Regulation of gene expression during seasonal metabolic depression in mammals

Authors

  • Lilian Cristina da Silveira Departamento de Fisiologia, Instituto de Biociências, USP

DOI:

https://doi.org/10.11606/issn.1984-5154.v4p10-15

Keywords:

Metabolic depression, gene expression, protein synthesis.

Abstract

Many organisms exhibit a marked decrease of resting rates of metabolism during the annual cycle, associated with lack of oxygen, water, food, or heat. Inhibition of the processes of transcription and translation may contribute significantly to the metabolic depression, although some proteins have increased expression during this condition. In hibernating mammals, regulation of transcription apparently occurs by adjustments at distinct levels, such as chromatin structure, RNA polymerase II activity, transcription factors, alternative splicing, microRNAs, besides changes in mRNA stability.

Downloads

Download data is not yet available.

References

Andrews, M. T., Squire, T. L., Bowen, C. M. e Rollins, M. B. (1998). Low-temperature carbon utilization is regulated by novel gene activity in the heart of a hibernating mammal. Proceedings of the National Academy of Sciences 95, 8392-8397.

Bartel, D. P. (2004). MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 116, 281-297.

Buck, M. J., Squire, T. L. e Andrews, M. T. (2002). Coordinate expression of the PDK4 gene: a means of regulating selection in a hibernating mammal. Physiological Genimics 8, 5-13.

Carey, H. V., Andrews, M. T. e Martin, S. L. (2003). Mammalian hibernation: Cellular and molecular responses to depressed metabolism and low temperature. Physiological Review 83, 1153-1181.

Chawla, A., Repa, J. J., Evans, R. M. e Mangelsdorf, D. J. (2001). Nuclear receptors and lipid physiology: opening the X-files. Science 294, 1866-1870.

Eddy, S. F., Morin Jr., P. e Storey, K. B. (2005). Cloning and expression of PPARγ and PGC-1α from the hibernating ground squirrel, Spermophilus tridecemlineatus. Molecular and Cellular Biochemistry 269, 175–182.

Eddy, S. F. e Storey, K. B. (2003). Differential expression of Akt, PPARγ, and PGC-1 during hibernation in bats. Biochemical Cell Biology 81, 269-274.

El Kebbaj, Z., Andreoletti, P., Mountassif, D., Kabine, M.; Schohn, H., Dauça, M., Latruffe, N., El Kebbaj, M. S. e Chekaoui-Malki, M. (2009). Differential regulation of Peroxisome Proliferator-Activated Receptor (PPAR)-α1 and truncated PPARα2 as an adaptive response to

fasting in the control of hepatic peroxisomal fatty acid β- oxidation in the hibernating mammal. Endocrinology 150, 1192-1201.

Fahlman, A., Storey, J. M. e Storey, K. B. (2000). Gene up-regulation in heart during mammalian

hibernation.Cryobiology 40, 332-342.

Finck, B. N. e Kelly, D. P. (2006). PGC-1 coativators: inducible regulators of energy metabolism in health and disease. The Journal of Clinical Investigation 116, 615-622.

Fleck , C. C. e Carey, H. V. (2005). Modulation of apoptotic pathways in intestinal mucosa during hibernation. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology 289, 586-595.

Friedman, R. C., Farh, K. K., Burge, C. B. e Barpel, D. P. (2009). Most mammalian mRNAs are conserved targets of micro RNAs. Genome Research 19, 92-105.

Germain, P., Staels, B., Dacquet, C., Spedding, M. e Laudet, V. (2006). Overview of nomenclature of nuclear receptors. Pharmacological Reviews 58, 685-704.

Gervois, P., Torra, I. P., Chinetti, G., Grotzinger, T., Dubois, G., Fruchart, J., Fruchart-Najib, J. e Leitersdorf, E.; Staels, B. (1999). A truncated human peroxisome proliferator-activated receptor α splice variant with dominant negative activity. Molecular Endocrinology 13,

-1549.

Heldmaier, G., Ortmann, S. e Elvert, R. (2004). Natural hypometabolism during hibernation and daily torpor in mammals. Respiratory Physiology & Neurobiology 141, 317-329.

Hittel, D. e Storey, K. B. (2002). The translation state of differentially expressed mRNAs in the hibernating 13-lined ground squirrel (Spermophilus tridecemlineatus). Archives of Biochemistry and Biophysics 401, 244-254.

Kersten, S., Seydoux, J., Peters, J. M., Gonzalez, F. J., Desvergne, B. e Wahli, W. (1999). Peroxisome proliferator-activated receptor α mediates the adaptive response to fasting. The Journal of Clinical Investigation 103, 1489-1498.

Knight, J. E., Narus, E. N., Martin, S. L., Jacobson, A., Barnes, B. M. e Boyer, B. B. (2000). mRNA stability and polysome loss in hibernating artic ground squirrel (Spermophilus parryii). Molecular and Cellular Biology 20, 6374-6379.

Lee, D. Y., Hayes, J. J., Pruss, C. e Wolffe, A. P. (1993). A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72, 73-84.

Morin, P. Jr., Dubuc, A. e Storey, K. B. (2008). Differential expression of microRNA species in organs of hibernating ground squirrels: A role in translational suppression during torpor. Biochimica et Biophysica Acta 1779, 628-633.

Morin, P. Jr. e Storey, K. B. (2006). Evidence for a reduced transcriptional state during hibernation in ground squirrels. Cryobiology 53, 310-318.

Nelson, C. J., Otis, J. P. e Carey, H. V. (2009). A role for nuclear receptors in mammalian hibernation. The Journal of Physiology 587, 1863-1870.

Ni, Z., Schwatz, B. E., Werner, J.; Suarez, J. e Lis, J. T. (2004). Coordination of transcription, RNA processing, and surveillance by P-TEFb kinase on heat shock genes. Molecular Cell 13, 55-65.

Nowak, S. e Corces, V. G. (2004). Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends in Genetics 20,

-220.

Rolfe, D. F. S. e Brown, G. C. (1997). Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiological Reviews 77, 731-758.

Ross, J. (1995) mRNA Stability in mammalian cells. Microbiological Reviews 59, 423-450.

Schreiber, S. N., Kutti, D., Brogli, K., Uhlmann, T. e Kralli, A. (2003). The Transcriptional Coactivator PGC-1 Regulates the Expression and Activity of the Orphan Nuclear Receptor Estrogen-Related Receptor (ERR α ). Journal of Biological Chemistry 278, 9013-9018.

Serizawa, H., Conaway, J. W. e Conaway, R. C. (1993). Phosphorylation of C-terminal domain of RNA polymerase II is not required in basal transcription, Nature 363, 371 – 374.

Sharp, P. A. (2009). The Centrality of RNA. Cell 136, 577-580.

Squire, T. L. e Andrews, M. T. (2003). Pancreatic triacylglycerol lipase in a hibernating mammal. I. Novel genomic organization. Physiological Genomics 16, 119-130.

Srere, H. K., Wang, L. C. H. e Martin, S. L. (1992). Central role for differential gene expression in mammalian hibernation. Proceedings of the National Academy of Sciences 89, pp.7119-7123.

Storey, K. B. (2004). Functional Metabolism: Regulation and Adaptation. Hobocken: Willey-Liss.

Storey, K. B. e Storey, J. M. (1990). Metabolic rete depression and biochemical adaptation in anaerobiosis, hibernation and estivation. The Quarterly Review of Biology 65, 145-174.

Storey, K. B. e Storey, J. M. (2004). Metabolic rate depression in animals: transcriptional and translational controls. Biological Reviews 79, 2207-2333.

Van Breukelen, F. e Martin, S. L. (2002). Reversible depression of transcription during hibernation. Journal of Comparative Physiology 172, 355-361.

Verschure, P. J. (2004). Positioning the genome within the nucleus, Biology of the Cell 96, 569-577.

Wu, P., Sato, J., Zhao, Y., Jaskiewicz, J., Popov, K. M. e Harris, R. A. (1998). Starvation and diabetes increase the amount of pyruvate dehydrogenase kinase isoenzyme 4 in rat heart. Biochemical Journal 329, 197- 201.

Zorio, D. A. R. e Bentley, D. L. (2004). The link between mRNA processing and transcription: communication works both ways. Experimental Cell Research 296, 91- 97.

Published

2010-04-15

How to Cite

Silveira, L. C. da. (2010). Regulation of gene expression during seasonal metabolic depression in mammals. Revista Da Biologia, 4(1), 10-15. https://doi.org/10.11606/issn.1984-5154.v4p10-15