Efeitos do exercício físico na prevenção e tratamento de lesões por isquemia: uma revisão de literatura
DOI:
https://doi.org/10.11606/issn.1679-9836.v99i5p480-490Palavras-chave:
Isquemia, Exercício Físico, Estresse OxidativoResumo
Introdução: Em 2013 mais de 17,3 milhões de mortes/ano foram causadas por doenças cardiovasculares, acompanhado de uma estimativa de mais de 23,6 milhões de mortes para 2030, representando a maior causa global de morte. Objetivo: Esta revisão de literatura tem como objetivo a sistematização do conhecimento acerca dos efeitos do exercício físico como medida de prevenção e/ou tratamento em lesões causadas por isquemia, a fim de instigar novas pesquisas e contribuir para a disseminação de informação atual. Metodologia: Este estudo constitui uma revisão bibliográfica de caráter analítico dos estudos a respeito dos efeitos do exercício físico como medida de prevenção e tratamento de lesões causados por isquemia nos tecidos de animais submetidos a experimentação científica, em que foram coletados 99 artigos a partir de uma busca nas bases de dados Pubmed, SciELO e Lilacs com os descritores: “ischemia”, “exercise”, “rats” e “muscle”. Resultados e Conclusão: A atual literatura aponta para um consenso acerca dos efeitos cardioprotetores e neuroprotetores do atividade física, com ênfase no aumento da resistência contra agentes oxidantes, melhoria no processo de angiogênese, maior resistência contra acidificação do meio, melhoria no processo de cardiomiogênese, e apresenta as vias de sinalização moleculares que possivelmente explicam os efeitos advindos do exercício físico nas suas mais diferentes intensidades.
Downloads
Referências
Benjamin EJ, Blaha MJ, Chiuve SE, et al. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics 2017 update: a report from the American Heart Association. Circulation. 2017;135:e146-e603. doi: https://doi.org/10.1161/CIR.0000000000000485.
World Health Organization (WHO). Global status report on noncommunicable diseases 2014. Geneve: WHO; 2014. Available from: https://apps.who.int/iris/handle/10665/148114.
Morris NJ, Pollard R, Everitt MG, et al. Vigorous exercise in leisure-time: protection against coronary heart disease. Lancet. 1980;2:1207. doi: https://doi.org/10.1016/s0140-6736(80)92476-9.
Paffenbarger RS, Laughlin ME, Gima AS, et al. Work activity of longshoremen as related to death from coronary heart disease and stroke. N Engl J Med. 1970;282:1109. doi: https://doi.org/10.1056/NEJM197005142822001.
Paffenbarger RS, Hyde RT, Wing A, et al. Physical activity, all-cause mortality and longevity of college alumni. N Engl J Med. 1986;314:605. doi: https://doi.org/10.1056/NEJM198603063141003.
Yang YR, Chang HC, Wang PS, Wang RY. Desempenho motor melhorado por exercícios em ratos isquêmicos cerebrais. J Mot Behav. 2012;44:97-103. doi: https://doi.org/10.1080/00222895.2012.654524.
Damazio LCM, Melo RTR, Lima MC, dos Santos HB, Alves NR, Monteirto BS, et al. Efeitos do exercício antes ou depois da isquemia na densidade de neurônios e astrócitos no cérebro de ratos. Neurosci Int. 2014;5:18-25. doi: https://doi.org/10.3844/amjnsp.2014.18.25.
Damazio LCM, Melo RTR, Lima MC, Pereira VG, Ribeiro RIMA, Alves NR, et al. Exercício físico promove neuroproteção estrutural e funcional em ratos com isquemia cerebral. Rev Neurocienc. 2015;23:581-588. doi: https://doi.org/10.4181/RNC.2015.23.04.1051.08p.
Möbius-Winkler S, Uhlemann M, Adams V, Sandri M, Erbs S, Lenk K, Mangner N, Mueller U, Adam J, Grunze M, et al: Coronary collateral growth induced by physical exercise: Results of the impact of intensive exercise training on coronary collateral circulation in patients with stable coronary artery disease (EXCITE) trial. Circulation. 2016;133:1438-48. doi: https://doi.org/10.1161/CIRCULATIONAHA.115.016442.
Szabó R, Karácsonyi Z, Börzsei D, Juhász B, Al-awar A, Török S, et al. Role of Exercise-Induced Cardiac Remodeling in Ovariectomized Female Rats. Oxid Med Cell Longev. 2018;2018:1-9. doi: https://doi.org/10.1155/2018/6709742.
Teixeira R, Zimmer A, de Castro A, de Lima-Seolin B, Türck P, Siqueira R, et al. Long- term T3 and T4 treatment as an alternative to aerobic exercise training in improving cardiac function post-myocardial infarction. Biomed Pharmacother. 2017;95:965-73. doi: https://doi.org/10.1016/j.biopha.2017.09.021
Alánová P, Chytilová A, Neckář J, Hrdlička J, Míčová P, Holzerová K, et al. Myocardial ischemic tolerance in rats subjected to endurance exercise training during adaptation to chronic hypoxia. J Appl Physiol. 2017;122(6):1452-61. doi: https://doi.org/10.1152/japplphysiol.00671.2016.
Bulut E, Abueid L, Ercan F, Süleymanoğlu S, Ağırbaşlı M, Yeğen B. Treatment with oestrogen-receptor agonists or oxytocin in conjunction with exercise protects against myocardial infarction in ovariectomized rats. Exp Physiol. 2016;101(5):612-27. doi: https://doi.org/10.1113/EP085708.
Rinaldi B, Guida F, Furiano A, Donniacuo M, Luongo L, Gritti G, et al. Effect of prolonged moderate exercise on the changes of nonneuronal cells in early myocardial infarction. Neural Plast. 2015;2015:1-8. doi: https://doi.org/10.1155/2015/265967.
Peng J, Deng X, Huang W, Yu J, Wang J, Wang J, et al. Irisin protects against neuronal injury induced by oxygen-glucose deprivation in part depends on the inhibition of ROS- NLRP3 inflammatory signaling pathway. Mol Immunol. 2017;91:185-94. doi: https://doi.org/10.1016/j.molimm.2017.09.014.
Shiragaki-Ogitani M, Kono K, Nara F, Aoyagi A. Neuromuscular stimulation ameliorates ischemia-induced walking impairment in the rat claudication model. J Physiol Sci. 2019;69(6):885-893. Doi: https://doi.org/10.1007/s12576-019-00701-9.
Sharma G, Sahu M, Kumar A, Sharma A, Aeri V, Katare D. Temporal dynamics of pre and post myocardial infarcted tissue with concomitant preconditioning of aerobic exercise in chronic diabetic rats. Life Sci. 2019;225:79-87. doi: https://doi.org/10.1016/j.lfs.2019.03.077.
Lu J, Pan S, Wang Q, Yuan Y. Alterations of cardiac KATP channels and autophagy contribute in the late cardioprotective phase of exercise preconditioning. Int Heart J. 2018;59(5):1106-15. doi: https://doi.org/10.1536/ihj.17-003.
Walters T, Garg K, Corona B. Activity attenuates skeletal muscle fiber damage after ischemia and reperfusion. Muscle Nerve. 2015;52(4):640-8. doi: https://doi.org/10.1002/mus.24581.
Garza M, Wason E, Cruger J, Chung E, Zhang J. Strength training attenuates post- infarct cardiac dysfunction and remodeling. J Physiol Sci. 2019;69(3):523-30. doi: https://doi.org/10.1007/s12576-019-00672-x.
Xu X, Wan W, Garza M, Zhang J. Post-myocardial infarction exercise training beneficially regulates thyroid hormone receptor isoforms. J Physiol Sci. 2017;68(6):743-8. doi: https://doi.org/10.1007/s12576-017-0587-z.
Schaun M, Motta L, Teixeira R, Klamt F, Rossato J, Lehnen A, et al. Preventive physical training partially preserves heart function and improves cardiac antioxidant responses in rats after myocardial infarction preventive physical training and myocardial infarction in rats. Int J Sport Nutr Exe. 2017;27(3):197-203. doi: https://doi.org/10.1123/ijsnem.2016-0300.
Naderi N, Hemmatinafar M, Gaeini A, Bahramian A, Ghardashi-Afousi A, Kordi M, et al. High-intensity interval training increase GATA4, CITED4 and c-Kit and decreases C/EBPβ in rats after myocardial infarction. Life Sci. 2019;221:319-26. doi: https://doi.org/10.1016/j.lfs.2019.02.045.
Cunha T, Bechara L, Bacurau A, Jannig P, Voltarelli V, Dourado P, et al. Exercise training decreases NADPH oxidase activity and restores skeletal muscle mass in heart failure rats. J Appl Physiol. 2017;122(4):817-27. doi: https://doi.org/10.1152/japplphysiol.00182.2016.
Vujic A, Lerchenmüller C, Wu T, Guillermier C, Rabolli C, Gonzalez E, et al. Exercise induces new cardiomyocyte generation in the adult mammalian heart. Nat Commun. 2018;9(1):1659. doi: https://doi.org/10.1038/s41467-018-04083-1.
Wang B, Jin H, Han X, Xia Y, Liu N. Involvement of brain-derived neurotrophic factor in exercise-induced cardioprotection of post-myocardial infarction rats. Int J Mol Med.. 2018;42(5):2867-80. doi: 10.3892/ijmm.2018.3841.
Lee H, Ahmad M, Wang H, Leenen F. Effects of exercise training on brain-derived neurotrophic factor in skeletal muscle and heart of rats post myocardial infarction. Exp Physiol. 2017;102(3):314-28. doi: https://doi.org/10.1113/EP086049.
Farah C, Nascimento A, Bolea G, Meyer G, Gayrard S, Lacampagne A, et al. Key role of endothelium in the eNOS-dependent cardioprotection with exercise training. J Mol Cell Cardiol. 2017;102:26-30. doi: https://doi.org/10.1016/j.yjmcc.2016.11.008.
Glean A, Ferguson S, Holdsworth C, Colburn T, Wright J, Fees A, et al. Effects of nitrite infusion on skeletal muscle vascular control during exercise in rats with chronic heart failure. Am J Physiol Heart C. 2015;309(8):H1354-H1360. doi: https://doi.org/10.1152/ajpheart.00421.2015.
Melo R, Damázio L, Lima M, Pereira V, Okano B, Monteiro B, et al. Effects of physical exercise on skeletal muscles of rats with cerebral ischemia. Braz J Med Biol Res. 2019;52(12):8576. doi: http://dx.doi.org/10.1590/1414-431x20198576.
Shen M, Yu M, Li J, Ma L. Effects of exercise training on kinin receptors expression in rats with myocardial infarction. Arch Physiol Biochem. 2017;123(4):206-11. doi: https://doi.org/10.1080/13813455.2017.1302962.
Pósa A, Szabó R, Kupai K, Baráth Z, Szalai Z, Csonka A, et al. Cardioprotective Effects of Voluntary Exercise in a Rat Model: Role of Matrix Metalloproteinase-2. Oxid Med Cell Longev. 2015;2015:1-9. doi: https://doi.org/10.1155/2015/876805.
Schaun M, Marschner R, Peres T, Markoski M, Lehnen A. Aerobic training prior to myocardial infarction increases cardiac GLUT4 and partially preserves heart function in spontaneously hypertensive rats. Appl Physiol Nutr Me. 2017;42(3):334-7. doi: https://doi.org/10.1139/apnm-2016-0439 .
Daliang Z, Lifang Y, Hong F, Lingling Z, Lin W, Dapeng L, et al. Netrin-1 plays a role in the effect of moderate exercise on myocardial fibrosis in rats. PLOS One. 2019;14(2):e0199802. doi: https://doi.org/10.1371/journal.pone.0199802.
Calegari L, Nunes R, Mozzaquattro B, Rossato D, Dal Lago P. Exercise training improves the IL-10/TNF-α cytokine balance in the gastrocnemius of rats with heart failure. Braz J Phys Ther. 2018;22(2):154-60. doi: https://doi.org/10.1016/j.bjpt.2017.09.004.
Sharma A, Kumar A, Sahu M, Sharma G, Datusalia A, Rajput S. Exercise preconditioning and low dose copper nanoparticles exhibits cardioprotection through targeting GSK-3β phosphorylation in ischemia/reperfusion induced myocardial infarction. Microvasc Res. 2018;120:59-66. doi: https://doi.org/10.1016/j.mvr.2018.06.003.
Meng D, Li P, Huang X, et al. Protective effects of short-term and long-term exercise preconditioning on myocardial injury in rats. Chinese J Physiol. 2017;33(6)531-4. doi: https://doi.org/10.12047/j.cjap.5601.2017.126.
Sun X, Mao J. Role of janus kinase 2/ signal transducer and activator of transcription 3 signaling pathway in cardioprotection of exercise preconditioning. Eur Rev Med Pharmacol. 2018;22(15)4975-86. doi: 10.26355/eurrev_201808_15638.
Jia D, Cai M, Xi Y, Du S, Zhenjun Tian. Interval exercise training increases LIF expression and prevents myocardial infarction-induced skeletal muscle atrophy in rats. Life Sci. 2018;193:77-86. doi: 10.1016/j.lfs.2017.12.009.
Bo W, Li D, Tian Z. Effectz of interval training on calcium transiente and contractile function of single ventricular myocyte in myocardial infarction adult rats. Chinese J Physiol. 2019;35(2)121-5. doi: https://doi.org/10.12047/j.cjap.5721.2019.027.
Xiao L, He H, Ma L, Da M, Cheng S, Duan Y, et al. Effects of miR-29a and miR-101a Expression on Myocardial Interstitial Collagen Generation After Aerobic Exercise in Myocardial-infarcted Rats. Arch Med Res. 2017;48(1):27-34. doi: https://doi.org/10.1016/j.arcmed.2017.01.006.
Shi J, Bei Y, Kong X, Liu X, Lei Z, Xu T, et al. miR-17-3p Contributes to Exercise- Induced Cardiac Growth and Protects against Myocardial Ischemia-Reperfusion Injury. Theranostics. 2017;7(3):664-76. doi: 10.7150/thno.15162.
Lu J, Pan S. Elevated C-type natriuretic peptide elicits exercise preconditioning-induced cardioprotection against myocardial injury probably via the up-regulation of NPR-B. J Physiol Sci. 2016;67(4):475-87. doi: https://doi.org/10.1007/s12576-016-0477-9.
Melo S, Barauna V, Neves V, Fernandes T, Lara L, Mazzotti D, et al. Exercise training restores the cardiac microRNA-1 and −214 levels regulating Ca2+ handling after myocardial infarction. BMC Cardiovasc Disord. 2015;15(1). doi: https://doi.org/10.1186/s12872-015-0156-4.
Xi Y, Gong D, Tian Z. FSTL1 as a potential mediator of exercise-induced cardioprotection in post-myocardial infarction rats. Sci Rep. 2016;6(1). doi: https://doi.org/10.1038/srep32424.
Lu K, Wang L, Wang C, Yang Y, Hu D, Ding R. Effects of high-intensity interval versus continuous moderate-intensity aerobic exercise on apoptosis, oxidative stress and metabolism of the infarcted myocardium in a rat model. Mol Med Rep. 2015;12(2):2374-82. doi: https://doi.org/10.3892/mmr.2015.3669.
Feriani D, Souza G, Carrozzi N, Mostarda C, Dourado P, Consolim-Colombo F, et al. Impact of exercise training associated to pyridostigmine treatment on autonomic function and inflammatory profile after myocardial infarction in ratsInt. J Cardiol. 2017;227:757-65. doi: https://doi.org/10.1016/j.ijcard.2016.10.061.
Wang X, Fitts R. Effects of regular exercise on ventricular myocyte biomechanics and KATP channel function. Am J Physiol-Heart C. 2018;315(4):H885-H896. doi: https://doi.org/10.1152/ajpheart.00130.2018.
Danes V, Anthony J, Rayani K, Spitzer K, Tibbits G. pH recovery from a proton load in rat cardiomyocytes: effects of chronic exercise. Am J Physiol Heart C. 2018;314(2):H285-H292. doi: https://doi.org/10.1152/ajpheart.00405.2017.
Li J, Pan S, Wang J, Lu J. Changes in autophagy levels in rat myocardium during exercise preconditioning-initiated cardioprotective effects. Int Heart J. 2019;60(2):419-28. doi: https://doi.org/10.1536/ihj.18-310.
Parry T, Starnes J, O’Neal S, Bain J, Muehlbauer M, Honcoop A, et al. Untargeted metabolomics analysis of ischemia–reperfusion-injured hearts ex vivo from sedentary and exercise-trained rats. J Metabolomics. 2017;14(1). doi: https://doi.org/10.1007/s11306-017-1303-y.
Bozi L, Jannig P, Rolim N, Voltarelli V, Dourado P, Wisløff U, et al. Aerobic exercise training rescues cardiac protein quality control and blunts endoplasmic reticulum stress in heart failure rats. J Cell Mol Med. 2016;20(11):2208-12. doi: https://doi.org/10.1111/jcmm.12894.
Guizoni D, Oliveira-Junior S, Noor S, Pagan L, Martinez P, Lima A, et al. Effects of late exercise on cardiac remodeling and myocardial calcium handling proteins in rats with moderate and large size myocardial infarction. Int J Cardiol. 2016;221:406-12. doi: https://doi.org/10.1016/j.ijcard.2016.07.072.
Alleman R, Tsang A, Ryan T, Patteson D, McClung J, Spangenburg E, et al. Exercise- induced protection against reperfusion arrhythmia involves stabilization of mitochondrial energetics. Am J Physiol Heart Circ Physiol. 2016;310(10):H1360-H1370. doi: https://doi.org/10.1152/ajpheart.00858.2015.
Bei Y, Xu T, Lv D, Yu P, Xu J, Che L, et al. Exercise-induced circulating extracellular vesicles protect against cardiac ischemia–reperfusion injury. Basic Res Cardiol. 2017;112(4). doi: https://doi.org/10.1007/s00395-017-0628-z.
Feng R, Cai M, Wang X, Zhang J, Tian Z. Early aerobic exercise combined with hydrogen-rich saline as preconditioning protects myocardial injury induced by acute myocardial infarction in rats. Appl Biochem. 2018;187(3):663-76. doi: https://doi.org/10.1007/s12010-018-2841-0.
Cai M, Wang Q, Liu Z, Jia D, Feng R, Tian Z. Effects of different types of exercise on skeletal muscle atrophy, antioxidant capacity and growth factors expression following myocardial infarction. Life Sci. 2018;213:40-9. doi: https://doi.org/10.1016/j.lfs.2018.10.015.
Ranjbar K, Rahmani-Nia F, Shahabpour E. Aerobic training and l-arginine supplementation promotes rat heart and hindleg muscles arteriogenesis after myocardial infarction. J Physiol Biochem.. 2016;72(3):393-404. doi: https://doi.org/10.1007/s13105-016-0480-x.
Togoe E, Silva I, Cury J, Guarnier F. Muscle changes with high-intensity aerobic training in an animal model of renal disease. Acta Cir. Bras. 2019;34(5):201900503. doi: https://doi.org/10.1590/s0102-865020190050000003.
Lavorato V, Del Carlo R, da Cunha D, Okano B, Belfort F, de Freitas J, et al. Mesenchymal stem cell therapy associated with endurance exercise training: Effects on the structural and functional remodeling of infarcted rat hearts. J Mol Cell Cardiol. 2016;90:111-9. doi: https://doi.org/10.1016/j.yjmcc.2015.12.012.
Huang C, Lin Y, Hsu C, Cheng S, Shyu W, Ting H, et al. Antiapoptotic effect of exercise training on ovariectomized rat hearts. J Appl Physiol. 2016;121(2):457-65. doi: https://doi.org/10.1152/japplphysiol.01042.2015.
Chen C, Chang M, Chang C, Chang W, Chang S, Lin M, et al. Improved Infrared- Sensing Running Wheel Systems with an Effective Exercise Activity Indicator. PLOS One. 2015;10(4):e0122394. doi: https://doi.org/10.1371/journal.pone.0122394.
Confortim H, Deniz B, de Almeida W, Miguel P, Bronauth L, Vieira M, et al. Neonatal hypoxia-ischemia caused mild motor dysfunction, recovered by acrobatic training, without affecting morphological structures involved in motor control in rats. Brain Res Cogn Brain Res. 2019;1707:27-44. doi: https://doi.org/10.1016/j.brainres.2018.11.021.
Zhou Z, Yang Q, Tang Q, Yang J, Guo R, Jiang W. Effect of willed movement training on neurorehabilitation after focal cerebral ischemia and on the neural plasticity-associated signaling pathway. Mol Med Rep. 2018;17(1):1173-81. doi: https://doi.org/10.3892/mmr.2017.7964.
Li D, Li Y, Yuan H, Qu L, Wang P. The novel exercise-induced hormone irisin protects against neuronal injury via activation of the Akt and ERK1/2 signaling pathways and contributes to the neuroprotection of physical exercise in cerebral ischemia. Metabolism. 2017;68:31-42. doi: https://doi.org/10.1016/j.metabol.2016.12.003.
Kiuchi M, Nolde J, Villacorta H, Carnagarin R, Chan J, Lugo-Gavidia L, et al. New approaches in the management of sudden cardiac death in patients with heart failure—targeting the sympathetic nervous system. Int J Mol Sci. 2019;20(10):2430. doi: https://doi.org/10.3390/ijms20102430.
Smenes B, Bækkerud F, Slagsvold K, Hassel E, Wohlwend M, Pinho M, et al. Acute exercise is not cardioprotective and may induce apoptotic signalling in heart surgery: a randomized controlled trial. Interact Cardiovasc Thorac. 2018;27(1):95-101. doi: https://doi.org/10.1093/icvts/ivx439.
Yuan Y, Pan S. Parkin Mediates mitophagy to participate in cardioprotection induced by late exercise preconditioning but Bnip3 does not. J Cardiovasc Pharmacol Ther. 2018;77(5):303-16. doi: https://doi.org/10.1097/FJC.0000000000000572.
Liao J, Li Y, Zeng F, Wu Y. Regulation of mTOR pathway in exercise-induced cardiac hypertrophy. Int J Sports Med. 2015;36(05):343-50. doi: https://doi.org/10.1055/s-0034-1395585.
Reyes L, Kirschenman R, Quon A, Morton J, Shah A, Davidge S. Aerobic exercise training reduces cardiac function in adult male offspring exposed to prenatal hypoxia. Am J Physiol-Reg I. 2015;309(5):R489-R498. doi: https://doi.org/10.1152/ajpregu.00201.2015.
Carfagna S, Napolitano G, Barone D, Pinto G, Pollio A, Venditti P. Dietary supplementation with the microalga galdieria sulphuraria (Rhodophyta) reduces prolonged exercise-induced oxidative stress in rat tissues. Oxid Med Cell Longev. 2015;2015:1-11. doi: https://doi.org/10.1155/2015/732090.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2020 Felipe Cruz Costa, Amanda Freitas Texeira da Silva, Bernardo Felipe Santana de Macedo, Giulia Vitória Nascimento da Silva, Tereza Maria Meireles Fernandes da Silva, Marcus Vinicius Henrique Brito
Este trabalho está licenciado sob uma licença Creative Commons Attribution-ShareAlike 4.0 International License.