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Ricci Tensors with Rotational Symmetry on R" !

Ronaldo A. Garcia and Romildo S. Pina

Abstract:In this paperis considered the differential equa-
tion Ric(g) = T, where Ric(g) is the Ricci tensor of the
metric ¢ and T is a rotational symmetric tensor on R". A
new, geometric, proof of the existence of smooth solutions of
this equation, based on qualitative theory of implicit differ-
ential equations, is presented here. This result was obtained
previously by DeTurck and Cao in 1994.
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1 Introduction

In this paper will be considered a particular case of the second order partial
differential equation

Rie(g) =T, (1)

where g is a Riemannian metric in a manifold M*, Rie(g) is the Ricci tensor
of g and T is a given symmetric tensor of second order. This equation is of
physical significance in field theory, see chapter XI of [16] and chapter 18 of [18].
For example, the Einsten’s gravitational equations, the Maxwell’s equations of
eletromagnetic fields and the Euler equations for fluids are related to equation
1. The tensor T is interpreted physically as the stress-energy tensor due to the
presence of matter.

DeTurck showed that if M is a surface then the equation Ric(g) = 7" can be
solved locally if 7" = py where p is a smooth real function and + is a positive
definite tensor, see [4].

Also DeTurck showed that in dimension 3 or more the problem Ric(g) = T,
with 7" non singular, has local solution in the smooth or analytic category and
that for T = z1dz? + dz% + - - - + dz2, singular at z; = 0, then the problem has
no local solution near z; = 0, see [5].

Recently, DeTurck and Goldschmidt studied the equation 1 with 7" singular,
but of constant rank. A detailed analysis of integrability conditions for local
solvability was obtained. Also the authors obtained various results of existence of
local solutions, under additional hypothesis, see [7].

In this work will be considered the Ricci equation Ric(g) = Ts, where g = ¢%f g
is a conformal deformation of the canonical metric gg = dr?+r2d©? of R™ and T
is a given tensor with SO(n) rotational symmetry. This problem was considered
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previously by DeTurck and Cao, [6]. They obtained local solutions near the origin
0.

This paper provides a new proof of existence and unicity, up to homothety, of
smooth local solutions near the origin of R™ for the equation Ric(g) = T5s.

In the paper by DeTurck and Cao, [6], no explicit statement about the smooth-
ness of the metric ¢ at 0 is presented.

This paper is organized as follows. In section 2 the definition of Ricci tensor is
recalled and the problem Ric(g) = T is formulated. In section 3 the main results
of this work are stated in proved. In section 4 we give an example of a metric
g with rotational symmetry in R™ and the associated Ricci tensor is calculated
explicitely. Finally in section 5 some general problems are stated.

2 Preliminaries

On a n-dimensional Riemannian manifold (M, g) the associated Riemann or
curvature tensor R = R(g) is given, in a local chart, by the coefficients R;jx;. The
following relations hold.

Rijri = Ryuij
Rt + Ritjx + Rik; =0
VmRijrt + Vi Rijim + ViRijme = 0

This space of coefficients has dimension n?(n? — 1)/12.

The contraction R = g/' Rijxi of the curvature tensoris the called the Rice:
tensor, see [2] and [15]. So, for each p € M the Ricci tensor is a symmetric
bilinear form Ric(g) : T, M x T, M — I and therefore the dimension of the space
of coefficients I is equal to n(n + 1)/6. The Ricci curvature in the direction
X = {Xi} is Ri;X;X; and g" R;; is called the scalar curvature.

In local coordinates the Ricci tensor is given by:

. rip 0%gii *gix 3 gri 0gi;
Rij “qn=1)" [8.1:"33:“‘ + 3ciod ~ 950z 6;(:*3:1"]
1 4
+ ;;_—lgk*gpq[f‘fkl“?f - [T (2)
ors. o0
s ] is st sTt.
-ax5 - 61‘3 +F:'jrst Ilfraj

where,
o= lgm[ayjfe 99i _ 39;;']
W9 dat drd  dxk
are the Christoffel symbols of the metric g.
In the two dimensional situation Ry212 = K is the Gaussian curvature and it
is the only non zero coefficient of both tensors.

(3)
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In the three dimensional case there exists an algebraic relation between R(g)
and Ric(g) which is given by:

1
Rijii = gix Rjt — gu Rjie — gjx Rit + g1 Rix. — ER{S‘:‘:.-QJ‘: ~ gitgjk)-

Here R = g'* R;x is the scalar curvature, see [12] and [17].

For n > 4, in general, the Ricci tensor does not determine the Riemannian
curvature tensor.

Also the following holds.

Let M C R™*! be a hypersurface with second fundamental form h and
{X1,--+,X,} be an orthonormal frame given by the principal directions X;. It
follows that the principal curvatures are given by h; = h(X;, X;) and according
to [17] the Riemman tensor is given by :

Rijkt =h(Xi, Xi)h(X;, Xi) — h(X;, Xp)h(X:, Xi1)
Ih,‘hj (5,‘;;5_-_;; —5_,';;5,1).
So the Ricci tensor is given by

Rij = &;j[hi(hy + -+ -+ hn) — hi].

The scalar curvature is equal to

R= (Zn:h,-)z = Zn:h,?.
i=1 i=1

In this paper we will consider the following restricted problem, studied by Cao
and DeTurck, [6].
Problem: Given a smooth rotational symmetric tensor T' on R", determine, if it
erists, a smooth metric g such that

Ric(g) = T (4)

3 Rotationally Symmetric Tensors

Consider a tensor 1" on the n-dimensional Euclidean space R™ symmetric with
respect to the orthogonal group SO(n); that is 4 * T' = T' for every v € SO(n).
These tensors will be referred to as rotationally symmetric.

Under the hypothesis of nonsingularity of T', the following lemma was proved
in [6].

Lemma 1. Let T = o(t)dt? + t?¢(t)dO?, t € Ry and © € S"~!, a smooth,
nonsingular and rotationally symmetric tensor on R™. Then T is either positive
or negative definite everywhere. Moreover ¢(0) = lim_o1(t).
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Consider also a smooth rotationally symmetric metric g, expressed in spherical
coordinates (r,@) = (r,#;,---,0,-1), as
g = 2¢/ D[ (t)dt* + r(t)*dO?). (5)

where, #(0) = 0, »'(0) = 1 and »'(t) > 0 for all £ > 0.
The Ricci tensor of g defined by equation 5, see [6], is given by:

Ric(g) = a(r)dr® + r*B(r)dO? (6)
where,
a(r) = ~(n — )l + 2]

B(r) = ~[for + (20 = 3 4 (n—2) (577

fr= F(O/r'(t) aﬂd frr = @)/ ().
Therefore the equation Rie(g) = T is equivalent to the following.
= [
If ¢ # 0 it follows that:

N~ (n=2)2rf + (v £)?).

lr"

tvp . er ., (n—2) 2
n—1"_ [(n - 1}:"12 T n-1 wlirf +(rfr)] 2

In [6] the Ricer potential was defined as

w(t) = 2—2;]9 KdA,.

Here D; = {(5,©) € W : 0 < s <t} and W is a fixed two dimensional subspace
of ™ and A is the sectional curvature of W. The function w is well defined since
the metric g is rotationally symmetric.

Lemma 2. If w 1s the Ricci potential of the rotationally symmetric metric g =
2ef [ (t)dt® + r(t)?dO?] then

w(t) = - rf, = 28 p1q)
r(t) (8)
g t) __EL
ul “(n—=1)

Proof. The sectional curvature of the plane W is given by

K=—e[f, + fr
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-1
-3

Therefore it follows that

t 2%
w(t) = %fﬂ KdAy = -2—1;[0 fo K(t)r(t)e*! ¢! (t)dt.

Then,
du =K(t)r(t)e! D' (1)
dt !
= e + T 1)
d
e E[I’fr}.

As w(0) = 0 and r(0) = 0 it follows that w(t) = —r(t)f-(1). Differentiating
the equation above it follows that

p(t)r(t)

w'{i) =-—7r'fr - T'frrf‘; = [—n-;—l-)—;;'(;)-

O

-

In terms of the Ricei potential w it follows, from equation 7, the following
implicit differential equation.

dw\? 1
%) = sl = (0w —2u) + Le()u(] Q
dt n—1

Proposition 1. The implicit differential equation 9 with ¢(0) = (0) # 0, has a
unique local smooth solution, with initial condition w(0) = w'(0) = 0, defined in
the interval [0,€), such that w'(t)@(0) > 0 for all t € (0, ¢).

Proof. For n = 2 the implicit differential equation 9 is equivalent to the ordinary
differential equations dw/dt = +t/(t)1(t). Direct integration leads to the result
stated.

So we suppose n > 2. Consider smooth extensions of ¢ and v for f < 0 and
the implicit surface

F(t,w,p) = [(n = 2)p(t)(w? — 2w) + Pp(t)(t)] — p* =0,

n—1
where p = 4.

Under the hypothesis above, we have dF(0) = [0 2=2¢(0) 0] # 0, so F~1(0)
is locally a regular smooth surface near 0.

Next we consider the smooth Lie-Cartan vector field

n d 0 o
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defined in a tubular neighborhood of the surface F~1(0) and tangent to it.
The projections of the integral curves of X by =n(t,w, p) = (t,w) are the solutions
of equation 9.

The origin 0 is a singular point of X, isolated in F~1(0), and

0 0 -2
DX(0) = 0 0 0
—2¢(0)¢:(0) _.ZLH—E)@'(D) 2(::—2):,-:(0)
n—1 n-—1 n-—1

The non zero eigenvalues of DX(0), A; and As are the roots of

(n = 2)p(0) | i 4p(0)¥(0) _ o

_2 .
L n—1 n—1

As AAs = —4—"’—‘%}%@1 < 0, it follows that 0 is a hyperbolic saddle point of
X|z-1(0). Also the unstable and stable separatrices are transversal to the regular
fold curve X, defined by ¥ = {(t, w, p)| F(t, w, p) = Fp(t,w,p) = 0}.

Therefore the projections, by m, of the smooth stable and unstable separatri-
ces of the hyperbolic singularity 0 are smooth and quadratically tangent to w(X).
Direct calculation shows that n(X) = {(¢,w(1),0) : w(t) = %‘3}1% + :--}. The
projections of the separatrices of the hyperbolic saddle will be called folded sepa-
ratrices. The integral curves of X and of their projections in the plane (¢, w) are
as shown in the Figure 1 below. 5

Figure 1: Folded saddle point

Remark 1. The proposttion I corresponds to Lemma 2.1 (also labelled Proposi-
tion 2.1) and Propositions 2.2 and 2.3 of [6]. In the mentioned paper there is no
statement about the smoothness of the solution w at 0, the fived point of the rota-
tion group. We adopt to work in the C'°° category, but with the obvious changes
the result is valid in the C™, r > 2, category.

Remark 2. The analysis above is sumilar to that carried out in the study of
asymptotic lines near a parabolic curve, see [10].
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Lemma 3. Let w be the smooth solution of equation (9). Consider the singular
differential equation

(n=1w'r' —pr=0

r(0) =0, »'(0) =1 (10)

w(0) = w'(0) =0, w"(0)= 20
n—1
Then there exists a smooth solution r = r(t) of equation (10) in a interval
[0,¢).

Proof. Let r(t) = tR(t) and w(t) = %W[t) Then it follows that the equation
(10) is equivalent to the following equation

JR__ eR
dt — (n—1)(W + W)
Therefore, the line (0, R) is a normally hyperbolic set and, by Invariant Man-

ifold Theory, [14], there exists a smooth solution R(t) defined in a neighborhood
of 0 with initial condition R(0) = 1. O

R (11)

Lemma 4. Let w be the smooth solution of equation (9). Consider the singular
differential equation

(n=1w'f +wp=0
f(O) =0, (12)
#(0)

w(O) =w'(0) =0, w'(0)= T

Then there exists a smooth solution f = f(t) of equation (12) in a interval

[0,¢).
Proof. The same argument as in the proof of lemma 3 works here. O
From proposition 1 and lemmas 3 and 4 follows the next proposition.

Proposition 2. Let T' = p(t)dt> +t23(t)dO? be non singular everywhere and sup-
pose w is a solution of equation (9) such that w(0) = w'(0) and w'(t)e(t) > 0 for
t > 0. Then the Ricci system Ric(g) = T is solvable. In fact, g = 2e/()[r'(t)dt* +
r(t)2d©?], where r and f are as stated, respectively, in lemmas 3 and 4.

Also formally we can write,

o= ([ [ 2] 4).

f(tJ=—j:w(s)r s)d3+c=—j: ¥ Ldete

13
" (13)
r(s)
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Proof. From lemma 2 it follows that w(i) = —r(t)f-(t) = —r(t)f'(¢)/r'(t) and
w'(t) = p(t)r(t)/(n—1)7'(t). From lemmas 3 and 4 follows that »(t) and f(t) are
smooth solutions of these equations. Therefore, integration leads to the following
result. O

Theorem 1. Consider the smooth, nonsingular, rotationally symmetric tensor
T = p(t)dt? + t%)(t)dO>. Suppose that F~1(0) is a regular surface for all t > 0
and %(tguflii]):p(i) # 0, i.e., the set ¥, defined by ¥ = {(t,w,p)|F(t,w,p) =
Fp(t,w,p) = 0} is a regular curve. Then Ric(g) = T has a rotationally symmetric
solution g defined on all IR™.

Proof. The solution of the Ricci equation Ric(g) = 1" is obtained from the stable
or unstable separatrix of a hyperbolic saddle of X. This separatrix is defined until
it reaches the boundary of a connected component of the set {(¢, w, p)| F(t, w,p) >
0}, which is, under the hypothesis above, the regular curve 7(X). The condition
L(20(t))p(t) # 0 means that the folded curve © = {(t,w,p) : F(t,w,p) =
Fp(t,w,p) = 0} is a regular curve, with two connected components and that the
vector field X has no singular point outside 0 on the connected component of
m(¥) that contains 0. Therefore, the folded separatrices of the saddle point 0 of
X cannot reach the boundary of {(f,w,p)| F(t,w,p) > 0}. If this occurs there
would be a topological disk, bounded by a folded separatrix and by a connected
component of the folded curve, foliated by regular curves transversal, outside 0,
to the folded curve. But this is impossible. O

4 Hypersurfaces with Rotational Symmetry

In this section we will calculated the Ricci tensor for a rotationally symmetric
hypersurface of R"+1,

Let a : R" — R"*+! be an embedding with rotational symmetry, i.e, a graph
of a function h, given by a(y1, -+ ,yn) = (Y1, ,yn, h(¥T + -+ ¥2))-

In spherical coordinates it follows that:

a(?.? 913 Ty gn—l) = (yi [ yﬂlyﬂ-l-l} W.here?

yy =rcosfy ---cosb,_

Y2 =rcos 91 <+ CO8 911—2 sin 0,—,_1
- 14
Yn—1 =rcosfsinfsy (14)

Yn =T sin 91

Uns1 =h(r?)
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Therefore the first fundamental form of o is given by g = (g;;), where

g1 =1+ 422 (h'(r?))?
922 =r*

g33 =r?cos? §,

gnn =1 cos® 0 cos® O - - -cos? O, o
9ij =0, i#j

In a concise form we can write

g = [1+47%(R' (v*))2dr? + r2dO2,

where d©®? is the metric of the unitary sphere $7~1.
In the diagonal metric (g:;) above the Ricci tensor is given by

a 0
Ric(g) = Rw(a ' Br )dr? +§:Rac(ag ' 50; )afﬂ2

9 i
+2Ru (550, 0 \ardo; + Z Rie( 5. 35 O\ dosdo;.

SRS

A long, but straightforward, calculation gives:

9 0, _(n=17()
ar’ or 2rf(r)
0 0, i) _n+2
691‘691 _Qf(?‘)z f(‘.")

Ric(—

Rie(

i—-1

., 8 8.,  rf'lr) n+2 5 )
Rw(ﬁ’_) _[2_([7')2 ~ 0 +n~—2]’£[1cos O, 2<i<n-—1
g 0
R:c(as‘ 393) =0
o 0
Rie(z7: 5g;) =0

where f(r) = 1+ 4r?(h'(r?))>.
So the following proposition holds.

Proposition 3. Let o : R” — R™*! be an embbeding with rotational SO(n)
symmetry , which in spherical coordinates is expressed by equation 14. Then the
Ricci tensor of the induced metric g = (gi;), is given by:
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Ric(g) =a(r)dr? + b(r)dr®

_=1F(r) o rf(r) n+2 " 2
= () d [ +n — 2]de°.

2f(r)*  f(r)
Here, f(r) =1+ 4r*(h'(r?))2.

Finally we remark that the principal curvatures of the embbeding o are given
by:

_2W(r?) + 4rPR (r?)
P N a2

B 2h! (r?)
"= M+ ar2(h(r2)) 312

h.g:---:h

5 Concluding Remarks

There is a considerable literature about the equation Ric(g) = T and the
general problem is the following.
Problem: Given a tensor T on a Riemannian manifold WM™, determine, if it
exists, a metric g such that

Rie(g) =1T. (15)

This equation is a second order system of quasilinear partial differential equa-
tion, [13].

Other problems related to the equation Rie(g) = 1" are the following classical
Nirenberg and Yamabe problems.

For n = 2 consider the two-sphere $? with the standard metric go = dz? +
dy® + dz>.

The Gaussian curvature of g = e?¥ g, is given by

K(p) = (1 - A)e™ @), (16)

where A is the Laplacian relative to the metric go.

A global problem in this case is the following: which functions K can be the
Gaussian curvature of a metric g which is a conformal deformation of gy, i. €.,
for which K : §% — R are there solutions u of equation (16)?

A general version of this problem in ™ n > 3, is known as the generalized
Yamabe Problem and consists in obtaining solutions of the partial differential
equation

e

]- n42
zAgu + Rgu = R;uﬁ: u >0, (17)

3

where § = u*/("=2)g R, is the scalar curvature of ¢ and Rj is the prescribed
scalar curvature of the metric g, see [2].
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Another kind o problem is the local realisation problem for the Gaussian cur-
vature of a surface which can be stated as follows: given a germ K of a smooth
function of two variables near the origin, find a surface in R with Gaussian cur-
vature equal o K. This problem was considered by Arnold, [1], and the main result
is that it can be solved whenever K has a critical point of finite multiplicity at
the origin.

Some more concrete problems can be also stated.

Problem 1: Existence and unicity of solutions for the equation Ric(g) = 7 in
manifolds with boundary, for example in the unitary disk I C R" or in the
cylinder I"* x R™,

Problem 2: Study of the equation Ric(g) = T in R™*" where 7" has the sym-
metry of other geometric groups, for example O(m) x O(n). See [6].

Problem 3: In the singular case, i. e., T = @(t)dt® + t>y(t)d©?, with ¢(0) =0
and ¢’(0) # 0 analyze the existence and unicity of local solutions of the symmetric
Ricci problem.

Problem 4: Consider the Ricci principal curvatures defined by the equation
Rij — Agij = 0 and the associated Ricci principal directions. Study the Ricci
Configuration, defined by n one dimensional singular foliations on a Riemannian
manifold (M, g) and compare it with the prinecipal configuration of a hypersur-
face of R™*+!. This setting is analogous to that of the configurations of principal
curvature lines, see [9] and [11].
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