular, if [ € g is a regular value of the momentum mapping
pt, then, for v € p~1(l) we have Y (v) € T(u~1(l)) (by Proposition 13) and

(TRT)Y (v) = Y (®]v)

for all g € G. The previous equation implies that it is well defined a flow H; on
1= (1)/Gi (note that Y|,-1 is (bg-related with itself for all g € G) satisfying

ﬁ'{OFcﬂHtO?ﬂ. (42}

Define Y; as the generator of Hy, then, differentiating (42) we obtain (41) and this
completes the proof. O

Proposition 17. Let u be a momentum mapping for a smooth action ®, with
cocycle o. Then:

1. the map ¥ : (g,1) = Ad -, l + o(l) is an action of G on g*;
2. p is equivariant with respect to the aclion in 1.

Proof. (1) follows from the cocycle identity and (2) from the definition of o and
v, O
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From the previous proposition, we can perform a reduction in the case p is not
required to be Ad "-equivariant. The proof is analogous to that of Proposition 16

Proposition 18. Let (M,w,®, p) be a Noether G-space. Assume w regular, &
15 equivariant with respect to @7 and ®T" | € g* is a reqular value of p (which
by Sard’s Theorem takes place for almost all 1), and the isotropy subgroup of the
coadjoint action Gy = {g € G | ¥4l =1} acts freely and properly on p='(l), then,
there exists a unique vector field Y; on p=1(1)/G; which is m-related to the Birkhoff
vector field Y, that is, TmY = Y; om, where m : p~' () = p~'(1)/G; denotes the
canonzical projection.

Without a momentum mapping, a similar computation shows that,

Proposition 19. Let (M,w) be a regular Birkhoff system and ® : G x M — M
a smooth action of a Lie group G on the configuration space M. Assume w is
equivariant with respect to ®" and ®T", then, there exists a unique vector field Yg
on TM/G which is w-related to the Birkhoff vector field Y, that is, TrY =Ygorm,
where 7 : TM — TM/G denotes the canonical projection.

Ezample 9. Consider the Birkhoff system associated to the Godbillon formulation
(see Remark 5). If T is regular and ®”-invariant, 7(X%,) = 0, for all X € g and
the hypotheses on the action hold, then we can reduce the dynamics to u=*(1) /Gy,
for any regular value ! € g of the momentum map p*X (v) = FT'(v) -Xfl(m(v)},
for all v € TM and for all X € g.

As a concrete example, consider the rigid body model of an artificial satellite
orbiting around the Earth under the influence of the gravity and the drag only. The
equations of motion can be cast in the Godbillon formalism, with the configuration

space SE(3), kinetic energy T' = % ((R, &), (R'i))SE(a) where z € R3 is the vector
from the center of the Earth to the center of mass of the satellite, R € SO(3) is

the proper orthogonal matrix corresponding to the attitude of the satellite and
(-, ')SE(3) denotes the usual metric on SE(3) (see Oliva (2002)), that is,

(5,0 5. 0)segsy = o w)y + [ (a6, 5)gdme)

for all (s,u),(5,%) € TSE(3). Here (-,-), is the usual metric on R3 m € Ry is
the mass of the satellite, B C R? is the body (satellite) and £ € B denotes the
position in the body frame of a material particle of the body with respect to its
center of mass. It is convenient to define the body angular velocity @ = R™'R
where " : R3 — s0(3) is the usual identification of R® with so(3), that is,

. 0 & &
E=16& 0 =&
£ & 0
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for all £ = (&1,€2,£3) € R, So,

T Lot i3, 5 200,09,
2 2
where I is the moment of inertia tensor of the body in the body frame.
As for the force field, again we use the identification of semi-basic forms and
force fields to write e
r = drsg(3)(V o Tsg(3)) + D
where V' is the potential energy of the body

GM
V= ——dm
AT R
|| is the Euclidean norm, G is the universal gravitational constant, M is the mass
of the Earth and D is the drag force

1 .
D= —EB’p|zi prj &*

where b : R? — R3 is the index-lowering operator with respect to the usual metric
on R3, pr, is the projection pr, : SE(3) = SO(3)®R? — R and B* is the ballistic
coefficient of the satellite.

Since, in general |z| > || it is usual to consider an approximation (see Wang,
Krishnaprasad & Maddocks (1991))

GM

Vo= - [ orrgim©
. GM (2, RE) 1|ﬂ2 3 z, RE)? )
B {1“ 7 2P T2 e ol "’)}dm(a)

GMm 1GMt(l) 3GM, .
¥R T2 I::Ig( )+§ ER (IR™'z, R™'z),.

Note that the system is dissipative and the translational and attitude dynamics
are coupled, so that the reduction of Poisson manifolds is not directly applicable.

We consider the body B to be a symmetry top, that is, two of its principal
momentum of inertia are equal. In this case, we can define a right S*-action
® : S' x SE(3) — SE(3) on SE(3), as the rotation around the axis of symmetry
of the ellipsoid of inertia:

®: (S, (R, z)) — (RS, z)

where we identify S with the abelian, connected Lie subgroup of SO(3) given by
S! = {exp(tv) | t € R}, where v € R3 is a non-null vector in the direction of the
symmetry axis. Note that the symmetry of the ellipsoid of inertia implies that
SIS~' =1Ifor all S € S!.
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An easy computation shows that 7' is ®7-invariant and that “(XS#E(s)] = 0.
So, the angular momentum g, around the symmetry axis is an Ad “-equivariant
momentum map for the action, whence a constant of the motion. Also, the action
is free and proper, @ is equivariant and because the group is abelian, the adjoint
action is trivial. So, given I € IR, the isotropy group for the coadjoint action G| is
the whole group S* and the dynamics can be reduced to the submanifold p;1(l)/S*
for any real number [ € R”. Note that dim(p; '(l)/S*) = dim(SE(3)) — 2.

From this example, we conclude that the proposed reduction is an exten-
sion of the Routh reduction (see, for example, Marsden & Ratiu (1999)) to non-
conservative mechanical systems and to possibly non-abelian groups. This may
be relevant to engineering in general, and to control theory, in particular, where
non-conservative systems are the norm.

Remark 15. If we know the flow H; of the reduced Birkhoff vector field Y}, then
we can reconstruct the flow F; of the Birkhoff vector field Y restricted to u='(l).
Essentially, it follows the lines proposed in Abraham & Marsden (1978) for the
Hamiltonian case (see pp. 304 and 305, ibidem). For the sake of completeness,
next we present the latter with the adaptations needed. Let vy € p~!(I) and let
41 = p~ () and [4] : I — p~1(1)/G,, for some neighborhood of the origin
0 € I C R; be integral curves of Y and Y}, respectively, with 4(0) = vo. Now, let
d: I — p~(l) be a smooth curve with d(0) = vp and [d] = [}]. Define for each
t € I, g(t) € Gi such that 4(t) = &7 a(t) d(t). Thus,
. T
Ya®) =

#
=TT (0) - 0+ T8 (d0) - (T T0) (at0)

for all t € I. Taking into account the ®7-invariance of Y yields,
=

Y(d(0) = 200+ (TLyo- 20) (o)

™

forallt € I.

This is an equation for g : I — G in terms of d. We solve the latter by first
solving the next algebraic equation for £(t) € g

Ehald(n) = Y (d(0) ~ 2 (0),
for all t € I and then
L9 _ppe
dt $
for g.
Finally, the solution § sought is ¥ = ®,d, whereas the curve in the configura-
tion space is —'7- = 7 (recall that Y is a second order vector field).
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Let M be a smooth manifold and ag, a; € R be real numbers with ag < a;; we
denote by C¥([ag,a;], M) the set of all curves v : [ag, a;] = M of class C¥. Let P
and @ be smooth submanifolds of M; one defines the set

C¥([ao, 1], M; P, Q) := {7 € C*([ao,a1], M) | 7(a0) € P & 7(a1) € Q}.

C¥([ao, a1], M; P, Q) can be endowed with a differentiable structure of a smooth
Banach manifold (see, for instance, Piccione & Tausk (2001) and Piccione & Tausk
(2002)) and its tangent space at vy € C¥([ag, a1], M; P, Q) can be identified with

ToC*([ao,a1), M; P,Q) = {n € v*TM | n(a0) € Ty(a)P & nla1) € Toy(a,)Q} -

Let (M,w) be a Birkhoff system and ® : G x M —+ M a free and proper smooth
action of a Lie group G on M; let G - pp and G - p; be two orbits, which by
the hypothesis of ® being free and proper are smooth closed submanifolds of M.
The action @ induces a smooth action ®o : G x C*([ag, a1],M;G - po,G - p1) —
C*([ao, 1], M; G - po, G - p1) on C¥([ao, a1],M; G - po, G - p1) defined by (®o),4(7) :=
(®40)(7) = ®,07. Indeed, this follows at once from C¥([ao, a1], -) being a functor,
from the category of smooth manifolds to the category of smooth Banach manifolds
with smooth maps as morphisms (see, for example, Palais (1968) and Piccione &
Tausk (2001)),

C*([ao, a1, ) : M = C¥([ag, a1], M)
cf fo

and the fact that G - p;, i = 0, 1 are orbits by ®.

Analogously, ® induces a smooth action ®’” : G x J2(M) — J2(M) defined as
®)" := J*(®,). That @7 is an action is also a consequence of J2 being a functor.

Lemma 5. Let (M,wy) be a Birkhoff system for some Lagrangian function L
and ® : Gx M — M be a free and proper smooth action on M. Then, the
Lagrangian function L is ®T _invariant if and only if for all ap,a; € R, ag < a1
and for all orbits G - po C M and G - py C M, the Lagrangian functional & :
C*([ao,a1),M;G - po, G - p1) = R is Po-invariant.

Proof. Given ag,a; € R, ap < a; and two orbits G - py, G - p1, the Lagrangian
functional being ®o-invariant means

Z ((®)g7) =2 (7)
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for all g € G. That is,

ay @)

e [’ L ((@To %) (:)) at

for all ¥ € C¥([ao, a1],M; G - po, G - p1) and all g € G.

But, this requires that L=Lo @g. For, if for a given g € G there is a vector
v € TM such that L(v) # L(@gv), say L(v) > L(@gv), then by continuity, there
is a neighborhood V' C TM of v € V such that L(u) > L{‘I'gu) for all u € V.
Finally, choosing a curve C"‘([ag, a1],M; G -po, G -p;), for some ag,a; € B, ag < a3
and orbits G - po, G - p1 such that ZX([ao,a1]) C V, we obtain [ L(y(t))dt >
f:; L (Q; ) %?—[i)) dt, which is a contradiction. The converse is trivial and this
completes the proof. O

Given ag,a; € R, ag < a; and two orbits G - pg, G - p1, we can define the
Pfaffian form Q7 on C¥([ag,a1],M;G - po,G - p1) as

Q= dox(lag,a1) M;G-po,Gp1) L -
Proposition 20. Let ® : GxM — M be a smooth action on a configuration space

M and L a regular Lagrangian function. Given ap,ay; € R, ag < ay; and orbits
G - po and G - py we have,

= [ o (Z50) nta

(u (Ej ) ),Xl)w( ('ﬂj‘ ),Xo>

for all v € C¥([ap, @1],M; G - po, G - p1) and all n € T,C*([ap,a1],M;G - po, G - p1),
where pr, : TM — g is defined as

(n(v), X) = FL(v) - X{i(mu(v)),

for all v € TM and all X € g and Xo, X1 € g are the unique vectors such that
X (v(@) = nla:), i =0,1.
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Proof. Fix ag,a; €R, aq < a; and G - pg and G - p;. Given a regular Lagrangian
function L we have,

for all Fe Ck{[ao‘ al]! M! G‘PO, G ‘Pl) and all n € T'Tck([an! ﬂl],M;G'p[},G 'pl)‘
Here Xy, X1 € g are the unique vectors such that Xﬁ,i[‘y(a;)) = n(a;), i = 0,1
(recall that 1}((1.') (S T.‘_,(a'.](G - pi))- O

Remark 16. Let (M,w) be a Birkhoff system and ® : G x M — M a smooth action
on M. Then, the action @ is free if and only if for each ag,a; € R, ag < a; and for
each pair of orbits G - pg and G - py, the induced action ®o : G x C"([ag, a], M; G -
o, G-p1) = C"([ag, a1],M; G - po, G - py) is also free. Indeed, when ®o is free, the
consideration of constant curves proves that & is free too. Conversely, assume ®
is free. Given y € C*([ao, a1], M; G -po, G- p1), let g € G be such that (®0),y = 7.
Then, for any t € [ao, a1], we have (®o)4(7)(t) = ®4(v(t)) =(t) & g =e.

Similarly, the action @ is proper if and only if so is the action ®o.

Proposition 21. Let (M,wy) be a Birkhoff system for some regular Lagrangian
function L and ® : G x M — M be a smooth, free and proper action on M.
If L is ®T -invariant, then for each ag,a; € R, agp < ay and for each pair of
orbits G - pg and G - py, there exists a unique reduced Lagrangian functional ¢ :
C*([ag,a1],M;G - po, G - p1)/G — R such that Zg o1l = & and I*Q, = Qp,
where I1 : C¥([ag, a1],M; G - po, G - p1) = C¥([ag,a1],M;G - po,G - p1)/G is the
canonical projection.

Proof. By hypothesis, the Lagrangian function L is ®-invariant. Now, by Lemma
5 the Lagrangian functional % is ®o-invariant, that is, the following diagram is
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commutative
C*([ao, a1], M; G - po, G - p1) == & R
(®o)g 1
C*([ao, a1],M; G - po, G - p1) —T R

So, Z is equivariant with respect to the ®o and identity actions and this de-
fines a smooth function £ on C¥(S?, M)/G, which makes the following diagram
commutative

z

C*([ao, 1], M; G - po, G - p1)

=

11 1
C*([ao,a1), M; G- po,G - p1)/G —R/1=R
ZLc
Finally,

I"QL, = I"dox(ag,a]MiG-po,G-p1)/G-LG
dex([ao,a1],M;G-po,G-p1) (£ © IT)

dck([c‘l:!.ﬂ‘.'.].l\-'l;G'-pc,‘C..?-,;,.,1 )g = Q.
O

Proposition 22. Let L be a regular Lagrangian function and ® : G x M — M
a free and proper smooth action. Then, L is ®T-invariant if and only if for each
ap,ay € R, ag < ay and for each pair of orbits G-pg and G-p,, Q, is ®o-invariant,
that is, (®0);Q = Q, for all g € G, and Q, is horizontal, that is, 1 (ker TIT) = 0.

Proof. When L is ®7 invariant, the result follows from Lemma 5 and the previous
Proposition. Conversely, let us assume that for each ag,a; € IR, ag < a;, and for
each pair of orbits G -pp and G- p;, Q1 is ®o-invariant and horizontal. By Lemma
5 it is only necessary to show that % is ®o invariant.

®o-invariance means dck ([ag,a,],M;G-po,G-p1)-L
= dek([ag,a1 ] MiG-po,Gopy) (£ 0(P0)g) forall g € G. So, there is a functionh : G = R
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such that Z(y) = Lo (®o)e(7)+h(g) forall y € C*([ao,a1],M;G - po, G - p1) and
for all g € G. It is easy to see that h is a smooth homomorphism between G and
(R, +). Indeed, smoothness follows at once from the smoothness of the action ®o.
Now, fix a curve vy € C¥([ao, a1],M;G - po, G - p1) to obtain

h(e) = £(7) — L o (®o)e(y) =0,
where e € G is the identity, and

Z(v) = Zo(®o)gn(7)+h(gh)
& o (®o)y(y) — h(h) + h(gh)
Z(7y) — h(g) — h(h) +h(gh)

I

for all g, h € G.

Because & is free and proper so is ®o. The latter implies that
IT : C*([ao,a,],M;G - po, G - p1) = C¥([ag, a1],M;G - po, G - p1)/G is a principal
bundle. Thus, for any curve y € C*([ag, a1], M;G - po, G - p1) the orbit G -y is a
closed smooth submanifold of C¥([ag, a;],M;G - po, G - p1) and its tangent space
at v is T, (G - v) = ker T, IL

The Pfaffian 7, being horizontal means

de([ﬂo.m].MiG-po.G‘p;)g(q) =0

for all n € T(G -v). So, given go € G and X € Ty, G let g :] — ¢,¢[— G be a
curve in G such that g(0) = go and %f—
T4 (G - 7), we obtain

P = X. Consider n = %(‘I"’)g(aﬂlmo €

T
0 = Lel@nl|
T
= 250 —h(g(s)] e
= —T4hX.
Whence h(G) = {0}, since Im h is a subgroup of IR. O

Let (M,w) be a Birkhoff system and ® : G x M — M a smooth, free and
proper action of a smooth Lie group G on the configuration space M. Given a
smooth mapping p : TM — g*, for each ag,a; € R, ap < a;, and each pair of
orbits G - pp and G - p1, we define the Pfaffian form 2 for the data (M, w, ®, y) on
Ck{[ao, al],M; G- Po, G - pz) as

o= [0 ((F5) ©)awa

Ty Ty
(k (I ) Ty~ (E ) e
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for all v € C*([ao, a1], M; G-po, G-p1) and for all n € T,C¥([ag, a1}, M; G -po, G -p1),
where pu* (v) = (u(v), X), for all v € TM and for all X € g.

Theorem 8. Let (M,w) be a Birkhoff system and ® : G x M — M a smooth, free
and proper action of a smooth Lie group G on the configuration space M. Also,
let p: TM — g* be a given smooth mapping. Then, the following are equivalent:

1. (M,w,®, ) is a Noether G-space;
2. For any ap,a; € R, ag < ay and any pair of orbits G - pg and G - py, the
Pfaffian form Q is horizontal.

Proof. Given ag,a; € R, ag < a; and a pair of orbits G - pp and G - p;, the
requirement of  being horizontal is that

0 =Q4(n)
= _f & ((%%) (r)) n(t)di+
(n (% =) X1) = (u (%}} :) Xo)

for all ¥ € C*¥([ao,a1],M;G - po,G - p1) and for all n € T,(G - v), where X; € g
such that n(a;) = X§ ;(v(a:)), i =0, 1.

Claim: n € T(G - %) if and only if n = Xﬁ o 7, for some X € g.

Indeed, given such an n € T(G -7v) we have

T
0 = (%
_ T
. (5
s ®(exp(sX),v(t))
=0
x$ ().

0 (@o)exp(,nm) (t)

=

q’exp(s X) 7) (t )

s=0

for all ¢ € [ag, a4].

Thus, the condition for horizontality is equivalent to

/ o((F5) ©) it = u (% =) = (%

) , X) (43)



54 Marcelo H Kobayashi and Waldyr M Oliva

for all ¥ € C¥([ao, a1], M; G - po, G - p1) and all § € T (G - ), with n = XF; o 7.
Now, assume that (M,w,®, u) is a Noether G-space. Then,

o(2)(XE(p)) = (V*w) XEy(v) = dp* (i 0 2)

for all z € J2(M), where p = B(2), v=7s(z) and Y = ioY is a germ of second
order vector field such that Y (v) = z. Here we have used Ty o X#M = Xﬁ o™
(use the fact that ny : TM — M is equivariant and Proposition 4.1.28 in Abraham
& Marsden (1978)) and the fact that w is a Birkhoffian, so that (?‘w)X?M(v) =
& (z)(Trma X%y (v)) (see Remark 1). Thus,

s =aedon = (Ga) = 5w (@)

for all 7 £ C"([aq,al] M;G - po,G - p1) and all n € T,(G - v), where 3 = XMo’y

and —&%'- = io j2+4. Thus, 1dent1ty (43) holds for all ag,a; € R, ag < a;, for all
orbits G- po and G- py, for all ¥ € C*([ap, a1], M;G -po,G-py) and all n € T+ (G -7)
and 2 is horizontal.

Conversely, let us assume that € is horizontal. Suppose, by contradiction, that
there is a second order vector field Y = ioY, a vector X € g and v € TM such that
(Y*w) XEu(v) # dopX (Y,) say (Y *w), Xy (v) > dyuX (Y, ). By continuity, there
exists a neighborhood W C TM of v € W such that (Y*w), X#M(u) > dup® (Ya),
for all u € W. Consider a base curve v of Y and the vector field n = Xﬁ o7, in
an interval [ag, @] such that Id-?-[[ag, a1]) C W, then

)
t=ag

[-(E3)0) () (3

which is a contradiction with the hypothesis of {2 being horizontal. So, u is a
momentum mapping, as required. O

Theorem 9. Let (M,w) be a Birkhoff system and ® : G x M — M a smooth,
free and proper action of a smooth Lie group G on the configuration space M.
Also, let p : TM — g* be a smooth momentum mapping. Then, the following are
equivalent:

1. & is equivariant with respect to the actions ®° and ®7" and p is Ad”-
equivariant.

2. For any ap,a; € R, ap < ay, and any pair of orbits G - py and G - p;, the
Pfaffian form Q0 1s ®o-invariant.

Proof. Given ap,a; € R, ap < a; and a pair of orbits G- pg and G - py, the Pfaffian
2 being Po-invariant means

0y (1) = Qa,04(T(R0)gn)
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for all v € C¥([ag, a1), M; G - po, G - py), for all n € TC*([ao, a1],M; G - po, G - p1)
and for all ¢ € G. This is equivalent to

_f:g,, ((%%) (z)) n(t)dt+
ml) X1 = {p (% =) KXo =
"f“ (@_g’ 5 (%%) (:)) Ty By (t)dt+

T
) ,Ad g X)) — (u (@jo _d%’

where we have used T(®40) = (T®,0) (see Piccione & Tausk (2001)) and
(Adg X) = @), (Xﬁ) (see Proposition 4.1.26 in Abraham & Marsden (1978)).
So, assume the momentum mapping is Ad *-equivariant, then we obtain

T Ty

for i = 0,1 and for all g € G; so that, the former condition reduces to

f: @ ((%%) (t]) n(t)dt = ‘/:: ) (q;-” o (%%}) (t)) Ty ®en(t)dt (45)

for all v € C¥([ao, a1], M; G - po, G - p1), for all n € T,C*([ag, a1}, M;G - pg, G - p1)
and for all g € G.

Now, if @ is equivariant with respect to the actions ®’° and ®7" then (45)
clearly holds.

Conversely, let us assume that for any ap,ay € IR, ap < a; and any pair of
orbits G - pp and G - p;, the Pfaffian form  is ®o-invariant.

Then, by taking n € T~ C¥([ao, a1], M; G -po, G-p1) such that (a;) = 0,i = 0,1
and by an argument analogous to the last part of the proof of Lemma 5 we prove
that & is equivariant with respect to the actions ®’° and ®7" . Finally, taking
n(ao) = 0 and an arbitrary n(a;) we obtain the Ad *-invariance. O

t=a,

) ,Adg Xo), (44)
t=ap

) ,Ad g X;),

Theorem 10. Let (M,wy) be a Birkhoff system for some Lagrangian function L
and ® : G x M —+ M a smooth action of a Lie group G on the configuration space
M. Then, the following are equivalent:

1. L is ®T -invariant;

2. the Pfaffian form 0y (see Ezample 8) and the energy Ep = Z(L) — L are

®T -invariant;



56 Marcelo H Kobayashi and Waldyr M Oliva

3. (M,wr,®,uL) is a Noether G-space, wr is equivariant with respect to the
actions " and ®T" and py, is Ad*-equivariant.

Proof. e 1. & 2. That 1. = 2. is proved in Corollary 4.2.14 in Abraham &
Marsden (1978). Conversely, assume that 6, and the energy Er = Z(L)—L
are ®7-invariant. We have,

L(v) = 6L (v)v — Er(v)
for all v € TM. Now, 6, = (®7)*6;, means
0(v)n = 01.(®7 (v)) (TS} )
for all v € TM, all n € T, (TM) and all g € G. But,
01 (v)n = (01 (v), Trmn),
for all v € TM and all n € T,(TM) (compare Remark 1), so that,

(BL(v), Trmn) = 6

Il
<
=

= (0.(2] (v)), ®] rmn)

for all v € TM, all p € T, (TM) and all g € G. Now, 1y is a submersion and
so O (v)v = 0 (®Tv)®Tv and L is &7 -invariant.

e 1. & 3. That, 1. = 3. follows from Corollary 4.2.12 ibidem and Example 8.
The converse, that is, 3. = 1. follows from 22-9.
O

6 Symmetry and reduction of constrained
Birkhoff systems

In this sub-section, we extend the symmetry and reduction procedures for con-
strained Birkhoff systems. Because of the generality of Birkhoff systems, this
extension turn out to be quite simple.

Definition 24. Let (M,w, %) be a constrained Birkhoff system and ® : GxM — M
a smooth action of a Lie group G on the configuration space M. Denote by g
the Lie algebra of the Lie group G and by g* its dual. We say that a mapping
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pe :'TM — g° is a constrained momentum mapping relative to (M, w, ) for the
action ®, provided that for each X € g,

dp (V) = (Ywle) Xy

for all second order vector fields Y = ioY, with Y a cross section of €. The
quintuple (M, w, ®, e, €) will be called a constrained Noether G-space.

Proposition 23. Let (M,w, ®, i, €) be a given constrained Noether G-space, with
(M,w,¥) a regular constrained mechanical system which satisfies the principle of
the determinism. Assume that the action ® is tangent to the constraint €, that

18, Ay (XM(p)) C Cy, for all v € TM, with p = ny(v). Then, the constrained
momentum mapping p¢ 1s a constant of the motion, that is,

pe o FE = pe

where FE : TM — TM denotes the flow of the d’Alembert-Birkhoff vector field
Ye.

Proof. Let Y = ioYe be the d’Alembert-Birkhoff vector field. Then, taking into
account that &(Ye) € C7, oy, We obtain
duf (Ye) = (Yowle)XEy
o (V) XH
0!

where we have used the fact that TTMX#M = X}ﬁ o 7y and the tangency of ®:
X o ma(v)A; 1 (Cy). O

Proposition 24. Let (M,w, %) be a constrained Birkhoff system and ® : GxM —
M a smooth action of a Lie group G on the configuration space M, such that
m: M — M/G is a principal bundle with structural group G and the action ®
is tangent to the constraint €. Assume that the action ®'° leaves invariant the
constraint, that is, that ®'° (€) C €, &|e is equivariant with respect to ®’"|¢ and
®T" | the constrained Birkhoff system (M, w, €) satisfies the principle of determin-
ism, | € g* is a regular value of pe, pe is an Ad ™ -equivariant constrained mo-
mentum map and the isotropy subgroup of the coadjoint action G acts freely and
properly on pZ' (1), then, there exists a unique vector field Y on pZ'(1)/G; which
is m-related to the d’Alembert-Birkhoff vector field Yee, that 15, TmYe = Y%, o,
where m : ug' (1) = pug'(1)/Gi denotes the canonical projection.

Again, without a momentum mapping,

Proposition 25. Let (M,w) be a regular Birkhoff system which satisfies the prin-
ciple of reciprocity and ® : G x M — M a smooth action of a Lie group G on
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the configuration space M. Assume @' leaves € invariant and Ole is equiv-

ariant with respect to ®7" and ®T", then, there exists a unique vector field Y.§
on TM/G which is m-related to the d’Alembert-Birkhoff vector field Ye, that is,
TrYe = Y.§ om, where 7 : TM — TM/G denotes the canonical projection.

The proofs are analogous to that of Proposition 16.

Ezample 10. Consider a particle moving in M = R3 with kinetic energy
Ties %(iz + 9% + 2%,

where (z,y,z) € R? are normal Cartesian coordinates for R3. In Rosenberg
(1977) it is proposed the following non-holonomic constraint (see also Bloch, Kr-
ishnaprasad, Marsden & Murray (1996) and Tavares (2001))

z—yz =0.

We note in passing that the associated form ¢ = dz — ydz is a contact form.
We define the constraint € as

€= {(z,v,2,8,9,%,%4,7) :€ JH(R?) | £ — y& — y& = 0}.

First, we note that the constraint € is integrable, in the sense that the foliation
L = {Lx};eg of T(R?) defined by Ly := {(z,y,2,%,9,2) € T(R? | 2 — y& =k}
is such that, at each pair v € TR3, there is a unique leaf £; containing v and
satisfying T, Lk N JZ(M) = E,.

The constrained Birkhoff system (M,w, %) is clearly regular (see Remark 11).
We consider the R-action

®: (4 (x,y,2)) — (z,y+4, z).

This action is tangent to the constraint and the momentum mapping pp = py
given by the linear momentum in the y-direction

Py=9

is a constant of the motion. However, ® does not leave the constraint invariant,
so that we can not use Proposition 24 to reduce the dynamics. This is called an
action of the second type in Marle (2002). We note, however, that the constant
pr 1s still useful and can be used to integrate the equations. Indeed, we have
Yy = Yo + pyt, for all t € R, where y(0) = yy. The remaining equations of motion
are

= Tyy
1447
zy
z =

1+ y*’
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yielding
r = zg+ 2ot
z = zp+ 2ot
if p, = 0 and
tor/1+ ¥2
r = =zog+ MT-{%- [sinh_l(yg + pyt) — sinh_l(yg)]
v
1. . ;
3 = = [30\/1 + y.'s’\/l + (Yo + Pyt)? + py(20 + 20t) — zo(1 + g + iyopy)]
y

otherwise, where z(0) = zo, £(0) = &9, 2(0) = 2o and 2(0) = zo.
The reaction field is
Yy Ty
R=-— d .
% z+ 1+y2dz
Let us check if the flow of the d’Alembert-Birkhoff vector field leads to the con-

servation of volume. The symplectic form is { =dz Adz +dy Ady +dz Adz, so
that,

2y
1+y?
By Remark 13, we conclude that the flow of the d’Alembert-Birkhoff vector
field Y does not preserve the phase volume Q; = AC AC.
The leaves of the above foliation are affine hyperplanes. Indeed, define ez =
ﬁg (£ —yZ), then

dRACAC = dz Ady Adz Adi AdyAds.

vELr Sv—kez€E P

where @ := ker €® is the contact distribution.
Now, fork=0, N = 7?1:;-: (£ —y;Z) is a unitary vector field orthogonal to

2. Liouville’s Theorem for linear non-holonomic constraints (see Kupka & Oliva
(2001) and Castro & Oliva (1999)) states that the volume form €|, for the leaf
Ly is conserved by the d’Alembert vector field if and only if Viy N = 0, where

Qo= et A2 Ad AdEt AdE3,

1 2 __ dx4ydz P 3 .
e =dy, € = W%; and €, i = 1,2,3 are the corresponding forms view as a
function on TM. A simple computation shows that the latter condition is fulfilled
and we conclude that the flow of Y|z, preserves Qqlz,.

For k # 0 the non-holonomic constraint is affine and we may use Liouville’s

Theorem 7 for affine constraints. For that purpose we compute

ky
1+ y?

and we conclude that the flow of Y|z, does not preserve Qq|z, for k # 0.

O(kes)e® = kO(e3)e® = kfie,de® + d(iey€®)] = k(ie de®) = — dy,
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Erample 11. In Benenti (1996) a non-linear constraint is proposed, in which the
velocity vectors of two particles moving in a plane are required to remain parallel
to each other at all times. The configuration space is R? x R? and the constraint
is v; X vo = 0, where v; and vs denote the velocity vector of the particles. It
is singular when both v; and v, are null, so we consider a slightly more general
and regular non-linear constraint ¢ defined on the open submanifold v + v2 > 0
(v = |vil?, i = 1,2) of T(R? x R?) given by

€ = {(:cl:yljzﬂly'):il:gisi3!ﬁ2:£1!§1)£2:§2) € ng I
B+ +ei+5 >0 &
E1Y2 + 2132 — E2y1 — E281 =0},

where (2;,¥;), i = 1,2 are normal Cartesian coordinates.
¥ is integrable with foliation £ = {Lx},¢x of T(R? x R?) defined by

Lic = {(v1,v2) € T(R? x R?) | vy x v = k} .

We consider both particles with equal mass m and electrical charges ¢, and
g2, subjected to a uniform magnetic field

The equations of motion are then

mZy = Ay2+qinb (46)
my1 = —ATy—q1&1b (47)
miy = —Ay1+ gayed (48)
Tnj.j] = /\221 = Q'gigb, (49)
and the constraint equation
E1Y2 + 192 — E21 — T2ih = 0. (50)

Now, substituting (46)—(49) into (50) we obtain

(v1,v2)g3
vi4ovd

Thus, the d’Alembert-Birkhoff vector field is

A=b(g2—q1)

Y' = &
Y& = i
Y(;l = 3‘33

Yéz —_— yz
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B = ‘:;[(?2—%)2-:? ?jziizgﬁ zy2+?191]
Y = —% [(92 - Ql)i? j—i;:;%zﬁ = 3 + q1i1]
Yé = i [(9’2 -q)= o2 j-l.::—l-tzll? 2 Y — fm)z]
R

for all (z1, Y1, 22, Y2, 21,91, &2, ¥2) such that 23 + y + 22 + 42 > 0.

We remark, in passing, that Y|z, coincides with the constrained vector field
defined by Marle (see Marle (1995)). And from the homogeneity of #1392 —&23; = 0,
it follows that the Llouwlle vector field is tangent to Lo so that the kinetic energy
T = 2(2} + 4} + 23 + y) is constant along the flow of Y|, .

The SO(2)-action

(R, (1‘1, 'T'z)) o < (R?"l, R‘Pg)

with r; = (2;,¥:), i = 1,2 leaves both the constraint and the Lagrangian invariant.
Yet it is not tangent to the constraint and though Proposition 24 does not apply
(this is analogous to an action of the first type defined in Marle (1995)) we can
still use Proposition 25. However, next we integrate the system directly.

1. Case I-—b(g2 — q1) = 0.

If b = 0, the base curves of Y¢ consist of rectilinear uniform motion of each
particle along parallel straight lines determined by the initial conditions of
the particles. Otherwise, if b # 0 and ¢; = ¢ = ¢ # 0, then the problem
corresponds to that of two independent charged particles subject to the same
uniform magnetic field. Thus, the solution is a harmonic motion around a
pair of circles,

y:(]

T = Tip+ ——— ol + — qb/ [#:,0sin(gbt/m) — y; o cos(gbt /m)]
Yi = Yio— x, 0 + [.7:, o cos(gbt/m) + y; o sin(gbt /m)]
qb/m

i = 1,2 for all t € R, where z; 0 = ;(0), yio = %(0), £i0 = 2;(0) and
¥i,0 = %i(0).

2. Case II—b(g2 — q1) # 0.
We consider first the regular version of the original constraint in Benenti
(1996), that is, v1 x vo = 0 and v} + U-f, > (. Suppose v; = 0 and vy # 0,

then inspection of the d’Alembert-Birkhoff vector field indicates that the
solution consists of the particle 1 fixed, while particle 2 moves around a
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circle
Y2,0 - ;
= _ bt — bt
T2 z2,0 + e + b [&2,0 sin(g2bt /m) — §2,0 cos(g2bt /m)]
&2 1 " i
Y2 Y2,0 b aahm [#2,0 cos(gzbt/m) + ¥2,0 sin(gobt /m)]

where 29, = 22(v2), Y2, = Y2(v2), T2, = #2(v2) and yz, = y2(v2). The case
of v1 # 0 and vy = 0 is analogous. So, assume v; # 0, i = 1,2 so that
v1 X vy = 0 yields v = Kv1, for some £ € R\ {0}. We look for a solution
with a constant k. Then, A =
following linear system of ODE

2—q1 )k

S and we look for a solution of the

T =
Bo= w
By = Uy
Y2 = w2

b(g2 - q1)n2w q1b

e m(1 + k2) e
Wy = _b—:(:s?l_f:c);f up — qum
uz = —%}%ﬁ{%wz + %wz
w = %uz = qimbug

Y\rith initi.al copditions 21(0) = 21,0, 1(0) = y1,0, 22(0) = 22,0, ¥2(0) = y2,0,
£1(0) = #1,0, 91(0) = $1,0, £2(0) = K&1,0 and F2(0) = K 0.
Now, a unique solution for the previous system of ODE clearly exists and
again is given by a pair of circles: particle 1 moving along,
Y10
b(g2x? + q1)/m(1 + &%)
1
b(g2x? + q1)/m(1 + £?)
[#1,0sin(b(g25” + q1)/m(1 + £*)t) — §1,0 cos(b(gar® + q1)/m(1 + £°)1)]
B 1,0 "
b(g2k? + q1)/m(1 + x?)
1
b(g2k* + q1)/m(1 + £2)
[£1,0 cos(b(g2k® + g1)/m(1 + £*)t) + 91,0 sin(b(g2x? + q1)/m(1 + £?)1)]

ry=2z10+ +

=W,
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itor all t € R, where z;,0 = 2;1(v1), Y10 = y1(v1), 21,0 = #1(v1) and Yo =
¥1(v1); and particle 2 along,

Y2,0
T2 =230+ -

2 2,0 b(q:zrc2+ql)/m(1+nf*) +

1
b(g262 + q1)/m(1 + x2)
[22,08in(b(g25% + 1) /m(1 + K2)t) — 92,0 cos(b(gar® + 1) /m(1 + K?)t)]
Y2 =Y20 — £2,0 +

07 b(garn? + q1)/m(1 + £2)
1

b(g26% + q1)/m(1 + k2)
[iz’DCOS(b(qu.g +q1)/m(1 + k*)t) + Y2,08in(b(gak? + q1)/m(1+ rcz)t)]

for all t € R, where 230 = z2(v2), y20 = y2(v2), 220 = K&1,0 and oo =
ky1,0. But, from uniqueness of the flow we conclude that this is the solution
of the d’Alembert-Birkhoft vector field.

Finally, for the general case of v; x vy # 0 we have vy = KRyv,, where
Rs € SO(2) and motivated by the previous solution, we obtain, by direct
substitution, that the solution is again two circles: particle 1 moving around

¥1,0
b(g2k? + q1)/m(1 + K?)
1
b(g2k2 + q1)/m(L + £?)
[21,0sin(b(g26% + q1)/m(1 + £%)t) — 91,0 cos(b(g2k” + q1)/m(1 + K*)t)]
21,0
 b(g2k? + q1)/m(1 + £?)
1
b(g26? + q1) /m(1 + k?)
[#1,0cos(b(g25” + q1)/m(1 + £*)t) + 1 0 sin(b(g2k® + q1) /m(1 + £%)1)]

Ty =210+ -+

Y1 = Y10 +

for all t € R, where #, 0 = 21(v1),

y1,0 = y1(v1),
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Ezample 12. Here we present a class of examples of the so called Cap}ygin or
Principal Kinematic Case (see Bloch et al. (1996)) to which a reduction can be
undertaken in such a way that the associated non-holonomic systems are reduced
to the base manifold as an unconstrained system with a force (see also Koiller
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#1,0 = #1(v1) and §1,0 = §1(v1); and particle 2 along,

Yz, 1
o =20+ b(q;n9+q12);m(l+x’] T b(gar?+q1)/m(1+x7)

[#2,08in(b(g2x? + q1)/m(1 + K?)t + 0)—
¥2,0 ccas;(b(qrgrc2 +q1)/m(1+ &%)t + 9)]

Ta.0

1
Y2 = ¥2,0 ~ 5{gzrT%q1)/m(1+£7) + b(gan®+q1)/m(1+x%)

[#2,0cos(b(g2k? + q1)/m(1 + K?)t + 6)+
Y20 sin(b(g2x2 + q1)/m(1 + £?)t + 6)]
for all t € R, where
zg0 = 22(v2),
Y20 = y2(v2),
T90 =K (£1,0 cosf — gy o sinb)

and Y20 = K (91,0 cos @ + &1 o sin b).

Hence, the flow of the d’Alembert-Birkhoff vector field has been determined.

(1992)).

Let us recall the following definitions and results for semisimple Lie algebras

(see Helgason (1978)):

1. A Lie algebra g is called semisimple if the Killing form
£(X,Y) = tr(ad X ad Y') on g x g is non-degenerate. An analytical Lie

group is semisimple if its Lie algebra is semisimple.

Cartan Involution if the symmetric bilinear form
ko(X,Y) = —k(X,0Y)

is positive definite, where & is the so called Killing form of g.

two Cartan involutions are conjugate via Int(g).

. Let g be a Lie algebra. Then 6 € Aut(g) is an involution if §% = 1.

If g is a real semisimple Lie algebra, then an involution # on g is called a

. Every real semisimple Lie algebra has a Cartan involution. Moreover any
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5. Any Cartan involution yields a Cartan Decomposition g = t® p, where

t={Xeg|d(X) =X},
p={X€g|o(X)=-X},

where t is a maximal compactly embedded subalgebra of g.

6. The following properties hold:

(a) k¥Yce [eplcp,  [pplCe,
(b) ra(e,p) = &(E,p) =0,
(c) e is negative definite, x|, is positive definite.

On a semisimple analytical Lie group G with Lie algebra g, let us consider
the left invariant distribution defined by ¥, = p and the left invariant metric
associated with an arbitrary metric on g such that p and ¢ are orthogonal, for
instance, (X,Y), = akp(X,Y), for all X,Y € g, with a > 0.

We consider the left action ® : Hx G — G on G of the connected Lie subgroup
H defined by the Lie subalgebra & C g. Note that the action is free and proper (H
is compact) so that 7 : G — G/H is a principal bundle.

Then, both the metric and the distribution are invariant with respect to the
action ®. Indeed, this follows at once from H being a Lie subgroup of G and both
the metric and the distribution being left invariant. Moreover, because the Lie
algebra of H is ¢, we also have T,M = X, & T, (H - p), for all p € G as required.

As concrete examples, we mention the so called pseudo-rigid bodies (see Oliva
(2002)), whose configuration space is SL(n). Then, for 8(X) = —XT, for all
X € sl(n), we have H = SO(n). This class of problems are also interesting
from the viewpoint of its dynamical characteristics. Indeed, in Castro, Kobayashi
& Oliva (2001) it is shown that for M = SO(n,1) (which is a Lie subgroup of
SL(n + 1)) together with the above construction, provides a class of constrained
mechanical systems whose E-geodesic flow, that is, the flow associated to the
d’Alembert vector field, is partially hyperbolic and preserves a measure given by
a volume on X.

7 Future work

As concluding remarks, we outline some possible lines for future work in the area
of Birkhoff systems:

Geometrical aspects We have dealt with the inverse problem of Lagrangian
mechanics. A natural continuation of the present work would be the study
of the inverse problem in the more general context of the calculus of varia-
tions. Also, the whole theory of mechanical systems with constraints that
are not regular, in the sense that the dimension of the constraint may change
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from point to point, is still undone. A possible starting point would be the
extension of the present theory to handle constraints defined by algebraic
varieties.

Dynamical aspects Finally, it would be interesting to study many dynamical
properties of Birkhoff flows. To mention just a few: non-uniform hyperbolic
properties (Barreira, Katok & Pesin (2004)), ergodic stability (Pugh & Shub
(1997)), viscosity solutions (Bardi & Capuzzo-Dolcetta (1997)) and dynamic
convexity (Zampieri (2003)).
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A Proof of Lemma 4

The first equation (17) is equivalent to the principle of reciprocity. For the remain-
ing equations (18) and (19), let (g, ¢, ¢) denote a local natural coordinate system
for J?(M) associated to a local chart (U,q) of M and let (U, §) denote another
local chart on M such that U NU # @, then

_ - G ;, 0%
a1 n a _ AO i a4 __ aa aof -5tk
q = A (q ""‘q )! q _Ai (QJq y 4 "‘AS(Q)Q + 39-"3(}"9 q
where Af(q) := %37 (g)- So,

d¢* dAf 8¢° _ d*A? 8¢°

a¢* _  dA?
8¢ ~ dt ' 8¢t ~ dt2’ 8¢° ~ T di
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Also, Q; = —9‘; Q. and so,

0Q: (fm‘;a 08 , 0Qu 08" | 9Qu 0 ot
Oq q® dgl 5‘q*’ dg7 " 9g° og Q“
_ aQ,, 3Qa a4} | 0Q. A3\ | 8A"
- ag® dt a¢® dt? Qa
Qi an. ’ aQa dA7\
0Qi  _ 9Qa a4
a8~ o A4

Now, taking into account (17), the left hand side of (18) changes as

L o (3‘?“ 69*’) AL A7 + 2‘3@“ (——A" i Ab)

dqi aq aq® 9qe aq° dt dt
0Qa |, 0Q6\ 4a,p , 5Qa d a gb
(3§b+3q )AA + 255 g (ATAD),
whereas the right hand side as
d aQa aQJ _ d BQ: - d aQa a ab aQa a ab
(an o5 ) " imeg \@op AA+26‘5 @ A4,

which proves that (18) can be globalized under the assumption that w satisfies the
principle of reciprocity. The proof of (19) is analogous but we have to use (18).
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