Resenhas IME-USP 2004, Vol. 6, No. 2/3, 257 - 264.

Generalised Euler Characteristics of Varieties of Tori in Lie Groups

G.I. Lehrer¹

Contents

- 1. The variety of maximal tori. Rational points, twisting.
- 2. The main theorems for real Lie groups. Weighted Euler characteristics (Joint work with J. van Hamel).
- 3. Example: the case $sl_2(\mathbb{R})$
- 4. The Kashiwara-Sato-Fourier transform of complexes of sheaves.
- 5. Characteristic functions and Fourier transforms.
- 6. Connection with Springer representations.
- 7. Open problems.

1 The variety of maximal tori. Rational points, twisting.

Let $\overline{K} = K \supseteq k$ be fields, $\Gamma := \operatorname{Gal}(K/k)$, G be a connected reductive algebraic group over K, defined over k. Γ acts on G, $G(k) := G^{\Gamma}$, the group of k-points of G.

Our main examples: $k = \mathbb{R}$, $K = \mathbb{C}$, and $k = \mathbb{F}_q$, $K \subset \overline{\mathbb{F}}_q$. In these examples $\Gamma = \langle \gamma \rangle$ is cyclic, and we shall assume this henceforth.

The variety of maximal tori of G is denoted \mathcal{T} . It has an action of Γ , and we refer to Γ -fixed tori as "rational". In our two examples, $\mathcal{T}^{\Gamma} \neq \emptyset$.

1.1 Twisting of tori

Let S_0 be a maximal k - split torus of G, and let T_0 be any rational maximal torus which contains S_0 . It is known in our two cases that T_0 is unique up to conjugacy by G(k).

Write $W := N_G(T_0)/T_0$, the Weyl group. It has a Γ -action. Say $v \sim_{\Gamma} w$ if $\exists u \in W$ such that $w = uv\gamma(u)^{-1}$. The set of Γ -classes of W is $H^1(\Gamma, W)$ (Galois cohomology).

Suppose $T = gT_0g^{-1} \in \mathcal{T}(k) = \mathcal{T}^{\Gamma}$. Then $\gamma(gT_0g^{-1}) = gT_0g^{-1} \Longrightarrow g^{-1}\gamma(g) \in N_G(T_0)$, so $= \dot{v}$ for $v \in W$. The Γ -class of $v \in W$ is independent of g, and is called the *type* of $T \in \mathcal{T}(k)$. We say T is 'twisted by v'.

Let ϵ be the alternating character of W. Then ϵ is constant on Γ -classes, so that it makes sense to speak of the sign $\epsilon(T) := \epsilon(v)$ of $T \in \mathcal{T}(k)$. This gives $\epsilon : \mathcal{T}(k) \longrightarrow \{\pm 1\}$.

¹The author was partially supported by CCInt.

2 The main theorems for real Lie groups. (Joint work with J. van Hamel)

2.1 The local system S_{ϵ}

For any Γ -space X, a local system \mathcal{L} (of \mathbb{C} -vector spaces) on X is Γ -equivariant if there is an isomorphism $\gamma : \gamma^* \mathcal{L} \xrightarrow{\sim} \mathcal{L}$. A similar definition applies to any sheaf, or complex of sheaves on X.

 \mathcal{P} := variety of "Killing couples" ($T \subset B$), where T, B are respectively a maximal torus and Borel subgroup of G.

 $p: \mathcal{P} \longrightarrow \mathcal{T}$, the first projection $(T, B) \mapsto T$, is an unramified covering with group W. If \mathbb{C} denotes the constant sheaf on \mathcal{P} , then

$$p_*\mathbb{C} = \oplus_{E \in \hat{W}} E \otimes \mathcal{S}_E,$$

where S_E is the irreducible local system on \mathcal{T} which corresponds to E.

The local system S_{ϵ} is Γ -equivariant.

2.2 Weighted Euler Characteristics

Let X quasi-projective, defined over \mathbb{R} variety; $\Gamma \cong \mathbb{Z}/2\mathbb{Z}$ acts via σ , 'complex conjugation'.

The fixed point variety X^{σ} has a finite number of connected components: $X^{\sigma} = \coprod C$.

If S is a Γ -equivariant local system on X define the Lefschetz number of σ on (X, S):

$$\Lambda_c(\sigma, X, \mathcal{S}) := \sum_i (-1)^i \operatorname{Trace}(\sigma, H^i_c(X, \mathcal{S})).$$

For any $x \in X^{\sigma}$, Trace (σ, S_x) depends only on the connected component C in which x lies. Write Trace $(\sigma, S|_C)$ for this common value.

Proposition 1. We have

$$\Lambda_c(\sigma, X, \mathcal{S}) = \sum_C \chi_c(C) \operatorname{Trace}(\sigma, \mathcal{S}|_C).$$

We refer to either side as the "weighted Euler characteristic" of X^{σ} .

2.3 Statement of Main Results - The Real Case

Let G connected, reductive over \mathbb{C} , defined over \mathbb{R} algebraic group, so $\Gamma = \langle \sigma \rangle$ acts. T_0 a maximally split rational maximal torus; $B_0 \supseteq T_0$ a Borel subgroup. Then $\sigma(B_0) = v_0 B_0 v_0^{-1}, v_0 \in W$.

The real index $\epsilon_0(G) := \epsilon(v_0) = \pm 1$ is well defined.

 \mathfrak{G} , the Lie algebra of G (over \mathbb{R}) inherits G's Γ -action.

 \mathfrak{G} has an $\mathrm{Ad}(G)$ invariant non-degenerate form $\langle , \rangle : \mathfrak{G} \times \mathfrak{G} \longrightarrow \mathbb{C}$, such that $\langle \mathfrak{G}(\mathbb{R}), \mathfrak{G}(\mathbb{R}) \rangle \subset \mathbb{R}$.

For $\xi \in \mathfrak{G}(\mathbb{R})$, define \mathbb{R} -varieties \mathcal{T}^{ξ} and \mathcal{T}_{ξ} as follows.

$$\mathcal{T}^{\xi} = \{ T \in \mathcal{T} \mid \operatorname{Lie} T \ni \xi \}$$

$$\tag{2}$$

$$\mathcal{T}_{\xi} = \{ T \in \mathcal{T} \mid \langle \operatorname{Lie} T, \xi \rangle = 0 \}.$$
(3)

Theorem 4. If $\xi \in \mathfrak{G}(\mathbb{R})$,

$$\epsilon_0(G)\Lambda_c(\sigma,\mathcal{T}^{\xi},\mathcal{S}_{\epsilon}) = \epsilon_0(Z_G(\xi)^0)\epsilon(v_{\xi})(-1)^{N(\xi)},$$

where:

 $\epsilon_0(H)$ is the real index of H,

 $v_{\xi} \in W$ is the type of a maximally split torus of $Z_G(\xi)^0$, and $N(\xi)$ is the number of positive roots of $Z_G(\xi)^0$.

Theorem 5. In the same notation, we have

 $\Lambda_c(\sigma, \mathcal{T}_{\xi}, \mathcal{S}_{\epsilon}) = \begin{cases} (-1)^N \text{ if } \xi \text{ is nilpotent} \\ 0 \text{ otherwise} \end{cases},$

where N is the number of positive roots of G.

To see the connection with weighted Euler characteristics, observe that if $T \in \mathcal{T}^{\sigma}$ has type $w \in Z^1(\Gamma, W) \subseteq W$, then

Trace
$$(\sigma, \mathcal{S}_{\epsilon,T}) = \epsilon_0(G)\epsilon(w).$$

So both sides in Theorems 4 and 5 may be expressed in the form

$$\sum_{\substack{C \subset X(\mathbb{R}) \\ \text{component}}} \chi_c(C) \cdot \epsilon(C),$$

where $\epsilon(C) = \epsilon(T)$ for any $T \in C$.

Theorem 4 is an analogue of the Steinberg character formula for groups over \mathbb{F}_q .

Theorem 5 is an analogue of the fact that over \mathbb{F}_q , the Fourier transform of the Steinberg character is the characteristic function of the nilpotent set (on \mathfrak{G}^F , F = Frobenius).

3 Example: The Case SL₂

Take $G = SL_2$ with standard complex conjugation; $T_0 =$ diagonal subgroup; $W = \{1, r\}$.

Here $\mathcal{P} \cong G/T_0$ with the induced real structure, and this is isomorphic to the G-orbit in \mathfrak{G} of $\xi_0 := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. So

$$\mathcal{P} \cong \left\{ \begin{pmatrix} a & b \\ c - a \end{pmatrix} : a^2 + bc = 1 \right\} \subset \mathfrak{G} \cong \mathbb{A}^3.$$

The *W*-action on \mathcal{P} is given by $(a, b, c) \stackrel{r}{\mapsto} (-a, -b, -c)$, and so $\mathcal{T} \cong \{[a, b, c] \in \mathbb{P}^2 \mid a^2 + bc \neq 0\}$ and $p: \mathcal{P} \longrightarrow \mathcal{T}$ is given by $(a, b, c) \mapsto [a, b, c]$.

The Killing form is given by $\langle \xi, \eta \rangle = \operatorname{Trace}(\xi\eta)$, so if $\xi = \begin{pmatrix} x & y \\ z - x \end{pmatrix} \in \mathfrak{G}$ the subvariety $\mathcal{P}_{\xi} \subset \mathcal{P}$ is given by

$$\mathcal{P}_{\xi} := \{(a, b, c) \in \mathcal{P} : 2xa + yc + zb = 0\}.$$

Note that we have a 2-fold covering $p : \mathcal{P}_{\xi}^{\sigma} \amalg \mathcal{P}_{\xi}^{r\sigma} \longrightarrow \mathcal{T}_{\xi}^{\sigma}$, so that $\Lambda_{c} = \frac{1}{2} \left(\chi_{c}(\mathcal{P}_{\xi}^{\sigma}) - \chi_{c}(\mathcal{P}_{\xi}^{r\sigma}) \right).$

One now easily constructs the following table, which lists the various cases. In the table, $\Lambda_c = \Lambda_c(\sigma, \mathcal{T}_{\xi}, \mathcal{S}_{\epsilon})$.

ξ	Λ_c	$\mathcal{P}_{\xi}^{\sigma}$	$\chi_c(\mathcal{P}^\sigma_\xi)$	$\mathcal{P}_{\xi}^{r\sigma}$	$\chi_c(\mathcal{P}_{\xi}^{r\sigma})$
$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	-1	$a^2 + bc = 1$	0	$a^2 + bc = -1$	2
$\begin{pmatrix} 0 \ 1 \\ 0 \ 0 \end{pmatrix}$	-1	$\begin{cases} a^2 = 1 \\ c = 0 \end{cases}$	$^{-2}$	$\emptyset: \begin{cases} a^2 = -1\\ c = 0 \end{cases}$ $\begin{cases} a = 0\\ bc = -1 \end{cases}$ $\emptyset: \begin{cases} b = c\\ a^2 + b^2 = -1 \end{cases}$	0
$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	0	$\left\{ \begin{array}{l} a=0\\ bc=1 \end{array} \right.$	$^{-2}$	$\left\{ \begin{array}{l} a=0\\ bc=-1 \end{array} \right.$	$^{-2}$
$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	0	$\begin{cases} b = c \\ a^2 + b^2 = 1 \end{cases}$	0	$\emptyset: \begin{cases} b = c \\ a^2 + b^2 = -1 \end{cases}$	0

4 (Kashiwara-Sato) Fourier transforms of conical sheaves

Let $\tau : E \longrightarrow X$ be a Γ -equivariant real vector bundle; a Γ -(equivariant) sheaf S on E is *conical* if S is constant on each $\mathbb{R}^{>0}$ -orbit.

260

In general Γ may be any discrete group acting compatibly on X and E; for us Γ defines real structures on the complex analytic varieties X, E.

 $\mathcal{D}_{cc}^{b}(E,\Gamma)$ is the category of bounded complexes of sheaves on E which (a) are Γ -equivariant, and (b) have cohomology sheaves which are conical and constructible on some semi-algebraic stratification of E.

Let $\check{\tau} : \check{E} \longrightarrow X$ be the dual bundle of $E, \mu : E \times_X \check{E} \longrightarrow \mathbb{R}$ the canonical pairing and write $P := \mu^{-1}(\mathbb{R}^{\geq 0}); p_1, p_2$ are the first and second projections, $E \times_X \check{E} \longrightarrow E, \check{E}.$

The (Kashiwara-Sato-)Fourier transform $\mathcal{F}_E : \mathcal{D}^b_{cc}(E) \longrightarrow \mathcal{D}^b_{cc}(\check{E})$ is defined by

 $\mathcal{F}_E(K^{\bullet}) := Rp_{2*} \circ \operatorname{Res}_P \circ p_1^*(K^{\bullet}),$

where $\operatorname{Res}_P = Ri_*i^!$, *i* being the inclusion $P \hookrightarrow E \times_X \check{E}$.

The Fourier transform has familiar properties, including: it is involutory modulo Tate twists, shifts and inversion; it commutes with Verdier duality; it behaves well with respect to base change, and morphisms of varieties.

5 Characteristic functions and Fourier transforms

For K^{\bullet} in $\mathcal{D}_{cc}^{b}(E(\mathbb{C}), \sigma)$ define the orbit characteristic function $\chi_{K^{\bullet}}$ of K^{\bullet} to be the function whose value at the orbit $\overline{x} = \{x, \sigma(x)\}$ of a point $x \in E(\mathbb{C})/\sigma$ is the element of $R(\sigma)$ (the representation ring of $\langle \sigma \rangle$) given by

$$\chi_{K^{\bullet}}(\overline{x}) = \bigoplus_{y \in \overline{x}} \sum_{i} (-1)^{i} [\mathcal{H}^{i}(K^{\bullet})_{y}].$$
(6)

This clearly determines the characteristic function $\Lambda_{K^{\bullet}} : X^{\sigma} = X(\mathbb{R}) \longrightarrow \mathbb{C}$, defined by (for $x \in X^{\sigma}$)

$$\Lambda_{K^{\bullet}}(x) = \sum_{i} (-1)^{i} \operatorname{Trace}(\sigma, \mathcal{H}^{i}(K^{\bullet})_{x}).$$
(7)

For our purpose, a key result is:

Proposition 8. Suppose M^{\bullet} , N^{\bullet} in $\mathcal{D}^{b}_{cc}(E(\mathbb{C}), \sigma)$ satisfy $\chi_{M^{\bullet}} = \chi_{N^{\bullet}}$. Then $\chi_{\mathcal{F}_{E}M^{\bullet}} = \chi_{\mathcal{F}_{E}N^{\bullet}}$.

In particular, the characteristic functions $\Lambda_{\mathcal{F}_E M}$ and $\Lambda_{\mathcal{F}_E N}$ are equal.

6 Connection with Springer representations

Define varieties \tilde{V}, V :

$$\widetilde{V} = \{ (\xi, (T \subseteq B)) \in \mathfrak{G} \times \mathcal{P} \mid \xi \in \operatorname{Lie} T \}
V = \{ (\xi, T) \in \mathfrak{G} \times \mathcal{T} \mid \xi \in \operatorname{Lie} T \}$$
(9)

Then consider $\tilde{V} \xrightarrow{\omega} V \xrightarrow{\rho} \mathfrak{G}$, where ω is a Galois *W*-covering and ρ is the first projection.

 $\mathcal{S}_{\epsilon}^{V}$ is the local system on V corresponding to $\epsilon \in \hat{W}$, and we define $K^{\bullet} := \rho_{!} \mathcal{S}_{\epsilon}^{V}$.

Theorem 10. $K^{\bullet} \in \mathcal{D}^{b}_{cc}(\mathfrak{G}, \sigma)$, and for $\xi \in \mathfrak{G}(\mathbb{R})$,

$$\Lambda_{\mathcal{F}_{\mathfrak{G}}K^{\bullet}}(\xi) = (-1)^{\operatorname{rank} \mathfrak{G}} \Lambda_{c}(\sigma, \mathcal{T}_{\xi}, \mathcal{S}_{\epsilon}).$$

Our strategy: Find a perverse complex M^{\bullet} with the same orbit characteristic function as K^{\bullet} , whose Fourier transform can be computed by other means.

Consider

$$\begin{array}{ccc} \widetilde{\mathfrak{G}} & \stackrel{\pi}{\longrightarrow} & \mathfrak{G} \\ & & & & \\ \operatorname{ncl} & & & & \\ \widetilde{\mathfrak{G}}_{rs} & \stackrel{\pi_{0}}{\longrightarrow} & \mathfrak{G}_{rs}, \end{array}$$

$$(11)$$

where $\widetilde{\mathfrak{G}} = G \times^B \mathfrak{b} = \{(B,\xi) \in \mathcal{B} = G/B_0 \times \mathfrak{G} \mid \xi \in g. \text{Lie } B\}, \mathfrak{G}_{rs} \text{ is the variety of regular and semisimple elements of } \mathfrak{G}.$

 π_0 is an unramified W-covering, and Lusztig has shown that $\pi_! \mathbb{C} \cong IC^{\bullet}(\mathfrak{G}, \mathcal{L}_{\text{Reg}})$, where $\mathcal{L}_{\text{Reg}} = \pi_{0*}\mathbb{C}$ is the local system on \mathfrak{G}_{rs} corresponding to the regular representation. This leads to Springer action of W on $\mathcal{H}^*(\pi_!(\mathbb{C}))$, and implies

$$\pi_! \mathbb{C} = \bigoplus_{E \in \widehat{W}} E \otimes M_E^{\bullet},$$

where $M_E^{\bullet} \in \mathcal{D}_{cc}^b(\mathfrak{G}, \sigma)$, and $M_E^{\bullet}[\dim \mathfrak{G}]$ is perverse and irreducible.

Theorem 12. The complexes K^{\bullet} (7) and $M^{\bullet}_{\epsilon} \in \mathcal{D}^{b}_{cc}(\mathfrak{G}, \sigma)$ have the same orbit characteristic functions.

Hence by Proposition 8, their Fourier transforms have equal characteristic functions.

Proposition 13. (MacPherson)

$$\mathcal{F}_{\mathfrak{G}}(M^{\bullet}_{\epsilon E}) = \mathfrak{tt}^{N-\dim \mathfrak{G}}(M^{\bullet}_{E}[-\dim \mathfrak{G}-r])|_{\mathfrak{G}_{nd}},$$

So, up to Tate twist and shift,

$$\mathcal{F}_{\mathfrak{G}}(M^{\bullet}_{\epsilon}) = M^{\bullet}_{1}|_{\mathfrak{G}_{nil}}.$$

Theorem 5 now follows from: $\Lambda_{\mathcal{F}_{\mathfrak{G}}M^{\bullet}}(\xi) = \Lambda_{\mathcal{F}_{\mathfrak{G}}K^{\bullet}}(\xi) = \pm \Lambda_{c}(\sigma, \mathcal{T}_{\xi}, \mathcal{S}_{\epsilon}).$

7 Open problems.

- The formula for $\Lambda_c(\sigma, \mathcal{T}^{\xi}, \mathcal{S}_{\epsilon})$ bears a striking resemblance to the character formula for the Steinberg representation of a reductive group over \mathbb{F}_q . Is there a representation of $G(\mathbb{R})$ with a "trace" whose value at $x \in G(\mathbb{R})$ is $\pm \Lambda_c(\sigma, \mathcal{T}^x, \mathcal{S}_{\epsilon})$?
- Compute $\Lambda_c(\sigma, \mathcal{T}^{\xi}, \mathcal{S}_{\rho})$ for other representations ρ of W, There are analogies with the case of \mathbb{F}_q which suggest that the values of Green functions at q = -1 may be involved.
- Is there a "reasonable" Fourier transform on the space of constructible functions on a vector bundle E satisfying the property that for $K^{\bullet} \in \mathcal{D}_{cc}^{b}(E)$, the Fourier transform of $\chi_{K^{\bullet}}$ is $\chi_{\mathcal{F}_{E}(K^{\bullet})}$?

References

- J. Bochnak, M. Coste, and M.-F. Roy, "Real algebraic geometry", Ergeb. Math. Grenzgeb. (3), 36, Springer-Verlag, 1998.
- [2] J-L Brylinski, "Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques. (French) [Canonical transformations, projective duality, Lefschetz theory, Fourier transforms and trigonometric sums]", Géométrie et analyse microlocales. Astérisque 140-141 (1986), 3-134, 251.
- [3] A.A. Beilinson, J. Bernstein et P. Deligne, "Faisceaux pervers (French) [Perverse sheaves]", Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque 100, Soc. Math. France, Paris, (1982), 5–171.
- [4] G.I. Lehrer, "The space of invariant functions on a finite Lie algebra", Trans. Amer. Math. Soc. 348 (1996), 31–50.
- [5] G.I. Lehrer, "Rational tori, semisimple orbits and the topology of hyperplane complements", Comment. Math. Helv. 67 (1992), 226-251.
- [6] G.I. Lehrer and J. van Hamel, "The topology of the real points of certain varieties of complex algebraic tori", preprint in preparation (draft available), Sydney University, 2004.
- [7] Masaki Kashiwara and Pierre Schapira, "Sheaves on manifolds." With a chapter in French by Christian Houzel. Corrected reprint of the 1990 original. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 292. Springer-Verlag, Berlin, 1994
- [8] G. Lusztig, "An induction theorem for Springer's representations", Preprint on Lusztig's web site.

- [9] T. Shoji, "Geometry of orbits and Springer correspondence", Astérisque 168 (1988), 61-140.
- [10] Hassler Whitney, "Elementary structure of real algebraic varieties", Ann. of Math. (2) 66, (1957), 545-556.

G.I. Lehrer

School of Mathematics and Statistics University of Sydney NSW 2006, Australia **Australia**

e-mail: G.Lehrer@maths.usyd.edu.au