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Generalised Euler Characteristics of Varieties of Tori in Lie Groups 
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Let k = K :2 k be fields, r := Gal(K/k), G be a connected reductive algebraic 
group over K, defined over k. r acts on G, G(k) := Gr , the group of k-points of 
G. 

Our main examples: k = IR, K = CC, and k = IFq , K c iFq. In these examples 
r = (-'y) is cyclic, and we shall assume this henceforth . 

The variety of maximal tori of G is denoted T It has an action of r, and we 
refer to r-fixed tori as "rational" . In our two examples, í r :f. 0. 

1.1 Twisting of tori 

Let 8 0 be a maximal k - split torus of G, and let To be any rational maximal 
torus which contains 80 , It is known in our two cases that To is unique up to 
conjugacy by G(k). 

Write W := Nc(To)/To, the Weyl group. It has a r-action. Say v ""r w if 
3u E W such that w = uv')'(U)-l. The set of r-classes of W is Hl (r, W) (Galois 
cohomology) . 

Suppose T = gTog- 1 E i(k) = ir. Then ')'(gTOg - 1 ) = gTog-1 ==> 
g- l')' (g) E Nc(To), so = iJ for v E W. The r-class of v E W is independent 
of g, and is called the type of TE i(k). We say T is 'twisted by v ' . 

Let € be the alternating character of W . Then € is constant on r-classes, so 
that it makes sense to speak of the sign €(T) := €(v) of T E í(k). This gives 
€: i(k)---'t {±1}. 

l The author was partially supported by CClnt . 
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2 The main theorems for real Lie groups. (J oint 
work with J. van Hamel) 

2.1 The local system Sf 

For any r -space X, a local system .c (of C-vector spaces) on X is r -equivariant if 
there is an isomorphism "( : "(*.c~.c. A similar definition applies to any sheaf, 
or complex of sheaves on X. 

P:= variety of "Killing couples" (T C B), where T, B are respectively a max­
imal torus and Borel subgroup of G. 

p : P---+ í, the first projection (T, B) t-t T, is an unramified covering with 
group W. If C denotes the constant sheaf on P, then 

p*C = EBEEWE ~ SE, 

where SE is the irreducible local system on í which corresponds to E. 
The local system S. is r-equivariant. 

2.2 Weighted Euler Characteristics 

Let X quasi-projective, defined over ]R variety; r ~ 71./271. acts via a, 'complex 
conjugation' . 

The fixed point variety XO' has a finite number of connected components: 
XO' = llG. 

If S is a r -equivariant local system on X define the Lefschetz number Df a on 
(X ,S): 

Ac(a,X,S):= 2)-1)iTrace(a,H~(X,S)). 
i 

For any x E XU, Trace( a, Sx) depends only on the connected component G in 
which x lies. Write 'frace(a, Slc) for this common value. 

Proposition 1. We have 

Ac(a,X,S) = LXc(G) Trace(a,Slc). 
C 

We refer to either side as the "weighted Euler characteristic" of XU. 

2.3 Statement of Main Results - The Real Case 

Let G connected, reductive over C, defined over ]R algebraic group, so r = (a) 
acts . To a maximally split rational maximal torus; Bo :2 To a Borel subgroup. 
Then a(Bo) = voBov01 , Vo E W. 

The real index Eo(G) := E(VO) = ±1 is well defined. 
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Qj, the Lie algebra of G (over IR) inherits G's r-action. 
Qj has an Ad(G) invariant non-degenerate form ( , ) : Qj X Qj~ C, such that 

(Qj(IR) , Qj(IR) C llt . 
For f, E Qj(IR), define IR-varieties TE. and Tç as follows. 

TE. = {T E T I Lie T 3 Ç} 

Tç = {T E TI (LieT,Ç) = D} . 

Theorem 4. lf f, E Qj (IR) , 

€o(G)Ac(a, TE., SE) = €o(Za(Ç)°)€(vç)( _l)N(Ç), 

where: 
€o(H) is the real index of H, 
vE. E W is the type of a maximally split torus of Za (f,)O, and 
N(f,) is the number of positive roots of Za(f,)o . 

Theorem 5. In the same notation, we have 

A ( ". S) _ {(_l)N iff, is nilpotent 
c a, I E.' E - • 

O otherwzse , 

where N is the number of positive roots of G . 

(2) 

(3) 

To see the connection with weighted Euler characteristics, observe that if T E 
TU has type w E Zl(r, W) ç W, then 

Trace(a,Sf ,T) = €o(G)€(w). 

So both sides in Theorems 4 and 5 may be expressed in the form 

2::: Xc (C) . €(C), 
CCX(IR) 
connected 
component 

where €(C) = €(T) for any T E C . 

Theorem 4 is an analogue of the Steinberg character formula for groups over 
lFq . 

Theorem 5 is an analogue of the fact that over 1F'q, the Fourier transform of 
the Steinberg character is the characteristic function of the nilpotent set (on QjF, 

F = Frobenius). 
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3 Example: The Case SL2 

Take G = SL2 with standard complex conjugation; To = diagonal subgroup; 
W = {l,r}. 

Here P ~ G jTo with the induced real structure, and this is isomorphic to the 

G-orbit in <!5 of ço := G ~l). So 

P ~ { ( ~ !a) : a2 + bc = 1 } C <!5 ~ A3 . 

The W-action on P is given by Ca, b, e) ~ C -a, -b, -e), and so T ~ {[a, b, e] E 
JP'2 I a2 + be f:. O} and p : P--+ T is given by Ca, b, e) f-7 [a, b, e]. 

The Killing form is given by (ç,1J) = TraceCç1J), so if ç = (~!.x) E <!5 the 

subvariety P~ C P is given by 

Pç := {(a, b, e) E P: 2xa + ye + zb = a}. 

Note that we have a 2-fold covering p : P[ li Pt" --+ 7f..u, so that Ac = 

~ (XcCP[) - Xc(P[U)). 

4 

One now easily constructs the following table, which lists the various cases. 
In the table, Ac = AcCO", Tç,S,). 

ç liA, Pf Xc(Pf) Pfu Xc(PfU) 

(~~) -1 a2 + bc = 1 O a2 +bc=-1 2 

(~~) {a2 = 1 {a2 =-1 -1 c=O -2 0: O O 
c= 

G~l) O {a=o 
bc = 1 

-2 {a=o 
bc =-1 

-2 

(~ln O {b=C 
a2 + b2 = 1 

O {b=C 
0: a2 + b2 = -1 O 

(Kashiwara-Sato) Fourier transforms of conical 
sheaves 

Let T : E--+ X be a r-equivariant real vector bundle; a r-(equivariant) sheaf S 
on E is conical if S is constant on each ]R> o -orbit. 



Generalised Euler Characteristics of Variet.ies of Tori in Lie Groups 261 

In general r may be any discrete group acting compatibly on X and E; for us 
r defines real structures on the complex analytic varieties X , E . 

V~c(E, r) is the category of bounded complexes of sheaves on E which (a) 
are r-equivariant , and (b) have cohomology sheaves which are conical and con­
structible on some semi-algebraic stratification of E . 

Let f : E-+ X be the dual bundle of E, J.L : E Xx E-+ ffi. the canonical 
pairing and write P := J.L-l(ffi.~O); Pl,P2 are the first and second projections, 
E xxE-+ E,E. 

The (Kashiwam-Sato-)Fourier tmnsform FE : V~c (E)-+ V~c (E) is defined 
by 

FE(K·) := RP2* o Resp opi(K·), 

where Resp = Ri*i!, i being the inclusion P '-+ E Xx E. 
The Fourier transform has familiar properties, including: it is involutory mod­

ulo Tate twists , shifts and inversionj it commutes with Verdier dualitYj it behaves 
well with respect to base change, and morphisms of variet ies. 

5 Characteristic functions and Fourier trans­
forms 

For K· in V~cCE(<C) , u) define the orbit characteristic function XK. of K· to be 
the function whose value at the orbit x = {x,u(x)} of a point x E E(<C)/u is the 
element of R(u) (the representation ring of (u)) given by 

(6) 

This clearly determines the chamcteristic function AK. : XU = X (ffi.}--+ C, 
defined by (for x E XU) 

(7) 

For our purpose, a key result is: 

Proposition 8. Suppose M· , N· in V~c(E(q , u) satisfy XM· = XN. . Then 
XFEM· = XFEN·· 

In particular, the characteristic functions AFEM• and AFEN• are equal. 

6 Connection with Springer representations 

Define varieties V, V: 

V = {(ç, (T ç B)) E Qj X P I ç E LieT} 

V = {(ç, T) E Qj X TI ç E LieT} 
(9) 
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Then consider V ~ v -4 <!J, where w is a Galois W-covering and pis the first 
projection. 

s;' is the local system on V corresponding to f E W, and we define K- .­
PiS;'. 

Theorem 10. K- E 1J~c(<!J, 0'), and for ç E <!J(IR), 

Our strategy: Find a perverse complex M- with the same orbit characteristic 
function as K- , whose Fourier transform can be computed by other means. 

Consider 

inc1 I inc11 (11) 

where ® = G x B b = {(B,ç) E l3 = G/Bo x <!J I ç E g.LieB}, <!J rs is the variety 
of regular and semisimple elements of <!J . 

7ro is an unramified W-covering, and Lusztig has shown that 7riC ~ 
IC· (<!J, CReg), where CReg = 7ro*C is the local system on <!J rs corresponding to 
the regular representation. This leads to Springer action of W on 1l*(7r!(C)), and 
implies 

where MÊ E 1J~c (<!J, 0'), and MÊ[dim <!J] is perverse and irreducible. 

Theorem 12. The complexes K- (7) and M: E 1)~c (<!J,O') have the same orbit 
characteristic functions. 

Hence by Proposition 8, their Fourier transforms have equal characteristic 
functions. 

Proposition 13. (MacPherson) 

So, up to Tate twist and shijt, 



Generalised Euler Characteristics of Varieties of Tori in Lie Groups 263 

7 Open problemso 

• The formula for Ac (a, Tf., S{) bears a striking resemblance to the character 
formula for the Steinberg representation of a reductive group over lFq • Is 
there a representation of G(l~) with a "trace" whose value at x E G(IR) is 
±Ac(a, T", S{)? 

• Compute Ac(a, Tf.,Sp) for other representations p ofW, There are analogies 
with the case of lFq which suggest that the values of Green functions at 
q = -1 may be involved. 

• Is there a "reasonable" Fourier transform on the space of constructible func­
tions on a vector bundle E satisfying the property that for K· E 'D~c(E), 
the Fourier transform of XKO is XFE(KO)? 
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