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N on-linear Lie COnfOrIllal algebras 

Victor Kac I 

In this talk we shall introduce the notion of a non-linear Lie conformaI alge­
bra, provide some examples, and discuss their categorical relation with the freely 
generated vertex algebras, their universal envelopes. This relationship provides a 
method for constructing non-linear Lie conformaI algebras via a quantization of 
the classical Drinfeld-Sokolov reduction. 

Let f be a discrete additive semigroup in !R~o containing O, and let 

be a graded vector space. We write .6.(a) = Q: if a EUa' Since r is a semigroup, 
the r \ O-grading on U can be extended to a f-grading on the tensor algebra T(U) 
by defining 

.6.(al 0 .. 0 ak) = .6.(ad + .. + .6.(ak) , 

for all k ~ O and homogenous aI, .. , ak E U. A f\ O-graded vector space g is called 
a non-linear Lie algebra if it is endowed with a bilinear bracket 

g x g ~ T(g), (a, b) H [a, b] E T(g) 

such that for all a, b, c E g 

(grading condition) 

(Jacobi identity) 

.6.([a, b]) < .6.(a) + .6.(b) 

[a, [b, cll- [[a, bJ, c] - [b, [a, cll E Ma(g) 

for some Q: E f, Q: < .6.(a) + .6.(b) + .6.(c) 

where Ma(g) is the linear span of 

{ A 0 (b 0 c - c 0 b - [b c)) 0 DI b,'c E fi, A, DE T(g), } 
, .6.(A 0 b 0 c 0 D) < Q: • 

The triple products in the Jacobi identity are understood via the Leibniz rule with 
respect to the tensor algebra product. 

As in the case of the usual "linear" Lie algebras, we have a Poincaré-Birkhoff­
Witt theorem that provides a basis for the enveloping algebra of a non-linear Lie 
algebra. The universal enveloping algebra U(g) of a non-linear Lie algebra 9 is the 
quotient of the tensor algebra T(g) by the two-sided T(g)-ideal M(g), generated 
by 

{b 0 c - c 0 b - [b , c]1 b, c E g}. 

lThe author was suported by CCInt and CAPES. 
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The PBW theorem states that the ordered monomials in any r-homogenous ba­
sis of 9 form a basis for the enveloping algebra U(g), and can be proved in an 
analogous manner to the "linear" case. 

As an example we shall construct the Zamolodchikov Wralgebra (see [13]). 
Firstly, let V denote the Virasoro algebra, with the symbols c, Lm, m E Z, as a 
basis and the bracket reIations 

for alI m, n E Z. The Viras oro algebra is a Z-graded linear Lie algebra. By 
identifying the symbol c with a scaIar, the Virasoro algebra can be seen living 
inside the Zamolodchikov ~V3-algebra, which has as a basis the symbols c, Lm, 
Wm , m E Z, and further bracket relations: 

[Lm' Wnl = (2m - n)Wm+n, 

[Wm, Wnl = 1~(2~~;)Âm+n + (m - n)(m+n+2~~m+n+3) - (m+2~(n+2»)Lm+n 

+(m2 - 4)(m2 - l)óm ,-n 3~O' 

where Ân = dnLn + L:mEZ : Lm Ln-m :, and 

d - (1+m)(2-m) 
2m-l - 5 ' 

ifm::::: n, 
otherwise. 

The Zamolodchikov W3-algebra finds more elegant expression in the language 
of (non-linear) Lie conformaI algebras. A (linear) Lie conformaI algebra R is a 
qa]-module with a Cbilinear product 

R x R ---+ CP,] ® R, (a, b) f-t [a,\b], 

such that for all a, b, c E R, 

(sesquilineari ty ) 

(skew-commutativity) 

(Jacobi identity) 

[aa,\b] = -À[a,\b] and [a,\ab) = (8 + À)[a,\b] 

[a,\b) = -[La_,\a] 

[a'\[bJ.Lc]] - [bJ.L[a'\c]] = [[a,\b),\+J.Lc) 

where a is a distinguished symbol and À, pare indeterminants. This product 
is called a À-bracket. There is a dose relationship between the category of Lie 
conformaI algebras and the category of Lie algebras. In particular, given aLie 
algebra g, a corresponding Lie conformaI algebra Curg, called the current algebra 
of g, can be constructed using formal distributions with values in the Kac-Moody 
affinization g. We set: 

a(z) = L (a ® tn)z-n-l for all a E g, Curg = qa) {a(z) I a E g}, 
nEZ 

where a = lz' 
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The >'-bracket of a, b E Curg is defined as an encoding of the singular terms 
of the "operator product expansion" of [a(z),b(w)j. Simply: 

[a,\bj = [a, bj E Curg. 

The Virasoro conformaI algebra Vir is constructed from the Virasoro Lie algebra 
in a similar manner, by setting 

L(z) = L Lnz-n-2 and Vir = q8]L + Cc. 
nEZ 

The >'-bracket relations are given by 

[L,\L] = (8 + 2>')L + >.3 lC2 ' [L,\c] = O. 

The general rule of translation from the language of Lie conformaI algebras to 
that of Lie algebras is given by the formula 

[a(m),b(n)] = L G)~m+n-j) ' 
jEZ+ 

for all integers 1n, n E Z. The formal distributions d associated with a and b are 
given by 

[a,\b] = L ;~ cj , 

jEZ+ 

and we write f(n) for the coefficient of z-n-l in any formal distribution fez) (for 
example, L(n) = Ln-d. Equivalently, 

[a(z),b(w)] = L d(W)(d~)jÓ(Zj~w) where 6(z - w) = Z-l L (~)n. 
jEZ+ nEZ 

The classification of the finitely generated simple Lie conformal algebras was 
acheived in 1998 (see [3]), and states that the only such algebras are the (centreless) 
Viras oro conformal algebra and the current algebras associa 

ted to the simple finite dimensional Lie algebras. The dassification in the 
super algebra case has richer variety, and can be found in [6]. 

Both the Virasoro and current conformaI algebras are linear) whilst the 
Zamolodchikov W3-conformal algebra is a primary example in the non-linear case. 
We use the formal distributions 

nEZ nEZ 

The ordinary bracket relations translate to the following >'-bracket relations 

[L,\L] 

[W,\W] 

(8 + 2>')L + >.\12 c, [L,\ W] = (8 + 3>')W, 

= (8 + 2>') (22~5C : L L : + 3(~2~~C) 82 L 

+!->.(8 + >')L) + >.5 3~O' 
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where the term : L L :, a normally ordered product, is not expressible as a linear 
combination of L and W, and thus constitutes a non-linearity. With the grading 
~(L) = 2, ~(W) = 3, we therefore have that 

W3 = q8)L + q8)W + <Cc 

i8 a non-linear Lie conformal algebra. In fact, W3 i8 essentially the uni que non­
linear Lie conformaI extension of the Virasoro conformal algebra by a field W of 
conformaI weight 3 (see [4)). 

By definition, a non-linear conformai algebra is a Q8]-module R, r \ O-graded 
by Q8)-submodules 

endowed with a <C-bilinear product 

such that for ali a, b E R, 

(sesquilinearity) 

(grading condition) 

R x R -+ QÀ) ® T(R) 

[8aÀb] = -À[aÀb] and [aÀ8b] = (8 + À)[aÀb], 

~([aÀb]) < ~(a) + ~(b). 

A non-linear conformaI algebra R is called a non-linear Lie conformai algebra if 
in addition, for all a, b, c E R, 

(skew-commutativity) 

(Jacobi identity) 

for some 

where 

[aÀb] = -[La-Àa] 
J(a, b, c) E qÀ, J.L] ® M o(R) , 

a E r,a < ~(a) + ~(b) + ~(c), 
J(a, b, c) = [aÀ[b/Lc]) - [b/L[aÀcll - [[aÀbl>'+/Lcl· 

Here, Mo(R) is the linear span of 

{ A ® (b ® c - c ® b) ® D I b, c E R, A, D E T(R), } 
-A® : J~a [bÀcldÀ D : ~(A) + ~(b) + ~(c) + ~(D) < a . 

In this non-linear case, the triple products are understood via the "quantized" 
Leibniz rule, called the non-abelian Wick formula (see below) . For the Zamolod­
chikov W3-conformal algebra, the only non-trivial .Jacobi triples are J(W, W, L) 
and J(W, W, W) . The subspace M 4 (W3 ) contains 

and one can check that these triples are zero only modulo this relation. 



Non-linear Lie conforma! algebras 227 

The importance of the non-linear Lie conformaI algebras stems from their 
relationship with the freely generated vertex algebras. A vertex algebm may be 
defined as aLie conformal algebra R, with '\-bracket [ " ], further endowed with 
a C-bilinear "normally ordered product" 

R x R ~ R, (a, b) t-t: a b : 

which makes it a unitial differential algebra, with unit element 10} E R and deriva­
tion 8, such that for all a, b, c E R, 

(quasicommutativity) 

( quasiassociati vi ty ) 

(non-abelian Wick formula) 

: a b : - : b a := jO [a"b]d'\, 
-8 

:: a b: c: - : a : b c:: 

=: (18 
a d'\) [a"b] : + : (18 

b d'\) [a"b] :, 

[a" : b c :] =: [a"b] c: + : b [a"c] : 

+ 1" [a,,[bJLc]]dJ.L. 

This definition characterizes vertex algebras as quantum Poisson algebras, and is 
equivalent to the definition in terms of local fields (see [1]). To each Lie conformaI 
algebra R we can associate a universal enveloping vertex algebra U(R), freely 
generated by R. However, it is not true that all freely generated vertex algebras 
are obtained in this manner. The freely generated vertex algebras are the universal 
enveloping vertex algebras of the non-linear Lie conformal algebras. In fact, the 
two categories are equivalent [4]. 

Given a non-linear Lie conformaI algebra R, the universal enveloping vertex 
algebra U(R) is constucted as a quotient of the tensor algebra T(R). It can be 
shown (see [4]) that the '\-bracket of R can be uniquely extended to a '\-bracket 
L" on T(R), determining a compatiable normally ordered product N on the same. 
Let 

M(R) = U Ma(R). 
aEr 

Then 

(a) M(R) is a 8-invariant ideal of T(R) with respect to the '\-bracket L" and 
the normally ordered product N, and the quotient U(R) = T(R)jM(R) is 
a vertex algebra under the induced operations of L" and N. 

(b) The ordered monomials of any graded basis of R, in the normally ordered 
product and associated from left to right, form a basis for U(R) over <C. 
That is, U(R) is "freely generated" by R. 

(c) Conversely, any graded vertex algebra V, freely generated by a q 8]-submod­
ule R, gives ris e to a non-linear Lie conformal algebra structure on R, and 
we have V = U(R). 
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In the case where R is a linear Lie conformaI aIgebra, the universal enveIoping 
vertex algebra is given by 

U(R) = IndE::~_ C, 

and is freely generated by R. The Virasoro conformal algebra Vir = q8]L + 
CC and the current algebra Curfl = q8]fI + CK (centrallyextended) yield the 
universal Viras oro and affine vertex algebras, respectively, after specifying a scalar 
value for the centre. 

A large class of non-linear Lie conformaI (super)algebras is obtained by the 
quantum Hamiltonian reduction attached to a simple Lie (super)algebra fi, with 
good grading, and a nilpotent orbit of fi. The good gradings of the simpIe Lie 
algebras have been classified in [5]. The construction begins with a simple Lie 
algebra fi equipped with a non-degenerate symmetric bilinear form (.1.), and an 
eIement x E fi such that the adjoint action ad(x) is diagonalizable with values in 
~Z, so that fi = E9jE ~Z flj· Let 

g± = EBg±j and g~ = go + fI- , 
j>O 

and assume that the grading on fi is good, that is, g! C g< for some nilpotent 
f E g-l, where g! denotes the centralizer of f in g. The simplest example is the 
sl(2)-triple < e,x, f> with 

[x, e] = e, [x, f] = -f, [e, f] = x. 

To each such (g,x) and k E C, we associate a vertex algebra complex (C(g, x, k), d) 
where 

C(g,x,k) = Uk(Curg) ®F 

is the tensor product of the universal enveloping vertex algebra Uk(Curg) of leveI 
k of the current algebra Curg and the universal enveloping vertex algebra 

F = U(Cl(gl + ng+ + ng~)) 
2 

of the Clifford conformal superalgebra associated to gl/2 + ng+ + ng~ and the 
form 

< a, b >= (fl[a, b]), 

where n denotes the parity reversing operation on a vector superspace. The zeroth 
homology of this complex, denoted by Wk(g, x), is a vertex algebra, and is freely 
and finitely generated when the ~Z-grading on 9 is good. This construction is a 
generalization of the quantized Drinfeld-Sokolov reduction, studied in [7], [8], [9] 
and many other papers. If f is taken to be the principal nilpotent element, we 
obtain the principal W-algebras. In particular, Wk (sl(2),pV) and Wk (sl(3),pV) 
are the universal enveloping vertex algebras of the Virasoro and Zamolodchikov 
conformaI algebras , respectively. Taking f to be a minimal nilpotent element 
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of 9 yields the minimal W -algebras, including many well-known examples. For 
instance (see [10]), 

9 = sl(3) 

spo(211) 

sl(211) 

spo(213) 

sl(2 1 2)/«:::1 
D(2, 1; a) 

Bershadsky-Polyakov algebra (see [2]), 

Neveu-Schwartz algebra, 

N = 2 superconformal algebra, 

N = 3 superconformal algebra, 

N = 4 superconformal algebra, 

big N = 4 superconformal algebra. 

This was used in [11] and in [12] to solve a series of open problems in the repre­
sentation theory of superconformal algebras. 
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