An example of simple Lie superalgebra with several invariant bilinear forms

S.E.Konstein¹

Abstract: Simple associative superalgebra with 2 independent supertraces is presented. Its commutant is a simple Lie superalgebra which has at least 2 independent invariant bilinear forms.

1 Introduction

Shchepochkina proved [1] that the dimension of the space of invariant supersymmetric nondegenerate bilinear forms on any finite dimensional simple Lie superalgebra is ≤ 1 . Here a simple infinite dimensional associative superalgebra with 2 independent supertraces is described. The Lie superalgebra, associated with it is simple and has at least 2 independent invariant bilinear forms.

The construction is based on the associative superalgebra $H_{W(\mathfrak{R})}(\nu)$, the superalgebra of observables of the rational Calogero model based on the root system \mathfrak{R} [2]; here $W(\mathfrak{R})$ is the Coxeter group generated by \mathfrak{R} and ν is a coupling constant(s) of this Calogero model.

It is shown in [3] that $H_{W(\mathfrak{R})}(\nu)$ possesses $Q(\mathfrak{R})$ -dimensional space of the supertraces, where $Q(\mathfrak{R})$ is the number of conjugacy classes of the elements of $W(\mathfrak{R})$ which have no eigenvalue -1. In particularly $Q(A_{N-1})$ is equal to the number of decompositions N into the sum of odd integers [4] and so $H_{W(A_2)}(\nu) = H_{S_3}(\nu)$ has 2-dimensional space of the supertraces.

Each supertrace $str(\cdot)$ generates invariant supersymmetric bilinear form $B_{str}(f,g) \stackrel{def}{=} str(fg)$. It is shown in [5] that all the supertraces on $H_{S_3}(\nu)$ generate nondegenerate bilinear forms if and only if $\nu \neq n + \frac{1}{2}$ and $\nu \neq n \pm \frac{1}{3}$ for every integer n. The conjecture arises that the associative superalgebras $H_{S_3}(\nu)$ are simple if $\nu \neq n + \frac{1}{2}$ and $\nu \neq n \pm \frac{1}{3}$ and $\nu \neq n \pm \frac{1}{3}$ which is proved in [6] for the case $\nu = 0$.

In this report based on [6] the associative superalgebra $H_{S_3}(0)$ with twodimensional space of supertraces is presented. It is shown that (i) it is simple, (ii) its commutant $\mathfrak{A}_1 = [H_{S_3}(0), H_{S_3}(0)]$ is a simple Lie superalgebra and (iii) \mathfrak{A}_1 has at least 2-dimensional space of nondegenerate bilinear invariant forms.

¹The author is very grateful to M. Vasiliev and to D. Leites for useful discussions and to organizers of the conference "Lie and Jordan Algebras, their Representations and Applications-II" for hospitality. This work was supported by the RFBR grant No. 02-02-17067, by the RFBR grant for Leading Scientific Schools No. 1578-2003-2 and partially by Brazilian foundation FAPESP. The author was also partially supported by CCInt and CAPES.

2 Algebra declared in the title

Consider the associative algebra which is semidirect product of Weyl algebra W^2 generated by elements x^{α} , y^{α} , 1 ($\alpha = 0, 1$) and $\mathbb{C}[S_3]$ generated by elements L_i , Q_i ($i \in \mathbb{Z}_3$) where the generating elements satisfy the following relations:

$$[x^{\alpha}, x^{\beta}] = [y^{\alpha}, y^{\beta}] = 0, \qquad [y^{\alpha}, x^{\beta}] = \varepsilon^{\alpha\beta}, \tag{1}$$

$$L_i L_j = \delta_{i+j} Q_j, \qquad L_i Q_j = \delta_{i-j} L_j, \tag{2}$$

$$Q_i L_j = \delta_{i+j} L_j, \qquad Q_i Q_j = \delta_{i-j} Q_j, \tag{3}$$

$$Q_0 + Q_1 + Q_{-1} = 1, (4)$$

(here $\varepsilon^{\alpha\beta} = -\varepsilon^{\beta\alpha}$, $\varepsilon^{01} = 1$ and $\delta_0 = 1$, $\delta_i = 0$ if $i \neq 0$)

$$L_i x^{\alpha} = y^{\alpha} L_{i+1}, \qquad \qquad L_i y^{\alpha} = x^{\alpha} L_{i-1}, \qquad (5)$$

$$Q_i x^{\alpha} = x^{\alpha} Q_{i+1}, \qquad \qquad Q_i y^{\alpha} = y^{\alpha} Q_{i-1}. \tag{6}$$

Definition 1. $H_{S_3}(0)$ is the associative superalgebra of all polynomials in the operators x^{α} , y^{α} , Q_i and L_i satisfying the relations (1)-(6) with \mathbb{Z}_2 -grading π defined by the formula: $\pi(x^{\alpha}) = \pi(y^{\alpha}) = 1$, $\pi(L_i) = \pi(Q_i) = 0$.

This algebra can be realized in the terms of the operators acting on the space of complex valued smooth functions on \mathbb{R}^3 .

Indeed, let $a_k^{\alpha} = \frac{1}{\sqrt{2}}(z_k + (-1)^{\alpha}\frac{\partial}{\partial z_k})$ and $\sigma f(z_1, z_2, z_3) = f(z_{\sigma(1)}, z_{\sigma(2)}, z_{\sigma(3)})$ for all $\sigma \in S_3$. Let $K_{ij} = K_{ji} \in S_3$ be the operators of elementary transpositions and $\lambda = exp(2\pi i/3)$.

Then the operators

$$\begin{aligned} x^{\alpha} &= \frac{1}{\sqrt{3}} (a_{1}^{\alpha} + \lambda a_{2}^{\alpha} + \lambda^{2} a_{3}^{\alpha}), \\ y^{\alpha} &= \frac{1}{\sqrt{3}} (a_{1}^{\alpha} + \lambda^{2} a_{2}^{\alpha} + \lambda a_{3}^{\alpha}), \\ L_{k} &= \frac{1}{3} (\lambda^{k} K_{12} + K_{23} + \lambda^{-k} K_{31}), \\ Q_{k} &= \frac{1}{3} (1 + \lambda^{k} K_{12} K_{13} + \lambda^{-k} K_{12} K_{23}) \\ L_{i+3} &= L_{i}, \quad Q_{i+3} = Q_{i} \end{aligned}$$

satisfy commutation relations (1)-(6).

3 Supertraces on $H_{S_3}(0)$

Definition 2. The supertrace on an arbitrary associative superalgebra \mathcal{A} is complex-valued linear function $str(\cdot)$ on \mathcal{A} which satisfies the condition

$$str(fg) = (-1)^{\pi(f)\pi(g)} str(gf)$$

for every $f, g \in A$ with definite parity.

To describe all supertraces on $H_{S_3}(0)$ let us note that $H_{S_3}(0)$ has the Lie algebra \mathfrak{sl}_2 of inner automorphisms. This algebra is generated by the generators $T^{\alpha\beta}$

$$T^{\alpha\beta} = (x^{\alpha}y^{\beta} + x^{\beta}y^{\alpha}) \tag{7}$$

which satisfy the usual commutation relations

$$[T^{\alpha\beta}, T^{\gamma\delta}] = \epsilon^{\alpha\gamma} T^{\beta\delta} + \epsilon^{\alpha\delta} T^{\beta\gamma} + \epsilon^{\beta\gamma} T^{\alpha\delta} + \epsilon^{\beta\delta} T^{\alpha\gamma} \,,$$

and act on generating elements x^{α} and y^{α} as follows:

$$\left[T^{\alpha\beta},\,x^{\gamma}\right] = \epsilon^{\alpha\gamma}x^{\beta} + \epsilon^{\beta\gamma}x^{\alpha}\,, \qquad \left[T^{\alpha\beta},\,y^{\gamma}\right] = \epsilon^{\alpha\gamma}y^{\beta} + \epsilon^{\beta\gamma}y^{\alpha}$$

leaving the group algebra $\mathbb{C}[S_3]$ invariant: $[T^{\alpha\beta}, K_{ij}] = 0.$

Clearly, $H_{S_3}(0)$ is decomposed into the infinite direct sum of finitedimensional irreducible representations of this \mathfrak{sl}_2 . Let \mathcal{A}_s (s is a spin) be the direct sum of all 2s + 1-dimensional irreducible representations in this decomposition. So

 $H_{S_3}(0) = \mathcal{A}_0 \oplus \mathcal{A}_{1/2} \oplus \mathcal{A}_1 \oplus \dots, \quad \pi(\mathcal{A}_n) = 0, \ \pi(\mathcal{A}_{n+1/2}) = 1.$

Evidently, \mathcal{A}_0 is a subalgebra of $H_{S_3}(0)$.

As every element of the subspace \mathcal{A}_s for s > 0 is a linear combinations of the vectors of the form $[f, T^{\alpha\beta}]$ where $T^{\alpha\beta}$ is defined in (7), every supertrace vanishes on this subspace and has non-trivial values only on the associative subalgebra $\mathcal{A}_0 \subset H_{S_3}(0)$ of all \mathfrak{sl}_2 -singlets.

Let $m = \frac{1}{2} \{x^{\alpha}, y_{\alpha}\}$. In this formula the greek indices are lowered and raised with the help of the antisymmetric tensor $\varepsilon^{\alpha\beta}$: $a^{\alpha} = \sum_{\beta} \varepsilon^{\alpha\beta} a_{\beta}$. Clearly, m is a singlet under the action of \mathfrak{sl}_2 (7).

Evidently, the associative algebra \mathcal{A}_0 of \mathfrak{sl}_2 -singlets consists of the polynomials of m with coefficients in $\mathbb{C}[S_3]$.

To describe the restrictions of all the supertraces on \mathcal{A}_0 , it is convenient to use the generating functions, which are computed in [5] for any values of ν , and for $\nu = 0$ take the following simple form:

$$\mathcal{L}_{i} \stackrel{def}{=} str(e^{\xi m}L_{i}) = 0,$$

$$\mathcal{Q}_{i} \stackrel{def}{=} str(e^{\xi m}Q_{i}) = \frac{P_{i}}{\Delta},$$

$$(8)$$

where

$$P_{0} = -2S_{1} + \frac{S_{2}}{2} \left(e^{2\xi} + e^{-2\xi} - 2e^{\xi} - 2e^{-\xi} \right),$$

$$P_{+} = \frac{2}{3}S_{1} \left(-e^{2\xi} + 2e^{-\xi} \right) + \frac{S_{2}}{2} \left(e^{-2\xi} - 2e^{\xi} + 3 \right),$$

$$P_{-} = \frac{2}{3}S_{1} \left(-e^{-2\xi} + 2e^{\xi} \right) + \frac{S_{2}}{2} \left(e^{2\xi} - 2e^{-\xi} + 3 \right)$$

$$\Delta = exp(-3\xi)(exp(3\xi) + 1)^{2}.$$
(9)

Here S_1 , S_2 are arbitrary parameters, specifying the supertrace in the two-dimensional space of supertraces:

$$S_1 = -2str(1) - str(K_{12}K_{23}), \qquad S_2 = \frac{8}{3}str(1) - \frac{2}{3}str(K_{12}K_{23}).$$

4 The simplicity of $H_{S_3}(0)$.

To prove the simplicity of $H_{S_3}(0)$ it is sufficient to prove that elements Q_i belong to any nonzero ideal \mathcal{I} .

First of all let us note that the existence of \mathfrak{sl}_2 algebra of inner derivations implies that each ideal of associative algebra $H_{S_3}(0)$ is graded.

Let $\mathcal{I} \subset H_{S_3}(0)$ be nonzero ideal.

Consider the ideals $\mathcal{J}_i \subset \mathbb{C}[m]$ defined as

$$\mathcal{J}_i = \{ f(m) \in \mathbb{C}[m] : f(m)Q_i \in \mathcal{I} \}.$$

One can easily prove that for arbitrary element $u \in \mathcal{I}$ there exist such finite sets of elements $v_k^i, w_k^i \in H_{S_3}(0)$ $(i \in \mathbb{Z}_3, k = 1, ..., K)$ that $0 \neq \sum_{k=1}^{K} v_k^i u w_k^i \in cal J_i$. So the following proposition is valid:

Proposition 1. $\mathcal{J}_i \neq \{0\}.$

Let $\varphi_i(m) = m^{n_i} + \alpha_{i,1}m^{n_i-1} + \dots$ generates the ideal \mathcal{J}_i .

¿From the relation $L_i f(m) Q_i L_{-i} = f(-m) Q_{-i}$ the next proposition follows:

Proposition 2. The polynomials $\varphi_i(m)$ generating the ideals \mathcal{J}_i satisfy the relations

$$n_i = n_{-i}$$
$$\varphi_i(m) = (-1)^{n_i} \varphi_{-i}(-m).$$

Now we can prove the following theorem:

Theorem 1. The associative superalgebra $H_{S_3}(0)$ is simple.

We will prove that arbitrary nonzero ideal $\mathcal{I} \subset H_{S_3}(0)$ contains the elements Q_i and as a consequence $\mathcal{I} \ni 1 = Q_0 + Q_{-1} + Q_1$

Let \mathcal{I} be nonzero ideal in $H_{S_3}(0)$ and $\varphi_i(m)$ generate the ideals \mathcal{J}_i described above. So $\varphi_i(m)Q_i \in \mathcal{I}$ and hence $(y^0)^3\varphi_i(m)Q_i(x^1)^3 \in \mathcal{I}$. Consider the \mathfrak{sl}_2 singlet part of this element which also belongs to \mathcal{I} and can be computed easily:

$$((y^0)^3\varphi_i(m)Q_i(x^1)^3)_0 = \frac{1}{8}(m+1)(m+2)(m+3)\varphi_i(m+3)Q_i \in \mathcal{I}$$

So $(m+1)(m+2)(m+3)\varphi_i(m+3) \in \mathcal{J}_i$ and $(m+1)(m+2)(m+3)\varphi_i(m+3) = p_i(m)\varphi_i(m)$ with some polynomials $p_i(m)$. Further

 $(m+1)^2(m+2)^2(m+3)^2\varphi_i(m+3)\varphi_{-i}(m+3) = q_i(m)\varphi_i(m)\varphi_{-i}(m),$

where $q_i = p_i p_{-i}$. Since $\varphi_i(m) \varphi_{-i}(m)$ is even polynomial, the real part of the rightest root of $\varphi_i(m) \varphi_{-i}(m)$ is non negative, and so this rightest root is not a root of the polynomial $(m+1)^2(m+2)^2(m+3)^2\varphi_i(m+3)\varphi_{-i}(m+3)$. So the polynomial $\varphi_i(m)\varphi_{-i}(m)$ has no complex roots and hence $\varphi_i(m) = 1$.

In such a way, $Q_i \in \mathcal{I}$ and $1 = Q_0 + Q_1 + Q_2 \in \mathcal{I}$.

5 Lie superalgebra $H_{S_3}(0)^L$

Now let us consider Lie superalgebra $\mathfrak{A} = H_{S_3}(0)^L$ which consists of elements of associative algebra $H_{S_3}(0)$ with operation $[f,g] = fg - (-1)^{\pi(f)\pi(g)}gf$. This Lie superalgebra has an ideal $\mathfrak{A}_1 = [\mathfrak{A}, \mathfrak{A}]$ with the following evident properties

(i) codim $\mathfrak{A}_1 = 2$,

(ii) $\mathcal{A}_{1/2} \oplus \mathcal{A}_1 \oplus ... \subset \mathfrak{A}_1$.

Let Z be the center of $H_{S_3}(0)$. Obviously, $Z \subset \mathcal{A}_0$ and so every element of Z is a polynomial of m with coefficients in $\mathbb{C}[S_3]$.

Proposition 3. $Z = \mathbb{C}$.

Let $f(m) \in \mathbb{Z}$. As m is even then f is even element also. As $mL_i = -L_im$, the relation [f, m] = 0 gives that $f(m) = \sum f_i(m)Q_i$. Due to equalities $[(x^0)^3, Q_i] = 0$ and commutation relations one has $[(x^0)^3, f(m)] = (x^0)^3(f(m) - f(m-3))$ and as a consequence f(m) = f(m-3). So f(m) does not depend on $m, f(m) \in \mathbb{C}[S_3]$. To finish the proof it is sufficient to commute f with x^0 or y^0 .

Proposition 4. $Z \cap \mathfrak{A}_1 = \{0\}.$

As there exists such supertrace that $str(1) \neq 0$ and $Z = \mathbb{C}$, it follows from $str(Z \cap \mathfrak{A}_1) = 0$ that $Z \cap \mathfrak{A}_1 = \{0\}$.

Proposition 5. Let $\mathcal{I} \subset \mathfrak{A}_1$ be an ideal and $\mathcal{I}_{even} = \{0\}$. Then $\mathcal{I}_{odd} = \{0\}$. Let $r \in \mathcal{I}_{odd}$. Due to \mathfrak{sl}_2 invariance one can choose r in the form

$$r = \sum_{i=0,1,2} \sum_{n=0}^{2s} \left((x^0)^n (y^0)^{2s-n} f_{ni}(m) Q_i + (x^0)^n (y^0)^{2s-n} g_{ni}(m) L_i \right)$$

with odd value of 2s. As $(x^0)^3 \in \mathcal{A}_{3/2} \subset \mathfrak{A}_1$ then $[(x^0)^3, r] \in \mathcal{I}_{even}$ and $\{(x^0)^3, r\} = 0$. So the following relations take place:

$$\sum_{i=0,1,2} \sum_{n=0}^{2s} (x^0)^{n+3} (y^0)^{2s-n} \left(f_{ni}(m) + f_{ni}(m+3) \right) Q_i = 0$$

and so $f_{ni} = 0$. Further, it follows from

$$0 = \{(x^0)^3, r\} \simeq \sum_{i=0,1,2} \sum_{n=0}^{2s} \left((x^0)^3 + (y^0)^3 \right) (x^0)^n (y^0)^{2s-n} g_{ni}(m) L_i$$

that $g_{ni}(m) = 0$ also. Here the sign \simeq is used to denote the equality up to polynomials of lesser degrees.

Theorem 2 Lie superalgebra \mathfrak{A}_1 is simple.

This Theorem follows from the next two general theorems proven by S.Montgomery in [7]:

Theorem 3 Let \mathcal{A} be associative simple superalgebra and $\mathcal{I} \subset [\mathcal{A}^L, \mathcal{A}^L]$ be a graded ideal of $[\mathcal{A}^L, \mathcal{A}^L]$ such that $\mathcal{I} \neq [\mathcal{A}^L, \mathcal{A}^L]$. Then $\mathcal{I}_3 = \{0\}$, where $\mathcal{I}_1 = [\mathcal{I}, \mathcal{I}\}, \mathcal{I}_2 = [\mathcal{I}_1, \mathcal{I}_1], \mathcal{I}_3 = [\mathcal{I}_2, \mathcal{I}_2].$

Theorem 4. Let \mathcal{A} be associative simple superalgebra and $\mathcal{I} \subset [\mathcal{A}^L, \mathcal{A}^L]$ be a graded ideal of $[\mathcal{A}^L, \mathcal{A}^L]$ such that $[\mathcal{I}_{even}, \mathcal{I}] \subseteq Z(\mathcal{A})$ where $Z(\mathcal{A})$ is the center of \mathcal{A} . Then $\mathcal{I}_{even} \subseteq Z(\mathcal{A})$.

Indeed, let $\mathcal{I} \subset \mathfrak{A}_1$ be an ideal such that $\mathcal{I} \neq \mathfrak{A}_1$. Due to Theorem 3 one can consider that $[\mathcal{I}, \mathcal{I}] = \{0\}$. Then it follows from Theorem 4 and Proposition 4 that $\mathcal{I}_{even} = \{0\}$. Further, Proposition 5 gives that $\mathcal{I}_{odd} = \{0\}$, and so $\mathcal{I} = \{0\}$.

Theorem 5 Simple Lie superalgebra \mathfrak{A}_1 has at least 2 independent bilinear invariant forms.

Two-dimensional space of supertraces $str(\cdot)$ on $H_{S_3}(0)$ generates some space of invariant bilinear forms B(u, v) = str(uv) on \mathfrak{A}_1 . This space is also 2-dimensional. Indeed, let some supertrace $str_0(\cdot)$ on \mathcal{A} leads to bilinear form B_0 on \mathfrak{A}_1 which is equal to zero identically. The elements x^0, y^1, x^0Q_1 and y^1Q_1 belong to $\mathcal{A}_{1/2} \subset \mathfrak{A}_1$. So, $0 = B_0(x^0, y^1) - B_0(y^1, x^0) = str_0([x^0, y^1]) = str_0(1)$ and $0 = B_0(x^0, y^1Q_1) - B_0(y^1, x^0Q_1) = str_0([x^0, y^1]Q_1) = str_0(Q_1)$. It follows from (8) that $str_0(1) = -\frac{1}{6}(S_1 - \frac{3}{2}S_2)$ and $str_0(Q_1) = \frac{1}{6}(S_1 + \frac{3}{2}S_2)$. So $S_1 = S_2 = 0$ and str_0 is equal to zero identically.

Acknowledgments

The author is very grateful to M. Vasiliev and to D. Leites for useful discussions and to organizers of the conference "Lie and Jordan Algebras, their Representations and Applications-II" for hospitality. This work was supported by the RFBR grant No. 02-02-17067, by the RFBR grant for Leading Scientific Schools No. 1578-2003-2 and partially by Brazilian foundation FAPESP.

References

- [1] I.Shchepochkina, hep-th/9702122.
- [2] M.A.Olshanetsky and A.M.Perelomov, Phys. Rep., 94 (1983) 313.
- [3] S.E.Konstein, math-ph/9904032.
- [4] S.E.Konstein and M.A.Vasiliev, J. Math. Phys., 37 (1996) 2872.
- [5] S.E.Konstein, Theor. Math. Phys., 116 (1998) 122; hep-th/9803213.
- [6] S.E.Konstein, math-ph/0112063.
- [7] S.Montgomery, J. of Algebra, 195 (1997) 558.

S.E.Konstein

I.E.Tamm Department of Theoretical Physics Lebedev Physical Institute 119991, Leninsky Prospect 53, Moscow, Russia **Russia** e-mail: konstein@lpi.ru