Gene regulations of thyroid hormone receptors during metamorphosis of anuran amphibians
DOI:
https://doi.org/10.11606/issn.1984-5154.v4p16-21Keywords:
Thyroid gland, Transcription machinery, Metamorphosis, Thyroid hormone receptorsAbstract
Anurans amphibians developed several morphological and physiological adaptations to their earthly life. The thyroid gland is primarily responsible for the metamorphosis and this process is coordinated by the hypothalamic-pituitary-thyroid axis. The timing of metamorphosis is therefore a result of combined functions of synthesis of hormones and enzymes, processes that are regulated by gene expression of each component of that axis from de own hormones involved and their receptors. In this paper was approached how is gene regulation of thyroid hormone receptors and the importance of this process for the evolutionary success of the group.
Downloads
References
Atkinson, B.G., Helbing, C., Chen, Y. (1996). Reprogramming of genes expressed in amphibian liver during metamorphosis. In: Gilbert, L.I., Tata, J.R., Atkinson, B.G. (Eds.), Metamorphosis. Postembryonic Reprogramming of Gene Expression in Amphibian and Insect Cells. Academic Press, San Diego, pp. 539–566.
Barra, G.B., Velasco, F.R., Pessanha, R.P., Campos, A.M., Moura, F.N., Dias, S.M.G., Polikarpov, I., Ribeiro, R.C.J., Simeoni, L.A., Neves, F.A.R. (2004). Mecanismo molecular da ação do hormônio
tireoideano. Arq Bras Endocrinol Metab 48 (1), 25-39.
Benoit, G., Malewicz, M., Perlmann, T.( 2004). Digging deep into the pockets of orphan nuclear receptors: insights from structural studies. Trends Cell Biol. 14, 368–376.
Brown, D.D. and Cai. L. 2007.Amphibian metamorphosis. Developmental Biology 306, 20–33.
Callery, E.M. e Elinson, R.P. (2000). Thyroid hormone-dependent metamorphosis in a direct developing frog.PNAS 97(6), 2615-2620.
Duellman, W. E., and Trueb, L. (1994). "Biology of Amphibians." Johns Hopkins University Press, Baltimore, MD.
Elicieri, B.P., Brown, D.D.(1994). Quantitation of endogenous thyroid hormone receptors _ and _ during embryogenesis and metamorphosis in Xenopus laevis. J. Biol. Chem. 269, 24459–24465.
Fairclough, L., Tata, J.R. (1997). An immunocytochemical analysis of expression of thyroid hormone receptor and proteins during natural and thyroid hormone-induced metamorphosis in Xenopus. Dev. Growth Diff. 39, 273–283.
Fondell, J.D., Roy, A.L., Roeder, R.G. (1993). Unliganded thyroid hormone receptor inhibits the formation of a preinitiation complex: implications for active repression. Genes Dev. 7, 1400–1410.
Gilbert, L.I.e Frieden, E. (Eds.), (1981). Metamorphosis: A Problem in Developmental Biology. Plenum Press, New York.
Hickman, C.P., Roberts, L.S., Larson, A. (2004). Principios Integrados de Zoologia.Ed. Guanabara Koogan, Rio de Janeiro, 846p.
Huang, H., Brown, D.D., 2000. Prolactin is not a juvenile hormone in Xenopus metamorphosis. Proc. Natl. Acad. Sci. U.S.A. 97, 195–199.
Kawahara, A., Baker, B.S., Tata, J.R. (1991). Developmental and regional expression of thyroid hormone receptor genes during Xenopus metamorphosis. Development 112, 933–943.
Laudet, V. e Gronemeyer, H. (2002). The Nuclear Receptor Facts Book. Academic Press, Orlando
Leloup, J. e Buscaglia, M.( 1977). La triiodothyronine: Hormone de la metamorphose des amphibiens.C. R. Hebd. Seanes Acad. Sci. 284, 2261-2263.
Mangelsdorf, D.J., Thummel, C., Beato, M., Herrlich, P., Schutz, G., Umesono, K., Blumberg, B., Kastner, P., Mark, M., Chambon, P., Evans, R.M. (1995). The nuclear receptor superfamily: the second decade. Cell 83, 835–839.
McKenna, N.J. e O'Malley, B.W.(2002). Combinatorial control of gene expression by nuclear receptors and co-regulators. Cell 108, 465-474.
Rabelo, E.M.L., Baker, B.S., Tata, J.R. (1994). Interplay between thyroid hormone and estrogen in modulating expression of their receptor and vitellogenin genes during Xenopus metamorphosis. Mech. Dev. 45, 49–57.
Randall, D.; Burggren, W.; French, K.: Fisiologia animal. Mecanismos e Adaptações. 4a ed. Guanabara Koogan, 2000. 728p.
Rastinejad, F., Perlmann, T., Evans, R.M., Sigler, P.B. (1995). Structural determinants of nuclear receptor assembly on DNA direct repeats. Nature 375, 203–211.
Ribeiro, R.C.J., Kushner, P.J., Baxter, J.D.(1995). The nuclear hormone receptor gene superfamily. Ann Rev Med 46, 443-453.
Robinson-Rechavi, M., Carpentier, A.S., Duffraisse, M., Laudet, V.( 2001). How many nuclear hormone receptors are there in the human genome? Trends Genet 17, 554-556.
Shi, Y..B. e A. Ishizuya-Oka. (1996a). Biphasic intestinal development in amphibians: Embryogenesis and remodeling during metamorphosis. Current topics in developmental biology. 32, 205—235.
Shi, Y-B., Wong, M., Puzianowska-Kuznicka, M., Stolow, M.A. (1996b). Tadpole competence and tissue-specific temporal regulation of amphibian metamorphosis: roles of thyroid hormone and its receptor. BioEssays 18, 391–399.
Tata, J.R. (1966). Requirement for RNA protein synthesis for induced regression of the tadpole tail in organ culture. Dev. Biol. 13, 77–94.
Tata, J.R. (1994). Hormonal regulation of programmed cell death during amphibian metamorphosis. Biochem. Cell Biol. 72, 581–588.
Tata, J.R. (1996). Hormonal interplay and thyroid hormone receptor expression during amphibian metamorphosis. In: Gilbert, L.I., Tata, J.R., Atkinson, B.G. (Eds.), Metamorphosis. Postembryonic Reprogramming of Gene Expression in Amphibian and Insect Cells. Academic Press, San Diego, pp. 465–503.
Tata, J.R. (2002). Signalling through nuclear receptors. Nat. Rev. Mol. Cell Biol. 3, 702–710.
Tata, J.R. (2003). Hormonal signalling during amphibian metamorphosis. Proc. Indian Nat. Sci. Acad. B69, 773–790.
Tata, J.R. e Fairclough L.1997. An immunocytochemical analysis of the expression of thyroid hormone receptor alpha and beta proteins during natural and thyroid hormone-induced metamorphosis in Xenopus.Development, growth & differentiation,39(3):273-83.
Tata, J.R.(2006)Amphibian metamorphosis as a model for the developmental actions of thyroid hormone. Molecular and Cellular Endocrinology 246, 10–20.
Tata, J.R., 1998. Hormonal Signaling and Postembryonic Development.Springer, Berlin.
Tata, J.R., 2000. Autoinduction of nuclear hormone receptors during metamorphosis and its significance. Insect Biochem. Mol. Biol. 30, 645–651.
Tata, J.R., Kawahara, A., Baker, B.S. (1991). Prolactin inhibits both thyroid hormone-induced morphogenesis and cell death in cultured amphibian larval tissues. Dev. Biol. 146, 72–80.
Weber, R. (1965). Inhibitory effect of actinomycin on tail atrophy in Xenopus larvae at metamorphosis. Experientia 21, 665–666.
Weber, R. (1969). Tissue involution and lysosomal enzymes during anuran metamorphosis. In: Dingle, J.T., Fell, H.B. (Eds.), Lysosomes in Biology and Pathology, vol. I. North-Holland, Amsterdam, pp. 437– 461.
Wong, J., Shi, Y-B., Wolffe, A.P. (1995). A role for nucleosome assembly in both silencing and activation of the Xenopus TR_A gene by the thyroid hormone receptor. Genes Dev. 9, 2696–2711.
Wu, Y., Xu, B., Koenig R.J. (2001). Thyroid hormone response element sequence and the recruitment of retinoid X receptors for thyroid hormone responsiveness. J Biol
Chem 276, 3929-3936.
Yaoita, Y., Brown, D.D. (1990). A correlation of thyroid hormone receptor gene expression with amphibian metamorphosis. Genes Dev. 4, 1917–1924.
Yen, P.M.( 2001). Physiological and molecular basis of thyroid hormone action. Physiol Rev 81,1097-1142.
Yoshizato, K. (1996). Cell death and histolysis in amphibian tail during metamorphosis. In: Gilbert, L.I., Tata, J.R., Atkinson, B.G. (Eds.), Metamorphosis. Postembryonic Reprogramming of Gene Expression in Amphibian and Insect Cells. Academic Press, San Diego, pp. 647– 671.
Downloads
Published
Issue
Section
License
Copyright (c) 2010 Vanessa Aparecida Rocha Oliveira Vieira

This work is licensed under a Creative Commons Attribution 4.0 International License.
We ensure that our journal does not retain any copyright and that these are exclusive of the author(s) of the text. In that sense, we intend to break any restrictions to the published material and to achieve more intensely our goal of communicating science.