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Symmetries in Constrained Systems 

D.M. Gitman and I.V. 1'yutin1 

Abstract: As it is known, singular theories are theories 
with constraints in the Hamiltonian formulation. In partic­
ular, theories with first-class constraints are gauge theories. 
Qur aim is to describe symmetry structure of a general singu­
lar theory, and , in particular, to relate the structure of gauge 
transformations with the constraint structure. 

1 Introduction 

Our aim is to study the symmetry structure of a general singular theory, and, in 
particular, to relate this structure to the constraint structure in the Hamiltonian 
formulation. For simplicity, we consider finite-dimensional models whose actions 
are of the form 

S [q] =: J L (q , q.) dt, q = (qa, a = 1, ... , n) , 

05 oL d oL . 
- = -- - - -- = O - Euler - Lagrange equatlOns, 
oqa oqa dt oqa 

(1) 

where L (q, q) is a Lagrange function. All such theories can be divided into two 
classes according to the Hessian 's value, 

Hessian = det --- = o2L { 
oqa8ii 

=I- O nonsingular theory 
= O singular theory 

(2) 

Singular Lagrangian theories are theories with constraints in the Hamiltonian 
formulation [1]. In particular, theories with first-class constraints (FCC) are gauge 
theories. 

A finite transformation q (t) ---+ q' (t) is a symmetry of S if 

dF 
L (q, q) ---+ L' (q, q) = L (q, q) + di ' (3) 

where F is a local function (such transformations are called Noether symmetries). 
1'he finite symmetry transformations can be discrete, continuous global, gauge, 
and trivial. Continuous global symmetry t ransformations are parametrized by a 
set of time-independent parameters zJ'l', a = 1, ... , r. 1'he infinitesimal form oi a 
continuous global symmetry transformation reads oqa(t) = p~(t)lI(», where p~(t) 
are generators of the global symmetry transformations. Continuous symmetry 
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transformations are gauge transformations (or local symmetry transformations) if 
they are parametrized by arbitrary functions of time, the gauge parameters (in 
the case of field theory, the gauge parameters depend on all space-time variables) . 
The infinitesimal form of a gauge transformation reads 

(4) 

where v'" (t), a = 1, ... , r are time-dependent gauge parameters. The quantities 
R~ (t) are generators of gauge transformations. Under some natural su~posi­
tions about the structure of the Lagrange function, one can prove that ~~ (t) 
are local operators [5). The existence of infinitesimal gauge transformations 
with generators implies the existence of the corresponding gauge identities, which 
present identities between the Euler-Lagrange equations. 

For any action there exist trivial symmetry transformations, 

Á a UA ab c5S 
Utrq = c5qb ' (5) 

A ( A )ab A where U is an antisymmetric local operator, that is UT = _Uab . 

The trivial symmetry transformations do not affect genuine trajectories. Two 
symmetry transformations c51 Q and c52q are called equivalent (c51q '" (hq) whenever 
they differ by a trivial symmetry transformation, 

(6) 

Thus, all the symmetry transformations of an action S can be divided into equiv­
alence classes. 

Any symmetry transformation implies a conservation law (Nõether 
theorem): 

dG c5S (c5S) dt = _c5qa 6qa = O 6q ==} G = consto on extremaIs, (7) 

G = P - F, P = ôL 6 a 6L = dF . 
ôqa q , dt 

The local function G is referred to as the conserved charge related to the symmetry 
c5q of the action S. The quantities c5q, S, and G are related by the equation (7). 
In what follows, we call this equation the symmetry equation. 

Any gauge symmetry generates a conserved charge G which depends 
locally on gauge parameters and on their time-derivatives, and vanishes 
on the extremals2 (the latter fact was already familiar to Nõether) 

(8) 

An important inverse statement holds true. Namely: If a global symlIle­
try transformation generates a conserved charge that vanishes on the 

2For us, extremais are local functions ÓS/Óq and any linear combinations of these functions 
and their time derivatives . 
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extrelllals then the corresponding action obeys a gauge sylllllletry. At 
the sallle tillle the initial global sylllllletry is a reduction of the corre­
sponding gauge sylllllletry to constant values of the gauge parallleters 
[6]. 

At present almost all modem physical mo deis are formulated as gauge theories. 
Thus, the study of the general gauge theory is an important mathematical and 
physical problem. In particular, the following questions are of especial interest : 

How lllany gauge transforlllations (with independent gauge paralll­
eters) are there for a given action? 

What is the structure of the gauge generators (how rnany tillle 
derivatives they contain) for a given action? What is the structure 
of an arbitrary sylllllletry of the action of a singular theory? 

Is there a constructive procedure to find all the gauge transforllla­
tions for a given action? 

How can one relate the constraint structure in the Hallliltonian for­
lllulation with the sylllllletry structure of the Lagrangian action? 

These problems were partially considered in the works [2, 3, 4]. In this talk, 
we represent the recent progress in attempts to answer the above questions. 

2 Symmetry equation and orthogonal constraint 
basis 

For the study of t he symmetry structure, we start with the consideration of the 
Hamiltonian action SH (there exists an isomorphism between symmetry classes of 
the Lagrangian S and the Hamiltonian SH actions). 

S [q] = f L (q, q) dt <=? SH [1]] = f [pq - H(l) (1])] dt , 1] = (1], >.) , 1] = (q,p) , 

H(l) (1]) = H (1]) + )..iJ)(l) (1]) ; 

8SH _ O =* { ij = {1], H(1 )} , 
81] - ~(l) (1]) = o, 

where ~(l) (1]) are primary constraints, 1] = (q,p) are phase-space variables, and 
>. are Lagrange multipliers to primary constraints. 

One can see that if 81] = (8q, 8p, 8>') is a symmetry of the Hamiltonian action 
SH, then 8L q is a symmetry of the Lagrangian action S, 

The symmetry equation for the action SH reads 

8 8SH dG - O 
1] 81] + dt - , (9) 
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where G is the conserved charge. The charge G and all the variations depend on 
all the variables and their time derivatives locally. One can study the symmetry 
of an action by solving the symmetry equation. 

It turns out that the symmetry equation can be easily analyzed (solved) by 
algebraic methods if one chooses the so called orthogonal constraint basis. In 
the work [7], we have demonstrated that there exists a constraint reorganization 
of the first-class constraints (FCC) and of the second-class constraints (SCC) 
consistent with the Dirac procedure, i.e., the reorganization does not violate the 
decomposition of the constraints according to their stages in the Dirac procedure. 
Namely: 

It is possible to reorganize the independent constraints <I> obtained 
in the Dirac procedure such that: the complete set of constraints is 
divided into sec cp and FCC X. At the same time, it is decomposed 
into groups according to the stages of the Dirac procedure, 

<I> = (cp, X) = (<I>(i») , i = 1, ... ,N, 

<I>(i) = (cp(i); X(i»), cp = (cp(i»), X = (X(i»). 

Here <I>(i) are constraints ofthe i-th stage, cp(i) are SCC ofthe i-th stage, 
x( i) are FCC of the i-th stage, and N is the number of stages ofthe Dirac 
procedure. It may turn out that after a certain stage new independent 
FCC (SCC) do not appear anymore. We are going to denote this stages 
by Nx (N<p)' Obviously, N = max(Nx , N<p)' In addition, the constraints in 
each stage are divided into groups, 

cp(i) _ (cp(iIS») s = ,; I.}. - ,r.., ... , ~' tp, 

X(i) = (x(i1a») a = ,; 1.., , li, 0'0' l'X . (10) 

Such a division creates chains of constraints. Thus, there exist N<p chains 
ofsce 

cp( ... ls) - (cp(iIS) ,; = 1 s) s = 1 1.., - ," '0'0" , ... ,lo'<.p, 

labeled by the index s, and Nx chains of FCC 

X(' .. la) - (X(i1a) ,; - 1 a) a-lI..' - , ,,- ,0' 0' , - '0'0' l'X 

labeled by the index a. Within the Dirac procedure, the group cp(lls) of 
primary SCC produces SCC of the second stage, third stage, and so 
on, which belong to the same chain, cp(lla) -+ cp(2I s) -+ cp(3I s) -+ ... -+ cp(sls). 
The chain of sce labeled by the number s ends with t-he group of the 
s-th-stage constraints. The consistency conditions for the latter group 
determine the Lagrange multipliers À<p to be 5.. At the same time, the 
group X(lla) of primary FCC produces FCC of the second stage, third 
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stage, and so on, which belong to the srune chain, X(lla) -+ X(2I a ) -+ 
X(3I a ) -+ ... -+ X(a1a). We call such organized set of constraints the 
orthogonal constraint basis. The described hierarchy of constraints in 
the orthogonal basis (in the Dirac procedure) looks schelllatically as 
follows: 

ip(1 11) -+ >:1 
ip(112) -+ ip(212) -+ 

-+ -+ 
ip(11l-t-1) -+ ip(21l-t- l) -+ 
ip(lll-t) -+ ip(21l-t) -+ 
X(lll-t) -+ X (21l-t) -+ 
X(lll-t-l) -+ X(21l-t-l) -+ 

-+ -+ 
X(1 12) -+ X(2 12) -+ 
X(1 11) -+ O (iP(l» ) 

>:2 

ip(31l-t-l) 

ip(31l-t) 

X(31l-t) 

X(31l-t-l) 

O(iP (· ··2» ) 

ip(l-t-l1l-t-l) -+ 
ip(l-t-l1l-t) -+ 
X(l-t-l1l-t) -+ 
X(l-t-l1l-t-l) -+ 

>:l-t-l 
ip(l-t I l-t) -+ 
X(N1l-t) -+ 
O(iP ( ···l-t-l») 

The chain of FCC labeled by the nUlllber a ends with the group of the 
a-th-stage constraints. Their consistency conditions do not deterllline 

. any lllultipliers and any new constraints. The Lagrange multipliers .xx 
are not deterlllined by the Dirac procedure (and by the complete set 
of equations of lllotion). Thus, alI the constraints in a chain are of the 
same class. One ought to say that the nUlllbers of constraints in each 
stage in the sallle chain are the srune. At the sallle tillle, each chain 
may be either elllpty or contain several functions. Thus, whenever FCC 
(SCC) exist, the corresponding prilllary FCC (SCC) do existo 

The Poisson brackets of SCC frolll different chains of the orthogonal 
basis vanish on the constraint surface 

In addition, 

{<p(iIS) , H(I)} = ip(i+l ls) + O (<1>(1), ... , <I> (i) ) , i == 1, ... , Ncp - 1, s = i + 1, ... , Ncp , 

{<p(I IS) ,ip(Sls)} = (), det (}S =J. O; 

{x(i1a), H(1) } = X(i+Ila) + O (<1>(1), ... , <I>(í») , i = 1, .. . , Nx - 1, a = i + 1, ... , Nx , 

{x(a 1a), H(1)} = O (<1>(1), ... , <I> (a) ) . 

The consistency conditions for SCC ip(i1i) of the i-th stage 

{ ip(sls) ,H(I)} = O 
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allows one to determine ),~ multipliers. 
We stress, that the consistency conditions for SCC cp(i!s), s > i of the 

i-th stage produce SCC cp(i+1!s) of the i + l-the stage. The consistency 
conditions for FCC X(i!s), s > i of the i-th stage produce FCC X(i+1!s) of 
the i + l-the stage. The consistency conditions for FCC X(i! i) of the i-th 
stage do not produce any new constraints and do not determine any 
Lagrange multipliers. 

Such properties of the constraint basis are extremely helpful for analyzing the 
symmetry equation. In particular, they allow one to guess (and then to strictly 
prove) the form of the conserved charges as decompositions in the orthogonal 
constraint basis . For example, these properties imply that SCC cp(i!i) cannot 
enter linearly into the conserved charges. At the same time, one can see that only 
FCC X(i!i) enter the gauge charges multiplied by independent gauge parameters, 
other FCC X(i!a), a > i are multiplied by factors that must contain derivatives of 
the same gauge parameters. 

3 What can be proved solving the symmetry 
equation in orthogonal constraint basis? 

L For al1y theory (singular or non-singular) any symmetry transforma­
tions that vanish on the equations of motion are trivial. 

11. In theories with FCC there exist nontrivial symmetries ÓvTl, Gv 
of the Hamiltonian action SH that are gauge transformations. These 
symmetries are parametrized by the gauge parameters Vi . The latter 
parameters are arbitrary functions of time t. 

The number of the gauge parameters [v] is equal to the number of 
the primary FCC [X(l)] , 

The corresponding conserved charge (the gauge charge) is a local 
function G v = G v (Tl,), [i] , vU]), w hich vanishes on the extremaIs. The 
gauge charge has the following decomposition with respect to the or­
thogonal constraint basis: 

Nx Nx -1 Nx Nx -1 N 

Gv = L ViX(i!i) + L L C~aX(i!a) + L L C~scp(i!S) . (11) 
i=l i=l a=i+1 i=l 8=i+1 

Here C~s (Tl,),U],vU]) and C~a (Tl,),[l],vU]) are some local functions, which 
are determined by the symmetryequation in an algebraic way. It turns 
out that C~s = 0(1), where 1= ÓSH/ÓTl are extremaIs. The gauge charge 
depends both on the gauge parameters and on their time derivatives 
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up to a finite order. N aIllely, 

Nx i-l 

G" = L L G~(1],À[I])vJm]. (12) 
i=l m=O 

where G~(1], À[I]) are SOIlle local functions. The total nUIllber of inde­
pendent gauge paraIlleters together with their tiIlle derivatives, that 
enter essentially in the gauge charge is equal to the nUIllber of all FCC 
[xl, 

L [v[m]l = [xl· 
m=O 

The gauge charge is the generating function for the variations 81] of the 
phase-space variables, 

(13) 

(N ote that here the Poisson bracket acts only on the explicit depen­
dence on 1] of the gauge charge.) The variations 8"À contain additional 
tiIlle derivatives of the gauge paraIlleters, naIllely, they have the forIll 

Nx i 

8 À - ~ ~ yi ('11 À[I]) v[m] 
v - ~ ~ m·" 't' 

(14) 
i=l m=O 

where y~ are SOIlle local functions, which can be deterIllined froIll the 
syIllIlletry equation in an algebraic way. 

Thus, the gauge charge Gil have the following structure 

Nx Nx 

Gil = L L Gmb (1], À[I])v!m-l) , 

m=l b=m 

where the local functions Gmb(1], >.[1]) have the form 

Nx Nx 

Gmb = L L x(k1a)c;::.b(1] , ,\[1]) + O (12) , 
k=la=k 

and C;::.b(1], ,\[1]) are some local functions. Thus, 

G" = O (X) + O (12) 

The form of the variations 8,,1] follows from (??), 

(15) 

(16) 

(17) 

(18) 
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After the gauge charge has been determined, the variations 6v À can be found 
from the equation (??). Their general structure is given by Eq. (14), where 
l~(1],À[I]) are some local functions. In particular, one can see that 

~x 

6vÀ~ = L Vai (1], À[l1)vli1 + O(v;lJ , l < j) . (19) 
i=l 

Note that the local functions G~ , CL': , and 1~ do not depend on the gauge 
parameters and are, in that sense, universal. The matrices C and Vare not 
singular. 

UI. In theories with FCC, any symmetry 6'f/, G of the HamiltonÍan 
action SH can be represented as the sum of three types of symmetries 

( ~ ) = ( ~~ ) + ( ~~ ) + ( ~:~ ) , (20) 

such that: 
The set Óc'f/, Gc is a global symmetry, canonical for the phase-space 

variables 'f/. The corresponding conserved charge Gc does not vanish on 
the extremais. 

The set ÓiJ'f/, G iJ is a particular gauge transformation given by Eqs. 
(12), (13), and (14) with fixed gauge parameters (Le. with specific forms 
for the functions Vi = Vi (t,'f/[ll,À[ll) that do not vanish on the extremais. 
The corresponding conserved charge GiJ vanishes on the extremaIs, 
whereas the variations ÓiJ'f/ do noto 

The set Ótr'f/, Gtr is a trivial symmetry. All the variations Ótr'f/ and 
the corresponding conserved charge G tr vanish on the extremais. The 
gauge charge Gtr depends on the extremaIs as Gtr = O (I2) . 

As an example, we consider a field mo deI which includes a set of Yang-Mills 
vector fields A~ , a = 1, ... , r, and a set of spinor fields 'IV" = ('IjJ't, i = 1, ... ,4) , 

S = / Cdx, C = -~G~vG/-Iva + i;V'//-IV~{3'IjJ{3 - V('IjJ, i[;), 

G~v = 8/-1A~ - 8vA~ + fbcAtA~, V~{3 = 8/-115$ - iT~{3A~ , (21) 

where V is the local polynomial in the field, which contains no derivatives. The 
model is based on a certain global Lie group G, 

'IjJ(x) -4 exp (ivaTa)'IjJ (x) , gEG, va, a=I, ... ,r, 

Ta = T: , [Ta, nl = if~bTc, f:bfkc + ftcfka + f:afkb = O. 

For V = O, the action is invariant under gauge transformations (v a = va (x» 

(22) 
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We assume the polynomial V to be such that the whole action (21) is invariant 
under the transformations (22) as well. Below we relate the symmetry structure of 
the mo deI with its constraint structure. To this end we first reveal the constraint 
structure. 

Proceeding to the Hamiltonian formulation, we introduce the momenta 

ôC ôC a ôrC. - ° ôrC 
POa = ô.À.0a = O, Pia = ô.À.ia = GiO , P1/J = ô~ = ~'l/J'Y ,P1j; = -::.- = O. 

ô'l/J 

Thus, there exists a set of primary constraints <11(1) = (X~l), 'P~1), (j = 1,2) = O, 

where 
(1) _ (1) _ .• 1. ° (1) 

Xa - POa, 'P! - P1/J - ~ 'f''Y ,'P2 = P1j; . 

The total Hamiltonian reads H(l) = f1IY)dx, 

1i(l) = ~P;a + ~Gf~ - P1/J'Y°'Yk'Ç7 k'l/J + AOa (DibPib - -0'Y°Ta'l/J) + V + À~X~l) + À~'P~l) . 

By performing the Dirac procedure, one can verify that there only appear sec­
ondary constraints X~2) = O, 

{ <p~1), H(l)} = O '* À~ = ,\~ (A, 'l/J,-0) 

{ X~l), H(l)} = O '* X~2) = DibPib + i (p1/JTa'l/J + piTa-0) , (Ta); = -'Y0 (T;)~ 'Y0 . 

All the constraints 'P are second-class and all the X are first-class. It turns out 
that the complete set of constraints already forms the orthogonal constraint basis, 
namely: 

and there are no constraints X(1 11), 

-+ ,\ 
-+ X(21 2) -+ O (<11) . 

According to the general considerations, we chose the gauge charge in the form 

Solving the symmetry equation (9), we obtain Ca = iJa - v C AOb 19b = DÔbvb . Thus, 

G = ! [PJLaD~avb + i (p1/JTa'l/J + p1j;Ta-0) va] dx, 

8A~ = {A~,G} = D~bVb, 8'l/J = {'l/J,G} = iTa'l/Jva . 
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4 Main concl usions 

Below we summarize the main conclusions. 
Any symmetry transformation can be represented as a sum of three 

kinds of symmetries: global, gauge, and trivial symmetries. The global 
part of a symmetry does not vanish on the extremaIs, and the corre­
sponding charge does not vanish on the extremaIs as well. This sep­
aration isnot unique. In particular, the determínation of the global 
charge from the corresponding equation, and thus the determination 
of the global part of the symmetry is then ambiguous. However, the 
ambiguity in the global part of a symmetry transformation is always a 
sum of a gauge transformation and a trivial transformation. The gauge 
part of a symmetry does not vanish on the extremais, but the gauge 
charge vanishes on them. We stress that the gauge charge necessarily 
contains a part that vanishes linearly in the FCC, and the remaining 
part of the gauge charge vanishes quadratically on the extremaIs. The 
trivial part of any symmetry vanishes on the extremais, and the corre­
sponding charge vanishes quadratically on the extremaIs. 

The reduction of symmetry variations to extremaIs are global canon­
ical symmetries of the physical action, whose conserved charge is the 
reduction of the complete conserved charge to the extremais. 

Any global canonical symmetry of the physical action can be ex­
tended to a nontrivial global symmetry of the complete Hamiltonian 
action. 

There are no other gauge transformations that cannot be repre­
sented in the form (11). 

We stress that in the general case the gauge charge cannot be con­
structed with the help of any complete set of FCC only, for its decom­
position contains SCC as well. A model for which the gauge charge must be 
constructed both with the help of Fee and of see is considered in the Example 
1. 

Note that in our procedure, generators (conserved charges) of canon­
ical and gauge symmetries may depend on Lagrange multipliers and 
their time derivatives. This happens in the case when the number of 
stages in the Dirac procedure is more than two. In the Example 2 we 
represent modelsthat illustrate this facto 

The gauge charge contains time derivatives of the gauge parameters 
whenever there exist secondary FCC. Namely, the power of the highest 
time derivative that enters the gauge charge is equal to Nx - 1, where 
Nx is the number of the last stage when new FCC still appear. A simple 
model for which the gauge charge contains a second-order time derivative of the 
gauge parameter is considered in the Example 3. 

Since there is an isomorphism between symmetry classes of the Hamiltonian ac­
tion SH and the Lagrangian action S the symmetry structure of Lagrangian 
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action S coincides with the symmetry structure of the Hamiltonian 
action SH, and is given by a11 the assertions represented above. As to the con­
crete form of a symmetry transformation (symmetry transformation 
of the coordinates) of the Lagrangian action S, it can be obtained as 
a reduction of the symmetry transformation of the coordinates of the 
Hamiltonian action SH by the substitution of alI the Lagrange multipli­
ers and momenta via coordinates and velocities. 

Example 1: Consider a Hamiltonian action SH that depends on the 
phase-space variables (qi,Pi, i = 1,2,) and (xa, 71" a, a = 1,2), and of two Lagrange 
multipliers À" anel Àp , 

SH = f [Piqi + 1f",X", - H(I)] dt, H(I) = Há1) + Xlq~ , 
(1) 1 2 1 2 1 2 

Ho = 21f2 + XI71"2 + 2P2 + 2 q2 + qlP2 + À,,71"1 + ÀpPl . 

One can see that the model has two primary constraints 'irl and Pl. It is easy 
to verify that a complete set of constraints can be chosen as X = ('irl, 71"2) and 
<p = (ql,q2,Pl,P2). Here X are FCC and <p are SCC. Thus, the model is a gauge 
one. The peculiarity of the model is that gauge symmetries of the action SH have 
gauge charges which must be constructed with the help of both FCC and SCC. 

Example 2: Consieler a Hamiltonian action SH that depends on the 
phase-space variables (qa,Pa, a = 1,2,) and (xa,'ira, a = 1,2,3), and on a La­
grange multiplier À , 

SH = f [Piqi + 'ir ",x", - H(I)] dt, H(I) = Há1) + v, V = ql XIX~ , 
(1) 1 (2 2) 1 2 1 2 1 2 

Ho = 2 qi + Pi + Xl'ir2 + X271"3 + 2X3 + 271"2 + 271"3 + À'irl , 

The model has one primary constraint 'irl. The peculiarity of the model is that 
symmetries of the action SH have charges that must depend on Lagrange multi­
pliers. 

Example 3: Consider a Lagrangian action that depends on the coordi-
nates x, y, z, 

S = ~ f [(x - y)2 + (iJ - Z)2] dt. 

One can easily see that the action is gauge invariant under the following transfor­
mations that inc1ude first and second-order time derivatives of the gauge param­
eters, 

8x = v, 8y = v, 8z = j) . 
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