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Representations of toroidal Lie algebras and 
Lie algebras of vector fields 

Yuly Billig 

Abstract: In this talk we will discuss recent progress in 
the representation theory of toroidal Lie algebras, as well as 
several open problems in the area. 

Two types of infinite-dimensional Lie algebras have numerous important ap­
plications in various areas of mathematics and physics. These are affine Kac­
Moody algebras, and the Virasoro Lie algebra. 

Affine Kac-Moody algebras are the central extensions of the loop algebras 
with added outer derivation: 

Here g is a finite-dimensional simple Lie algebra with the Killing form (,1-) and 
d = t-ft. The Lie bracket in the affine algebra is given as follows: 

W ® x, tm ® y] = t r +m ® [x, y] + r8r ,_m(xly)c, 

[d, tI' ® x] = rtr ® x, c - central. 

The Virasoro Lie algebra is also constructed as a central extension: 

with the bracket 

r3 - r 
[tr d tmd] = (m - r)tr+md + --8 c , 12 7',-m· 

If we consider a change of the variable t = eix , we may interpret an affine 
Lie algebra as the universal central extension of the g-valued functions on a circle 
with an outer derivation, and the Virasoro algebra is interpreted as the universal 
central extension of the Lie algebra of vector fields on a circle. Note that both Lie 
algebras have a natural Z-grading. 
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Most applications of these Lie algebras are obtained via their representations. 
The most useful representations are those with a weight decomposition with the 
finite dimensional weight spaces. 

For the Virasoro algebra, an important classification result was obtained by 
Olivier Mathieu [MI] (conjectured by Victor Kac [KI]): 

Theorem [MI]. An irreducible module with the finite-dimensional weight 
spaces for the Virasoro algebra is either: 

(i) a highest weight module, 
(ii) a lowest weight module, or 
(iii) a subquotient of a module Va: ,,B = qa:qq, q-I], a, f3 E C, with the action 

tm+I dqs = (8 + m(3)qs+m , 8 E a + Z, 

and c acting as O. 

The theme of this talk is the Lie algebras of higher rank, i.e. , Zn -graded, 
rather than Z-graded. We would like to develop the representation theory for 
such algebras. 

A zn_graded analogue of the Lie algebra of vector fields on a circle, is the 
Witt algebra W no This is aLie algebra of vector fields on the n-dimensional torus: 

Wn = Der qtt , ... ,t;=] = ffi qtt, ... , t;=]dp , 
p=1 

where dp = t p â~ . This Lie algebra is Zn -graded by the eigenvalues of the action: 
p 

of the Cartan subalgebra < dI, ... ,dn >. 

The first basic example of the weight modules for W n with finite-dimensional 
weight spaces is given by tensor modules. Tensor modules have their origin in 
differential geometry, and describe the Lie derivative action of vector fields on 
t ensor fields. General tensors can be constructed by taking tensor products of 
vectors and covectors. In a similar way, any irreducible representation of gln(C) 
is a submodule inside a tensor product of several copies of a natural representa­
tion of gln(C) and its dual. It turns out that this analogy becomes an algebraic 
correspondence for the Lie derivative action on tensor fields, and tensor modules 
are parametrized by the finite-dimensional representation of gln (C) . 

More precisely, for a finite-dimensional gln(C)-module U, and for a E Cn , we 
define the tensor module to be 

qa:qqt, ... ,q;=] ® U 

with the action given as follows: 
n 

tmdj(qS ® u) = 8jqs+m ®u + L mpqs+m ® Epju. 
p=1 
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Here and throughout the rest of the talk we will use the multi-index notations: 
m = (m1"" m n) E Zn, S = (Sl , "" sn) E a: + Zn, qS = qfl ... q~n, d j = tj â~.' , 

If U is an irreducible gln-module then q"'qq~, ... , q~1 0 U is almost always 
an irreducible module for Wn . The exception to this are the modules in the de 
Rham complex of tensor modules: 

Od 1 d d n n -tn -t ... -tn . 

The module nk of differential k-forms on a torus corresponds to an irreducible 
gln-module, but it may have proper submodules. It can be easily checked that 
the map d is in fact a homomorphism of Wn-modules, so its kernel and its image 
are submodules in nk . 

The Cartan subalgebra < d1 , ..• dn > acts on a tensor module diagonally, 
and the weight spaces clearly have a finite dimension, equal to the dimension of 
U. For n = 1, the tensor modules are just the modules V"",B. 

Now we are going to describe another class of weight modules for the Witt 
algebras of rank greater than 1. It will be convenient to add a new variable to, 
and consider the Witt algebra W n+1 = Derqt~ , t~, .. . , t~l. This Lie algebra is 
zn+1-graded, but for the moment we willlook only at its Z-grading by degrees in 
to. Let us decompose W n+1 into the positive, negative and zero parts with respect 
to this Z-grading: 

W n+1 = W;+l EB W~+l EB W,:t+l' 

The zero component is essentially the Witt algebra of rank n: 

Fix a: E CCn , d E CC, and a finite-dimensional irreducible gln-module U. Con­
sider a module for W~+l: 

which is a tensor module for W n , and the remaining part of W~+l acts by shifts: 

This W~+l-module is irreducible unless d = O and U corresponds to a module 
from the de Rham complexo Let T be an irreducible subquotient of this module. 

To construct a Wn+l-module, we let W,:t+1 act on T trivially, and consider 
the induced module 
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The module M(T) has a weight decomposition, but most of its weight spaces are 
infinite-dimensional. 

Nonetheless we can apply a more general result of Berman-Billig [BBl to 
obtain the following theorem: 

Theorem [BB]. 
(i) M (T) has a unique maximal submodule Mrad intersecting with T trivially. 
(ii) The factor-module L(T) = M(T)jMrad is irreducible and has a weight 

decomposition with finite-dimensional weight spaces. 

The module L(T) corresponds to a choice of a special direction to. We can 
actually construct similar modules for any rational direction, by noticing that the 
group GLn+l(Z) acts by automorphisms on Wn+ l . Thus we can twist L(T) with 
an automorphism from G L n +1 (Z). This will change the hyperplane in the weight 
space that corresponds to T to an arbitrary hyperplane with a rational normal. 

Now we can formulate a conjecture for the Wn+l-modules: 
Conjecture. An irreducible module for W n+l with finite-dimensional weight 

spaces is either 
(i) a sub-quotient of a tensor module, or 
(ii) a module L(T) twisted by an automorphism from GLn +1(Z). 

Problem. Find the character of the Wn+1-module L(T). 

Another class of algebras that we would like to discuss here is the family of 
toroidal Lie algebras, which are multivariable analogues of the affine Kac-Moody 
algebras. 

As before, let 9 be a finite-dimensional simple Lie algebra. Consider the 
multiloop algebra qtt , ... ,t~l 0 9 (Lie algebra of g-valued functions on a torus 
1l'n) , and its universal central extension: 

with the Lie bracket 

The space nljdnO is central, and 7" denotes the projection from n l to nljdno. 
Similar to the affine case, we add outer derivations: 

Unlike the case of n = 1, the action of Wn on nljdnO is non-trivial, and is given 
by the Lie derivative. Thus in this bigger algebra, the space n1jdnO is no longer 
central, and the actual center is in fact n-dimensional. 
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It happens that there are still additional degrees of freedom in defining the 
Lie bracket in this Lie algebra - instead of taking the semidirect product with Wn , 

we ean also incorporate an 01 jdOO - valued 2-coeycle on Wn , defining the Lie 
braeket of two vector fields ç, ( E W n to be 

[ç, () = (commutator of ç, (in Wn ) + T(Ç, (), 

The spaee H 2 (Wn , 01 jdOO) is 2-dimensional. To describe its generators, we 
define the jacobian of a vector field ç = 2: Çidi as a matrix e (t) with ç~ = dj (Çi)' 

• 
The the basis of the space of 2-eocycles is given by the expressions: 

Note that the space of 2-cocycles is parametrized by the invariant symmetric 
bilinear forms on gln(C): 

< A, B >1 = Tr(AB), < A, B >2= Tr(A)Tr(B). 

When n = 1 both forms coincide, and we get the Virasoro cocycle. 

The toroidal Lie algebra with the cocYcle T = P,Tl + VT2 will be denoted by 
9n(p' , v): 

This Lie algebra is a higher rank analogue of the Kac-Moody-Virasoro algebra. 

N ext we are going to discuss representations for the toroidal Lie algebra 
9n (P" v) with finite-dimensional weight spaces. The first class of modules we con­
sider here is multiloop modules. These modules are constructed in the following 
way. 

Let V be a finite-dimensional irreducible module for g, U be a finite-dimen­
sional irreduci ble module for gln (C), and let a E Cn. Consider the spaee 

with the action 
t m 0 g(qS 0 V 0 u) = qs+m 0 g(v) 0 u, 

W n acts via the tensor module action and 01/dOO acts trivially. 



116 Yuly Billig 

The multiloop modules have a weight decomposition with finite-dimensional 
weight spaces, but these modules are not particularly interesting. We are now 
going to define more a important class of bounded modules. 

Let us consider an (n + l)-toroidal Lie algebra 9n+l (J.L, v). As before, we 
decompose this algebra into the positive, negative and zero parts with respect to 
the Z-grading by degrees in to. The zero component is essentially a toroidal Lie 
algebra of rank n: 

Take the module T to be a multiloop module for 9n (J.L, v) as above, and extend 
the action to 9~+1 (J.L, v) in the following way: 

tmtõ1 dto(qS ~ v ~ u) = cqs+m ~ V ~ u , 

tmdo(q8 ~ v ~ u) = dqs+m ~ V ~ u, 

for some fixed constants c, d E C. 
. Then we let g~+1 (J.L, v) act on T trivially and define M(T) as an induced 
module: 

M(T) = Ind~o$g+ (T) = U(g-) ~ T. 

Again by the same result of [BB), M (T) has a unique maximal sub module 
Mrad intersecting T trivially, and the module 

L(T) = M(T)jMrad 

has finite-dimensional weight spaces. 

Note that the module L(T) is irreducible, with a possible exception when U 
is de Rham, V is trivial and c = d = O. 

Problem. Find the character of L(T). 

We solve the above problem with the following theorem: 
Theorem. Let c =1= O, c =1= -h v, 1 - CJ.L =1= -n,l - CJ.L - cnv =1= O. Then the 

irreducible gn+1 (J.L, v)-module L(T) has the following structure: 

L(T) ~ q<>Clqr,· · · ,q;] ~ Laff@(V,c) ~ Clupj,vpjlj~i;2",·3~..l 

~Laff(9In) (U, 1 - CJ.L, n(l - CJ.L - cnv» ~ LVir (h, CVir). 

Here h vis the dual Coxeter number for g, Laff@(V, c) is an irreducible high­
est weight module for the affinization of 9 of central charge c, and the g-submodule 
generated by the highest weight vector being V. The irreducible module for the 
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aflinization of gln La! !(gln) (U, Cl, C2) is defined in a similar way, with the only 
difference is that the afline gln has two central charges - one for afline sln, and the 
second for the infinite-dimensional Heisenberg subalgebra that arise as an afliniza­
tion ofthe scalar matrices. The last component Lvir(h,cVir) is a highest weight 
irreducible module for the Virasoro algebra. Its central charge is given by the 
formula: 

cdimg (1- cJ1.)(n2 - 1) 3(2v - 1)2n 
cvir=12(J1.+v)c----2n- -1+ . 

c + hV 1 - CJ1. + n 1 - CJ1. - cnv 

The only essential restriction in this theorem is that c -:f O. AlI other cases 
can be treated in a similar way, but the answer has to be written in a different 
formo We are omitting these details here. 

The action of the toroidal Lie algebra can be given rather explicitly by means 
of the vertex operators. Since the characters of all factors in the tensor product 
above are welI-known, we immediately obtain the character of L(T). 

Let us outline the proof of this theorem. We use the machinery of the vertex 
Lie algebras which alIows to associate with a vertex Lie algebra C a universal 
enveloping vertex algebra V.c . 

Definition [DLM). ALie algebra C is calIed a vertex Lie algebra if it has 
a spanning set {x~ Ik E Z, o: E J}, and a linear map D : C -+ C, such that 
DXk = -kXk_1 , and the formal fields xO:(z) = 'Exkz- k - 1 satisfy the property 

k 
that 

where 8 (~) = 'E (~r· 
iEZ 

Let C+ be a subspace in C spanned by {xklk ~ 0,0: E J}, and C- be a 
subspace spanned by {x~lk < O, o: E J}. Then both C+ and C- are subalgebras 
in C and 

.c =.c- EB .c+. 
Consider a l-dimensional trivial module CC1 for .c+ and define 

Theorem [DLM]. V.c has a structure of a vertex algebra. 
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The main feature of the vertex algebra is the existence of the state-field 
correspondence map 

Y: V.c ~ End(V.c)[[z,Z-l]) 

(see [K2] for the axioms and properties of the vertex algebras). 

It turns out that the toroidal Lie algebras g = gn+l (J.L, v) are vertex Lie alge­
bras, though it requires some work to find the appropriate spanning set. Moreover, 
for U, V trivial l-dimensional, a = ° and d = HJ.L + v), the corresponding module 
L(To), To = <C[qt,· .. q;i=], also has a structure of a vertex algebra, and in fact it is 
a factor-algebra of Vg. All other modules L(T) are modules for the vertex algebra 
L(To). Once we find the structure for L(To), the result for the rest of the modules 
will follow immediately. 

To find the structure of L(To), we consider a projection 

Vg ~ L(To). 

This is a homomorphism of Zn+l-graded algebras. The technique developed 
in [BB] allows us to calculate explicitly any given component of the kernel of 
this map. Of course, this calculation is feasible only for the components of low 
degrees. However, by applying the state-field correspondence map Y, we transform 
an element of the kernel into a relation between the fields in L(To). 

It turns out that we only need to describe the components of the kernel 
in degrees one and two, in order to obtain enough relations between the fields 
in L(To), so that we get a complete description of the structure of L(To). The 
result for the remaining modules L(T) follows immediately from the principIe of 
preservation of identities (see [L] for details). 

In conclusion, we would like to connect this resuIt for the toroidal Lie with the 
representahon theory of the Witt algebra, as well as graded infinite-dimensional 
modules for the finite-dimensional sim pIe Lie algebras. 

If in the above result we specialize J.L = v = 0, and omit the multiloop algebra, 
we will get that 

L(T) = qQ<C[qt, ... q;=]® <C[upj, Vpjl~~::2·:3~..l® La! !(gln) (U, 1, n) ® LVir(h, 2n) 

is a module for Wn +1 with finite-dimensional weight spaces. This module, how­
ever, is not irreducible as a Wn+1 module in general. 

Problem. Find the irreducible quotient of the Wn+l-module L(T). 

Conjecture. For a generic T, the Wn+1-module L(T) is irreducible. 
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These modules may also be helpful in studying graded modules of induced 
type for the finite-dimensional simple Lie algebras (see e.g., [FUl, [Fel, [M2]). 
Indeed, since Sln+2 is a subalgebra in W n + 1 , we obtain that L(T) is a module for 
Sln+2 with the finite-dimensional weight spaces. 

Problem. Find the irreducible quotient of L(T) as an sln+2-module. 
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