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Dimension formulas for the free nonassociative algebra1 

Murray R. Bremner, Irvin R. Hentzel, and Luiz A. Peres i 2 

Abstract: The free nonassociative algebra contains two 
subspaces closed under both the commutator and the associ­
ator: the Akivis elements and the primitive elements. Every 
Akivis element is primitive, but there are primitive elements 
which are not Akivis. Using a theorem of Shestakov, we obtain 
a recursive formula for the dimension of the Akivis elements. 
Using a theorem of Shestakov and Umirbaev, we present a 
closed formula for the dimension of the primitive elements. 
These results generalize the W itt dimension formula for the 
Lie elements in the free associative algebra. 

1 Introduction 

There is a well-developed theory relating free associative algebras and free Lie 
algebras. One of the most important results is Witt 's dimension formula, which 
gives the dimension of the subspace of Lie polynomials of any degree in the free 
associative algebra on any number of generators. (By Friedrichs' criterion, the Lie 
elements are exactly the elements which are primitive in the sense of Hopf alge­
bras.) Within the last few years Shestakov and Umirbaev [5,6] have proved some 
important theorems on free nonassociative algebras which have made it possible 
to generalize this resulto In this talk I will review the associative theory and give 
a proof of the Witt dimension formula. I will then introduce the nonassociative 
theory in which Akivis algebras play the role of Lie algebras. In the nonassocia­
tive case, the Akivis elements and the primitive elements do not coincide. Every 
Akivis element is primitive, but there are primitive elements which are not Akivis 
[6]. I will give examples of Akivis and primitive elements in one variable. Using a 
theorem of Shestakov [5], we derive a recursive formula for the dimension of the 
Akivis elements. Using a theorem of Shestakov and Umirbaev [6], we present a 
closed formula for the dimension of the primitive elements. 

2 Free associative algebras 

Let X be a nonempty countable set. We regard the elements of X as letters in 
an alphabet. We form all words in these letters. A word of length n is an ordered 
n-tuple of elements of X. For example, if X = {a, b}, then here are the words of 

lThese are the notes of the talk given by one of the authors (M.R.B.) at the Second Interna­
tional Conference on Lie and Jordan AIgebras, their Representations and Applications (Guarujá, 
São Paulo, Brazil, 3-8 May 2004). 

2The third author was partially supported by FAPESP. 
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length 1 ::; n ::; 3: 

a, b 

aa, ab, ba, bb 

aaa, aab, aba, abb, baa, bab, bba, bbb 

We write xn for the set of alI words of Iength n. If IXI = r then there are rn 
words of Iength n. We write X* for the set of alI words of finite Iength: 

We can multiply two words v, w E X* by juxtaposition. For exampIe, the product 
of aab and bab is just aabbab. 

Let A be the vector space with basis X* over some fieId IF. We extend the 
product in X* to A by distributivity: 

This makes A into an associative algebra (without a unit eIement). If IXI = r, say 
X = {al , ... ,ar }, then we call A the free (non-unital) associative algebra 
over IF on r (free) generators. 

We write An for the subspace of A spanned by the words of length n. That is, 
An is the subspace with basis x n. Then we have the direct sum decomposition 

and the aIgebra A is graded in the sense that 

3 Free Lie alge bras 

On the free associative algebra A we can define a new operation, called the com­
mutator or Lie bracket, by 

[j,g] = Jg - gJ, for any J,g E A. 

This operation satisfies the identities 

[j, J] = O (anticommutative), 

[[j, g], h] + [[g, h], Jl + [[h, J],g] = O (Jacobi). 
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We write A-for the vector space A under this new operation. Then A - is a 
Lie algebra: it satisfies anticommutativity and the Jacobi identity. 

The (Lie) subalgebra L of A- generated by the original alphabet X = 
{ aI , ... , ar} is (isomorphic to) the free Lie alge bra on the alphabet X. Elements 
of L are called Lie polynOIuials in the alphabet X . If every (associative) term 
in aLie polynomial has the same degree we call the polynomial hOIllogeneous. 
Here are the first few homogeneousLie polynomials on two generators: 

a, b, [a, b], [la, bJ, a], [[a, bJ, b] 

We write Ln for the subspace of An consisting of alI Lie polynomials of degree 
n. We have 

L = EBLn' 
n~1 

The dimension of Ln is given by the Witt diIllension formula: 

Here the sum is over all (positive) divisors d of the degree n. The Mõbius 
function J.L(d) is defined by the rule 

~(d) ~ H-I)' 
Here is a short table for r = 2: 

n 

dimLn 

1 

2 

2 

1 

3 

2 

if d = 1 

if d = Pl ... Pk (distinct Pi) 

if d has a square factor 

4 

3 

5 

6 

6 

9 

7 

18 

8 

30 
9 

56 

10 
99 

(When r is a prime power the same formula counts the number of monic irreducible 
polynomials of degree n over the field with r elements.) 

How do we prove the Witt dimension formula? Write f n = dim Ln. In 
each homogeneous subspace Ln of the free Lie algebra choose an ordered basis 
{f nl, ... , f nln}· Put these finite bases together into an infinite ordered basis of L: 

f11, ... , fHl , 121, ... , fU2' 131, ... , he3' ... 

For simplicity write this last basis as 

The PBW Theorem (after Poincaré, BirkofI and Witt) states that a basis for A 
consists of alI products of the form 

(1) 
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Now we need to do some combinatorics. There are id Lie polynomials 9i of degree 
d. Each gi contributes degree d to the total degree of the associative word in 
(1). But each Di may occur any number k of times (consecutively) in (1). The 
generating function for the contribution of these k elements of degree d to the 
total degree of (1) is 

1 + x d + x 2d + ... + xkd + ... = _1_. 
1- x d 

Therefore the generating function for the contribution of the id basis elements of 
degree d is 

( 1 )ld 
1- x d 

Combining these factors for all d gives the generating function 

The PBW Theorem says that this must equal the generating function for the 
dimensions of the homogeneous subspaces of the free associative algebra: 

Therefore 

1 ! rx = II C _\d yd 
d~l 

Taking reciprocals and then logarithms gives: 

log(l - rx) = 2:)d log(l - xd). 
d~l 

Using the power sedes for the logarithm we get 

Equating coefficients of xn on both sides gives 

r n = L ~ = L did . 
n n/d n 

dln dln 

Therefore 



Dimension formulas for the free nonassociative algebra 145 

Nowan application of the M6bius Inversion Formula gives 

nfn = I>.L(d)rn / d . 

dln 

Dividing by n gives the Witt dimension formula. 

4 Free nonassociative algebras 

Now we generalize all this to the case of a free nonassociative algebra. 
Let XIX2" 'Xn be an associative word of degree n. The number of distinct 

ways to put parentheses into this word is given by the Catalan number: 

Here is a short table: 

1 

1 

2 

1 

3 

2 

Kn = ~ (2n - 2) . 
n n-1 

4 

5 

5 

14 
6 

42 
7 

132 
8 

429 
9 

1430 

Let X be a nonempty countable set. We form alI nonassociative words in these 
letters. A word of length n is an ordered n-tuple of elements of X together with 
one of the Kn association types of degree n. For example, if X = {a}, then here 
are the words of length 1 ~ n ~ 4: 

a, aa, (aa)a, a(aa) 

«aa)a)a, (a(aa))a, (aa)(aa), a«aa)a), a(a(aa)) 

If IXI = r then there are Knrn words of length n. We can multiply two nonas­
sociative words v, w by juxtaposition but we must include parentheses around 
each factor. For example, the product of (aa)a and a(aa) is just «aa)a)(a(aa)). 
Let N be the vector space with basis consisting of all nonassociative words in the 
alphabet X. We extend the product of nonassociative words to N by distribu­
tivity. This makes N into a nonassociative algebra (without a unit element). If 
IX I = r, say X = {aI , .. . , ar}, then we call N the free nonassociative algebra 
over]F on r (free) generators. Write N n for the subspace of N spanned by the 
words of length n. Then we have the direct sum decomposition 

and the algebra N is graded in the sense that 
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5 Free Akivis algebras 

On the free nonassociative algebra N we can define two new operations, the com­
mutator and the associator: 

[/,g] = Ig - gl, for any I,g E A, 
{/,g,h} = (fg)h - I(gh), for any I,g,h E A. 

These operations satisfy the identities 

[1,/] = 0, 
[[I, g], h] + [[g, h], I] + [[h, I], g] 

= {I, g, h} + {g, h, f} + {h, I, g} - {f, h,g} - {g, I, h} - {h,g, f}. 

The second identity is called the Akivis identity. It relates the commutator 
and the associator in any nonassociative algebra. We write N- for the vector 
space N under these two new operations (one binary, one ternary). Then N- is 
an Akivis algebra [1 , 3]: it satisfies anticommutativity and the Akivis identity. 
If the underlying algebra is associative, the associator is identically zero. So the 
Akivis identity reduces to the Jacobi identity, and an Akivis algebra is just aLie 
algebra. 

Shestakov [5] has shown that the subalgebra Ak of N- generated (using com­
mutators and associators) by the original alphabet X = {aI, ... , ar} is (isomor­
phic to) the free Akivis algebra on the alphabet X. Elements of Ak are called 
Akivis elements in the alphabet X. Here are the first few homogeneous Akivis 
elements on one generator: 

a, {a,a,a}, [{a,a,a},a] 

[[{a,a,a},a],a], {{a,a , a},a,a}, {a,{a,a,a},a}, {a,a,{a,a,a}} 

We write Akn for the subspace of N n consisting of all Akivis polynomials of degree 
n. We have 

In joint work with L Hentzel and L. Peresi, we have found a recursive formula 
for dimAkn . However, to get the natural generalizatíon of the Witt dimensíon 
formula, we need to consider another subalgebra of N-. 

6 Primitive elements 

We make the tensor product N ® N into an algebra by defining 
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and extending to sums of tensors using distributivity. We define an algebra ho­
momorphism .6.: N -+ N 0 N by setting 

.6. (a) = a 0 1 + 1 0 a , for all a E X, 

and extending the domain to N by linearity and the homomorphism property 
.6.(/g) = .6. (/).6. (g). (In the associative case, this is the usual definition of the 
comultiplication for the Hopf algebra structure on the free associative algebra.) 
We say that an element f E N is primitive if it satisfies the condition 

.6.(/) = f 0 1 + 1 0 f . 

(In the associative case, the primitive elements coincide with the Lie polynomials, 
by a theorem of Friedrichs.) 

For example, we calculate .6.(a2) as follows: 

.6.(a2) = .6.(a)2 = (a 01 + 1 0 a)(a 01 + 10 a) 

= a2 0 1 + 2a 0 a + 1 0 a2 =I a2 0 1 + 1 0 a2. 

It follows that a2 is not primitive, at least when the characteristic of ]F is not 2. 
Let Pr denote the subspace of alI primitive elements in the free nonassocia­

tive algebra N. We write Prn for the subspace of N n consisting of all primitive 
elements of degree n. We have 

It is not difficult to show that the commutator of primitive elements is again 
primitive, and that the associator of primitive elements is again primitive. It 
follows that every Akivis element is primitive, and that the subspace of primitive 
elements is closed under commutators anel associators; that is, the subspace of 
primitive elements is an Akivis subalgebra of N- . 

The first degree in which there exist primitive elements which are not Akivis 
is n = 4. A primitive non-Akivis element in degree 4 was first discovered by 
Shestakov and Umirbaev [6]. For one generator, the space of Akivis elements is 
one-dimensional and is spanned by [{a, a, a}, a]. The space of primitive elements 
has dimension 3. A basis for the primitive elements in degree 4 consists of the 
Akivis element together with the two primitive non-Akivis elements 

f = {a2,a, a} - {a , a, a2}, 

9 = {a,a,a}a+a{a,a,a} - {a,a2,a}. 

The element 
h = {a , a2,a}a - {a2,a,a2} + a{a ,a2,a} 

is a new primitive element in degree 5, whieh is not an Akivis element, and cannot 
be generated by primitive elements of lower degree. Shestakov and Umirbaev [6] 
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give a recursive construction of a complete set of primitive elements in any number 
of variables using the hyperalgebra operations from Sabinin and Mikheev [4]. 

The primitive elements rather than the Akivis elements generalize the Lie 
polynomials. In joint work with I. Hentzel and L. Peresi, we have found an exact 
formula for dim Pr n which generalizes the Witt dimension formula for Lie algebras. 
It depends on a theorem of Shestakov and Umirbaev [6] which generalizes the PBW 
Theorem to free nonassociative algebras. 

Let Pn = dim Prn . In each homogeneous subspace Prn of primitive elements 
in N choose an ordered basis {f nl, .. . , f npn }. Put these finite bases together into 
an infinite ordered basis of Pr: 

For simplicity write this last basis as 

Then the Shestakov-Umirbaev theorem states that a basis for N consists of all 
left-normalized products of the form 

It follows as in the associative case that 

The exponents on the left side are now Pd (the dimensions of the homogeneous 
subspaces of primitive elements), and the coefficient of xn on the right side now 
has the additional complicating factor of Kn (the Catalan number). 

This extra Kn factor makes it harder to prove the desired dimension formula 
for Pn, since the right side no longer has the simple form 1/(1 - rx) as in the 
associative case. 

To get around this difficulty it is necessary to consider the generating function 
of the Catalan numbers: 

K( ) - '" K n _ 3 - v'1=4X x - L..- n X - 2 . 
n~O 

Then we have 

TI (I! x d ) Pd = K(rx). 
d~l 

Recall the proof of the Witt dimension formula: we take reciprocals, and then 
logarithms, and then compare coefficients of xn on both sides. In order to do this 
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in the nonassociative case, we have to understand the logarithm of the Catalan 
generating function. More precisely, we need the logarithmic derivative 

d K'(x) n 
dx logK(x) = K(x) = I: Ànx . 

n~O 

The coefficients Àn of this power series are integers. 
Here is a short table: 

o 
1 

1 

1 

2 

4 

3 

13 

4 

46 

5 

166 

6 

610 

7 

2269 

8 

8518 

We searched for this sequence in Neil Sloane's On-Line Encyclopedia of Integer 
Sequences [7]. It occurs as number A026641: .Àn counts the number of nodes of 
even outdegree (including leaves) in all ordered trees with n edges. There is a 
closed formula for these numbers: 

= LI:n
/

2J (2n - 2j - 1) 
.Àn l ' n-

j=O 
(2) 

(This is a simplified version of the on-line formula. It was communicated to us by 
Emeric Deutsch [2].) The proof of this formula depends on two identities for the 
Catalan generating function [8]: 

1 (l_~)k = I: (2n+k)xn, 
V1- 4x 2x n 

n~O 

(l_~)k =I:_k (2n+k-1)xn. 
2x n + k n 

n~O 

Using formula (2) we can derive a closed formula for the dimensions of the 
subspaces of primitive elements in the free nonassociative algebra: 

dimPrn = ..!:. LJ.L(d)Àn/d_lrn/d. 
n 

dln 

Here is a table of the dimensions of the Akivis and primitive subspaces in the free 
nonassociative algebra on one generator up to degree 9: 

n 

dimAkn 

dimPrn 

Kn 

1 

1 

1 

1 

2 

O 

O 

1 

3 

1 

1 

2 

4 

1 

3 

5 

5 

4 

9 

14 

6 

7 

27 

42 

7 

23 

87 
132 

The ratio dim Akn / dim P7'n becomes smaller as n increases, 

8 

53 
282 

429 

9 

157 

946 

1430 
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