Flu at a central hospital in the 2018 epidemic peak
DOI:
https://doi.org/10.11606/issn.1679-9836.v99i1p8-15Keywords:
Influenza, H1N1, Flu type A and B, Influenza A virus, H1N1 Subtype, Influenza A virus, Influenza B virus, Portugal/epidemiologyAbstract
Introduction: Influenza constitutes a global threat to public health aggravated by increased life expectancy. It is responsible for countless hospitalizations, deaths and expenditures in the health sector every year. Objectives: To characterize and determine the analytical profile of the sample diagnosed with influenza in a Central Hospital during the month of January, 2018. The following variables were analyzed: age, gender, discharge diagnosis, hospitalization time and analytical alterations. Material and methods: Retrospective observational study with clinical data collection (ALERT and SClinico) and data processing in Microsoft Excel®. A total of 131 patients were selected as a positive Xpert FLU Kit (GeneXpert®) aged ≥18 years. Results: 58.8% of the patients were female and the mean age was 67.1 years. 20.6% were type A flu, of which 9% were H1N1 and 79.4% were type B flu. At the analytical level: 63.6% of the patients had no changes in leukocytes at admission (of these 62.8% they had neutrophilia and 65.1% relative lymphopenia) and 46.5% thrombocytopenia. Discussion: The present study also allowed to evaluate the diagnostic approach to influenza and establish an analytical profile of the suspicion of the patient with influenza. Conclusion: The analytical profile allows, together with the clinic, a suspicious orientation for the management of rapid virological diagnostic resources, important for the initiation of antiviral therapy, implementation of infection control and prevention measures for flu patients. Positivity implied a high number of hospitalizations in isolation that merited reflection on hospital, clinical and economic management.
Downloads
References
2. Forrest HL, Webster RG. Perspectives on influenza evolution and the role of research. Anim Health Res Rev. 2010;11(1):3-18. doi:10.1017/S1466252310000071.
3. Mills CE, Robins JM, Lipsitch M. Transmissibility of 1918 pandemic influenza. Nature. 2004;432(7019):904-6. doi:10.1038/nature03063.
4. Potter CW. A history of influenza. J Appl Microbiol. 2001;91:572-9. doi:10.1046/j.1365-2672.2001.01492.x.
5. Jhung MA, Swerdlow D, Olsen SJ, et al. Epidemiology of 2009 pandemic influenza A (H1N1) in the United States. Clin Infect Dis. 2011;52(Suppl 1):S13-26. doi:10.1093/cid/ciq008.
6. Luk J, Gross P, Thompson WW. Observations on mortality during the 1918 influenza pandemic. Clin Infect Dis. 2001;33:1375-8. doi:10.1086/322662.
7. Portugal. Ministério da Saúde. Instituto Nacional de Saúde Doutor Ricardo Jorge, IP Programa Nacional de Vigilância da Gripe: relatório da época 2016/2017. Lisboa: Instituto Nacional de Saúde Doutor Ricardo Jorge, IP; 2017 Disponível em: http://repositorio.insa.pt/bitstream/10400.18/4797/3/PNVG_2016_2017_ebook.pdf.
8. Shao W, Li X, Goraya MU, Wang S, Chen JL. Evolution of influenza a virus by mutation and re-assortment. Int J Mol Sci. 2017;18(8). doi:10.3390/ijms18081650.
9. Morens DM, Taubenberger JK, Fauci AS. Pandemic Influenza Viruses - Hoping for the Road Not Taken. N Engl J Med. 2013:1-4. doi:10.1056/NEJMp1307009.
10. Cox NJ, Subbarao K. Influenza. Lancet. 1999;354(9186):1277-82. doi:10.1016/S0140-6736(99)01241-6.
11. Mandell GL, Bennett JE, Dolin R. Mandell, Douglas, Benett. Principles and practice infectious diseases. USA: Churchill Livingstone; 2010. doi: 10.1016/S1473-3099(10)70089-X.
12. Palese P, Shaw ML. Orthomyxoviridae: the viruses and their replication. In: Knipe DM, Howley P, editors. Fields virology. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2007. p.1647.
13. Yoo SJ, Kwon T, Lyoo YS. Challenges of influenza A viruses in humans and animals and current animal vaccines as an effective control measure. Clin Exp Vaccine Res. 2018;7(1):1. doi:10.7774/cevr.2018.7.1.1.
14. Ginsberg M, Hopkins J, Maroufi A, Dunne G. Swine influenza A (H1N1) infection in two children--Southern California, March-April 2009. MMWR Morb Mortal Wkly Rep. 2009;58(15):400-02. doi:mm5815a5 [pii].
15. Pica N, Chou Y-Y, Bouvier NM, Palese P. Transmission of Influenza B Viruses in the Guinea Pig. J Virol. 2012;86(8):4279-87. doi:10.1128/JVI.06645-11.
16. Mujoriya Rajesh Z, Dhamande Kishore RBB. A REVIEW ON STUDY OF SWINE FLU. Indo-Global Res J Pharm Sci. 2011;1(2):47-51. https://www.researchgate.net/publication/215896349.
17. Freitas G. Comunicado - Vacinação contra a gripe. 2018:1. doi: C146_01_v1.
18. George F. Vacinação contra a gripe. Época. 2017/2018. 2017:6. doi: Orientação no 018/2017.
19. Portugal. Instituto Nacional de Saúde Dr. Ricardo Jorge. Boletim de Vigilância Epidemiológica da Gripe - Época 2017/2018 Semana 10, 5-11 mar 2018. Disponível em: http://www.insa.min-saude.pt/wp-content/uploads/2018/03/S10_2018.pdf.
20. Jefferson T, Jones MA, Doshi P, et al. Neuraminidase inhibitors for preventing and treating influenza in adults and children. Cochrane Database Syst Rev. 2014;2014(4). doi: 10.1002/14651858.CD008965.pub4.
21. Freimuth VS, Musa D, Hilyard K, Quinn SC, Kim K. Trust during the early stages of the 2009 H1N1 pandemic. J Health Commun. 2014;19(3):321-39. doi: 10.1080/10810730.2013.811323.
22. World Health Organization. Effective media communication during public health emergencies: a WHO handbook. . Geneva: WHO; 2005. https://apps.who.int/iris/handle/10665/43511.
23. Vaughan E, Tinker T. Effective health risk communication about pandemic influenza for vulnerable populations. Am J Public Health. 2009;99(Suppl 2). doi: 10.2105/AJPH.2009.162537.
24. Salez N, de Lamballerie X, Zandotti C, Gazin C, Charrel RN. Improved sensitivity of the novel Xpert(R) Flu test for detection of influenza B virus. J Clin Microbiol. 2013;51(Sept):4277-8. doi: 10.1128/JCM.02125-13.
25. Hannoun C. The evolving history of influenza viruses and influenza vaccines. Expert Rev Vaccines. 2013;12(9):1085-94. doi: 10.1586/14760584.2013.824709.
26. Chan K-H, To KKW, Chan JF, Li CPY, Chen H, Yuen K-Y. Analytical sensitivity of seven point-of-care influenza detection kits and two molecular tests for detection of avian-origin H7N9 and swine-origin H3N2 variant influenza A viruses. J Clin Microbiol. 2013;51(9):3160-1. doi:10.1128/JCM.01222-13.
27. Chen WW, Xie YX, Zhang YH, et al. Changes and analysis of peripheral white blood cells and lymphocyte subsets for patients with pandemic influenza A virus (H1N1) infection. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2010;24(5):331-3. http://www.ncbi.nlm.nih.gov/pubmed/21280315.
28. Jansen AJG, Low HZ, van den Brand J, van Riel D, Osterhaus A, van der Vries E. Platelets can phagocytose influenza virus which may contribute to the occurrence of thrombocytopenia during influenza infection. Blood. 2016;128(22):1358. https://doi.org/10.1182/blood.V128.22.1358.1358.
29. Guervilly C, Coisel Y, Botelho-Nevers E, et al. Significance of high levels of procalcitonin in patients with influenza A (H1N1) pneumonia. J Infect. 2010;61(4):355-8. doi: 10.1016/j.jinf.2010.07.013.
30. Ingram PR, Inglis T, Moxon D, Speers D. Procalcitonin and C-reactive protein in severe 2009 H1N1 influenza infection. Intensive Care Med. 2010;36(3):528-32. doi: 10.1007/s00134-009-1746-3.
31. Deng L, Mohan T, Chang TZ, et al. Double-layered protein nanoparticles induce broad protection against divergent influenza A viruses. Nat Commun. 2018;9(1). doi: 10.1038/s41467-017-02725-4.