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Ricci Tensors with Rotational Symmetry on lRn 1 

Ronaldo A. Garcia and Romildo S. Pina 

Abstract:ln this paper is considered the differential equa­
tion Ric(g) = T, where Ric(g) is the Ricci tensor of the 
metric 9 and T is a rotational symmetric tensor on lRn . A 
new, geometric, proof of the existence of smooth solutions of 
this equation, based on qualitative theory of implicit differ­
ential equations, is presented here. This result was obtained 
previously by DeTurck and Cao in 1994. 
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1 Introduction 

In this paper will be considered a particular case of the second order partial 
differential equation 

Ric(g) = T, (1) 

where 9 is a Riemannian metric in a manifold M', Ric(g) is the Ricci tensor 
of 9 and T is a given symmetric tensor of second order. This equation is of 
physical significance in field theory, see chapter XI of [16] and chapter 18 of [18] . 
For example, the Einsten's gravitational equations, the Maxwell's equations of 
eletromagnetic fields and the Euler equations for fluids are related to equation 
1. The tensor T js interpreted physically as the stress-energy tensor due to the 
presence of matter. 

DeTurck showed that if M is a surface then the equation Ric(g) = T can be 
solved locally if T = Pi where P is a smooth real function and i is a positive 
definite tensor, see [4]. 

AIso DeTurck showed that in dimension 3 or more the problem Ric(g) = T, 
with T non singular, has local solution in the smooth or analytic category and 
that for T = X1dxi + dx~ + ... + dx;, singular at Xl = 0, then the problem has 
no local solution near Xl = 0, see [5]. 

Recently, DeTurck and Goldschmidt studied the equation 1 with T singular, 
but of constant rank. A detailed analysis of integrability conditions for local 
solvability was obtained. AIso the authors obtained various results of existence of 
local solutions, under additional hypothesis , see [7]. 

In this work wiU be considered the Ricci equation Ric(g) = Ts, where 9 = e2! go 
is a conformaI deformation of the canonical metric go = dr2 + 1'2 de2 of lR n and Ts 
is a given tensor with SO(n) rotational symmetry. This problem was considered 
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previously by DeTurck and Cao, [6]. They obtained local solutions near the origin 
O. 

This paper provides a new proof of existence and unicity, up to homothety, of 
smooth local solutions near the origin of lRn for the equation Ric(g) = Ts. 

In the papel' by DeTurck and Cao, [6], no explicit statement about the smooth­
ness of the metric 9 at O is presented. 

This papel' is organized as follows. In section 2 the definition of Ricci tensor is 
recalled and the problem Ric(g) = T is formulated . In section 3 the main results 
of this work are stated in proved . In section 4 we give an example 01' a metric 
9 with rotational symmetry in lR n and the associated Ricci tensor is calculated 
explicitely. Finally in section 5 some general problems are stated. 

2 Preliminaries 

On a n-dimensional Riemannian manifold (M, g) the associated Riemann 01' 

eurvature tensor R = R(g) is given, in a local chart , by the coefficients Rijkl . The 
following relations hold. 

R;jkl = Rklij 

Rijkl + R i1jk + Riklj = O 

\1 mRijkl + \1 kRi jlm + \1IRijmk = O 

This space of coefficients has dimension n2 (n 2 - 1)/12. 
The contraction Rik = g .i l R;jkl of the eurvature tensor is the called the Rieei 

tensor, see [2] and [15]. So, for each p E M the Ricci tensor is a symmetric 
bilinear form Ric(g) : 1~ M x T~ M -+ lR and therefore the dimension of the space 
of coefficients Rik is equal to n (n + 1) /6. The Rieei curvature in the direction 
X = {X;} is RijXiXj and gi,i Rij is called the scalm' curvature. 

In local coordinates the Ricci tensor is given by: 

(2) 

where, 
ri .. = ~ kl [ô9jk Ôgik _ Ôgij 1 

'J 2g ôx' + ôxJ ôxk 
(3) 

are the Christoffel symbols of the metric g. 

In the two dimensional situation R1212 = JC is the Gaussian curvature and it 
is the only non zero coefficient of both tensors. 
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In the three dimensional case there exists an algebraic relation between R(g) 
and Ric(g) which is given by: 

1 
F4jkl = gikRjl - gilRjk - gjkRil + gjlF4k - 2R (9ik9jl - 9ilgjk). 

Here R = gik F4k is the scalar curvature, see [12] and [17] . 
For n ~ 4, in general, the Ricci tensor does not determine the Riemannian 

curvature tensor. 
AIso the following holds. 
Let M C ~n+1 be a hypersurface with second fundamental form h and 

{X 1, ... , X n} be an orthonormal frame given by the principal directions Xi. I t 
follows that the principal curvatures are given by h; = h(X;, Xi) and according 
to [17] the Riemman tensor is given by : 

F4jkl =h(X;, Xk)h(Xj, Xl) - h(Xj , Xk)h(Xi , XI) 

=hihj(dikdjl - djkdiz)' 

So the Ricci tensor is given by 

The scalar curvature is equal to 

n n 

R= (Lh;)2 - Lhr. 
;=1 i=l 

In this paper we will consider the following restricted problem, studied by Cao 
and DeTurck, [6]. 
Problem:Given a smooth rotational symmetric tensor T on ~n, determine, if it 
exists, a smooth metric 9 such that 

Ric(g) = T. (4) 

3 Rotationally Symmetric Tensors 

Consider a tensor T on the n-dimensional Euclidean space ~n symmetric with 
respect to the orthogonal group SO(n); that is I * T = T for every I E SO(n). 
These tensors will be referred to as rotationally symmetric. 

Under the hypothesis of nonsingularity of T, the following lemma was proved 
in [6]. 

Lemma 1. Let T = <p(t)de + t 21/;(t)d02 , t E ~+ and 0 E §n-l, a smooth, 
nonsingular and rotationally symmetric tensor on ~n. Then T is either positive 
or negative definite everywhere. Moreover <p(O) = limt-+o1/;(t). 
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Consider also a smooth rotationally symmetric metric g, expressed in spherical 
coordinates (1' ,8) = (r, (h , ··· ,Bn-I), as 

9 = 2eJ (t) [r'(t)dt 2 + r(t)2d8 2]. 

where, 1'(0) = 0, 1"(0) = 1 and r'(t) > O for ali t > O. 
The Ricci tensor of 9 defined by equation 5, see [6], is given by: 

where, 

0'(1') = -(n - l)[Jrr + fr] 
r 

13(1') = -[Jrr + (2n - 3/!:.. + (n - 2)(fr )2] 
r 

fr = J'(t)/r'(t) and frr = f:(t)/1"(t). 

Therefore the equation Ric(g) = T is equivalent to the following. 

If 'P -:j:. O it follows that: 

t 2 7j;<p =[ <p1' ,]2- (n-2)<p[2 r fr+(1'fr)2j 
n-1 . (n-1)r n-1 

In [6] the Ricei potentia.l was defined as 

w(t) = i-j f{ dAg. 
211" D, 

(5) 

(6) 

(7) 

I-lere Dt = {(s , 8) E W : O :S s :S t} and W is a fixed two dimensional subspace 
of JR. n and f{ is the sectional curvature of W. The function w is well defined since 
the metric 9 is rotationally symmetric. 

Lemma 2. /f w is the Rieei potential of the rotatianally symmetl'ie metrie 9 = 
2eJ(t l [r'(t)dt 2 + r(t)2d8 2 ] then 

r(t) 
w(t) = - rfr = - r'(t/'(t) 

w'(t) _ 'Pr 
- (n - 1)1" 

(8) 

Proaf. The sectional curvature of the plane W is given by 

} ' - _ -2J [f + fr] '\. - e rr . 
r 



Ricci Tensors with Rotational Symmetry on ~n 

Therefore it follows that 

Then, 

1 1 1 1t 121T w(t) = - KdA g = - K(t)r(t)e2f(tlr'(t)dt. 
21!' D. 21!' o o 

dw =K(t)r(t)ef(tlr'(t) 
dt 

= - [fn + fr]r(t)r'(t) 
r 

d 
= - dt [rfr]. 

77 

As w(O) = O and 1'(0) = O it follo\Vs that w(t) = -r(t)f,,(t). Differentiating 
the equation above it follow~s that 

'( ) 'f ,If'(t)r(t) 
w t = -r Jr - rfrrr = . 1) '( ) ln - r t 

o 
In t.erms of the Ricci potential w it follows , from equation 7, the following 

implicit differential equation. 

(
dW \ 2 1 . 2 2 di) = n _ 1 [(n - 2)If'(t)(w - 2w) + t <p(t)1j!(t)] (9) 

Proposition 1. The implicit diffeT'ential equation 9 with 1f'(0) = lP(O) =1= 0, has a 
unique local smooth solution, with initial condition w(O) = w' (O) = O, defined in 
the interval [O, é) , stlch that w'(t)If'(O) > ° for all t E (O , é). 

Proof. For n = 2 the implicit differential equation 9 is equivalent to the ordinary 
differential equations dw / dt = ±t J cp(t)lP(t). Direct integration leads to the result 
stated. 

So we suppose n > 2. Consider smooth extensions of If' and lP for t < ° and 
the implicit surface 

F(t , w,p) = _l_[(n - 2)If'(t)(w2 - 2w) + t 21f'(t)lP(t)] - p2 = 0, 
n-1 

where p = ~~. 
Under the hypothesis above, we have dF(O) = [O ~=icp(O) O] =1= 0, so F- 1 (0) 

is locally a regular smooth surface near O. 
Next we consider the smooth Lie-Cartan vector field 
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defined in a tubular neighborhood of the surface F- 1 (O) and tangent to it. 
The projections of the integral curves of X by 7r(t, w, p) = (t, w) are the solutions 
ofequation 9. 

The origin O is a singular point of X , isolated in F- 1 (0), and 

DX(O) = (~ ~ 
-2<p(0)",(0) -2 (n-2)<p'(0) 

n-] n-1 

-2 ) 
2 (n -~)<p(O) 

n-1 

The non zero eigenvalues of DX(O), ).1 and ).2 are the roots of 

_). 2 + 2 (n - 2)~(0) ). + 4~(0)7f(0) = O. 
n-· I n-I 

As ).1).2 = -4 <p(~~fO) < O, it follows that O is a hyperbolic saddle point of 
XIF-l (O)· AIso the unstable and stable separatrices are transversal to the regular 
fold curve E , defined by E = {(t , w,p)IF(t, w,p) = Fp(t , w,p) = O}. 

Therefore the projections, by 7r , of the smooth stable and unstable separatri­
ces of the hyperbolic singularit,y O are smooth and quadratically tangent to 7r(E) . 
Direct calculation shows that 7r(E) = {(t , w(t) , O) ; w(t) = ~~{ ~ + ... }. The 
projections of the separatrices of the hyperbolic saddle will be called folded sepa­
ratrices. The integral curves of X and of their projections in the plane (t , w) are 
as shown in the Figure 1 below. O 

w(t) 

Figure 1; Folded saddle point 

Rernark 1. The proposition 1 cOlTesponds to Lemma 2.1 (also labelled Proposi­
tion 2.1) and Propositions 2.2 and 2.8 of [6]. In the mentioned papel' th eTe is no 
statement about the smoothness of the solution w at O, the fixed point of lhe rota­
tion group. We adopl to work in the eco category, but with the obvious changes 
the l'esult is valid in the e r , r 2: 2, category. 

Rernark 2. The analysis above is similar to thal carried out in the sttldy of 
asymptotic lines near a parabolic curve, see [10]. 
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Lemllla 3. Let w be the smooth solution of equation (9). Consider the singular 
differential equation 

(n - l)w'r' - 'Pr = ° 
r(O) =0, r'(O) = 1 

w(O) = w'(O) = O, w"(O) = 'P(O) 
n-l 

(10) 

Then there exists a smooth solution r = r(t) of equation (lO) m a interval 
[O, e). 

Proo! Let r(t) = tR(t) and w(t) = t; W(t) . Then it follows that the equation 
(10) is equivalent to the following equation 

t dR = 'PR _ R 
dt (n ~ l)(W + ~W') 

(ll) 

Therefore, the line (O, R) is a normally hyperbolic set and, by Invariant Man­
ifold Theory, [14], there exists a smooth solution R(t) defined in a neighborhood 
of O with initial condition R(O) = 1. O 

Lemllla 4. Let w be the smooth solutionof equation (9). Consider the singular 
differential equation 

(n - l)w' f' + W'P = O 

f(O) =0, 

w(O) = wi(O) = O, w"(O) = 'P(O) 
'. n - 1 

(12) 

Then there exists a smooth solution f = f(t) of equation (12) in a interval 
[O, f) . 

Proo! The same argument as in the proof of lemma 3 works here. o 
From proposition 1 and lemmas 3 and 4 follows the next proposition , 

Proposition 2. Let T = 'P(t)dt 2 +t2 '1j1(t)d0 2 be non singular everywhere and sup­
pose w is a solution of equation (9) such that w(O) = w'(O) and w'(t)'P(t) > O for 
t > O. Then the Ricci system Ric(g) = Tis solvable. In fact, 9 = 2e f (t) [r'(t)dt 2 + 
r(t)2d02], where r and f are as stated, respectively, in lemmas 3 and 4. 

Also formally we can write, 

r(t) =t exp (l t 
[(n _'Pi;~,(s) -~] dS) , 

l t r'(s) l t 'P w f(t) = - w(s)--ds + c = - --,ds + c. 
o r(s) o n - 1 w 

(13) 
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Proo! From lemma 2 it follows that w(t) = -r(t)fr(t) = -r(t)f'(t)/r'(t) and 
w'(i) = 1J{t)r(i)/(n - l)r'(i). From lemmas 3 and 4 follows that r(i) and f(i) are 
smooth solutions of these equations. Therefore, integration leads to the following 
resulto [J 

Theorem 1. Consider lhe smooth, nonsingular, rotationally symmetric tensor 
T = 1J(t)dt2 + t 2'1j!(t)d8 2 • Suppose that F-I (O) is a regular surface for ali t ~ O 
and !t(t 2'1j!(t))1J(t) "# O, i.e., the set ~, defined by ~ = {(i,w,p)IF(t,w , p) = 
Fp(i , w,p) = O} is a regular curve. Then Ric(g) = T has a rotationally symmelric 
solution 9 defined on ali[Rn. 

Proof. The solution of the Ricci equation Ric(g) = T is obtained from the stable 
or unstable separat rix of a hyperbolic saddle of X. This separatrix is defined until 
it reaches the boundary of a connected component ofthe set {(t, w, p)1 F(i, tu, p) ~ 
O}, which is, under the hypothesis above, the regular curve 7r(~). The condition 
!t(i 2'1j!(t))1J(i) "# O means that the folded curve ~ = {(t,w,p) : F(t , w,p) = 
Fp(i, w, p) = O} is a regular curve, with two connected components and that the 
vector field X has no singular point outside O on the connected component of 
7r(~) that contains O. Therefore, the folded sepal'atrices of the saddle point O of 
X cannot reach the boundary of {(i, w,p)1 F(i, w,p) ~ O}. If this occurs there 
would be a topological disk, bounded by a folded separatrix and by a connected 
component of the folded curve, foliated by regular curves transversal , outside O, 
to the folded curve. But this is impossible. O 

4 Hypersurfaces with Rotational Symmetry 

In this section we will calculated the Ricci tensor for a rotationally symmetric 
hypersurface of [Rn+l. 

Let a : [R n -+ [R n+l be an embedding with rotational symmetry, i.e , a graph 
ofafunction h , given by a(Yl, ' " ,Yn) = (Yl,' " ,Yn,h(yr + . .. +y;)) . 

In spherical coordinates it follows that: 

a(r,OJ, ' " ,On-d = (Yl,'" ,Yn,Yn+d where , 

YJ =rcosOl" ' COSOn_1 

Y2 =l'COSOl" ·cosOn_2sinOn_l 

Yn-l =1' COS OI sin O2 

Yn =rsin OI 

Yn+l =h(r2 ) 

(14) 
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Therefore the first fundamental form of a is given by g = (gij), where 

gll =1 + 4r2(h'(r2))2 

g22 =r2 

g33 =r2 cos2 OI 

gnn =r2 cos2 OI cos2 O2 ' , . cos2 On-2 

gij =0, i # j 

In a concise form we can write 

where de 2 is the metric of the unitary sphere §n-1. 

In the diagonal metric (gij) above the Ricci tensor is given by 

. n-1 

Ric(g) =Ric( :r ' :r )dr2 + ?: Ric( Ô~i ' Ô~i )dO; 
,=1 

n-1 . Ô Ô n-1. Ô Ô 
+ L Rzc(ôr' ôo)drdOi + L Rzc(ôO. ' ~)dOidOj . 

;=1 • i,j,i;tj 'J 

A long, but straightforward, calculation gives: 

Ric( ~ ~) _ (n - 1) f' (r) 
ôr ' ôr ~ . . 2r f(r) 

. Ô Ô rf'(r) n+2 
Rzc(ao1 ' a01 ) =2f(r)2 - f(r) + n - 2 

. a a rf'(r) n+2 'rr'-l 2 . 
Rzc(aoi ' ÔOi) =[2f(r)2 - f(r) + n - 2] k=1 cos (h, 2 ~ Z ~ n - 1 

Ric( a~i ' a~j ) =0 

RiC(:r' a~i) =0, 

where f(r) = 1 + 4r2(h'(r2))2. 
So the following proposition holds . 

81 

Proposition 3. Let a : ]Ftn -+ ]Ftn+1 be an embbeding with rotational SO(n) 
symmetry , which in spherical coordinates is expressed by equation 14, Then the 
Ricci tensor of the índuced metric g = (gij), ís gíven by: 
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Ric(g) =a(1')dr2 + b(r)dr2 

= (n - l)f'(r) dr 2 + (f'(I') _ n + 2 + n _ 2]de2 . 

2I'f(r) 2f(r)2 f(1' ) 

Here, f(r) = 1 + 4r2(h'(1,2W . 

Finally we remark that the principal curvatures of the embbeding O' are given 
by: 

5 Concluding Remarks 

There is a considerable literature about the equation Ric(g) = T and the 
general problem is the following . 
Problern: Given a tensor T on a Riemannian manifold M', determine, if it 
exists, a m etric 9 such that 

Ric(g) = T . (15 ) 

This equation is a second order system of quasilinear partial differential equa­
tion , [13]. 

Other problems related to the equation Ric(g) = T are the following classical 
Nirenberg and Yamabe problems. 

For n = 2 consider the two-sphere §2 with the standard metric go = dx 2 + 
dy2 + d z 2 . 

The Gaussian curvature of 9 = e2u go is given by 

f{ (p) = (1 - .6.) e - 2u (p ) , (16) 

where .6. is t.he Laplacian reI ative to the m etric go. 
A globa l problem in this case is the following: which fun ctions f{ can be th e 

Gaussian curvature of a m etric 9 which is a conformai deformation of go, i. e.) 
f or which f{ : § 2 -+ lR are th ere solut ions 1.1 of equation (16) '1 

A gener al version of this problem in lR n , n 2: 3, is known as the generalized 
Yamabe Problem and consists in obtaining solutions of the partial differential 
equation 

( 17) 

where g = u4/ (n-2) g , R g is the scalar curvature of 9 and R g is the prescribed 
scalar curvature of the metric g, see [2]. 
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Another kind O problem is the local realisation problem for the Gaussian cur­
vature of a surface which can be stated as follows: given a germ K of a smooth 
functíon of two variables near the origin, find a surface in IR3 with Gaussian cur­
vature equal o K. This problem was considered by Arnold, [1], and the main result 
is that it can be solved whenever K has a criticaI point of finite multiplicity at 
the origino 

Some more concrete problems can be also stated. 
Problem 1: Existence and unicity of solutions for the equation Ric(g) = T in 
manifolds with boundary, for example in the unitary disk ]]}f' C IRn or in the 
cylinder]]}f' x IRm . 

Problem 2: Study of the equation Ric(g) = T in IRm+n where T has the sym­
metry of other geometric groups, for example O(m) x O(n). See [6]. 
Problem 3: In the singular case, i. e., T = <p(t)dt2 + t 2'1/;(t)d02 , with <p(0) = O 

and <p'(O) # O analyze the existence and unicity oflocal solutions of the symmetric 
Ricci problem. 
Problem 4: Consider the Ricci principal curvatures defined by the equation 
Rij - Àgij = O and the associated Ricci principal directions. Study the Ricci 
Configumtion, defined by n one dimensional singular foliations on a Riemannian 
manifold (M, g) and compare it with the principal configumtion of a hypersur­
face of IR n+!. This setting is analogous to that of the configurations of principal 
curvature lines, see [9] and [11]. 
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