EIR Model to assess the Covid-19 pandemic behavior in Marabá-PA
DOI:
https://doi.org/10.11606/issn.1679-9836.v100i4p322-328Keywords:
COVID-19, Coronavirus disease, Forecasting, Statistical models, Epidemiology, Brazil/epidemiologyAbstract
Objective: To determine the behavior of the COVID-19 case curve in Marabá. Methodology: The SEIR compartmentalized model was applied based on the local epidemiological data with the estimated values of latency time and infectious time obtained in Chinese populations that were tested objectively to estimate the development of SARS-CoV-2 infection in Marabá. Results: The first peak showed a total of 1438 infected (28/09/2020) after the documentation of the first case (23/03/2020) demonstrating exponential behavior. We also observed for the next 30 days, from 14/08/2020, a downward trend in the number of cases in the city, the number of basal reproduction () assumed the value of 3.29 between the beginning of the pandemic and the date of the first peak (28/06/2020), at the end of the study period this number was 0.8. Discussion: The model performed well when compared to the documented cases, but there was a discrepancy in the downward phase of the pandemic, possibly due to the absence of more accurate data. This adequate behavior of the model based on these data indicates that the COVID-19 dissemination should be similar despite the geographical distances and the miscegenation of the Brazilian population. Conclusion: The use of the SEIR model based on local epidemiological data with the estimated values of latency time and infectious time obtained in objectively tested Chinese populations proved to be a useful tool for predicting the behavior of the COVID-19 pandemic.
Downloads
References
Organização Pan-Americana da Saúde. Módulos de Princípios de Epidemiologia para o Controle de Enfermidades. Módulo 2: Saúde e doença na população. Brasília: Organização Pan-Americana da Saúde; Ministério da Saúde; 2010 [citado 20 jul. 2020]. Disponível em: https://www.paho.org/bra/index.php?option=com_docman&view=download&alias=950-modulos-principios-epidemiologia-para-controle-enfermidades-mopece-modulo-2-0&category_slug=informacao-e-analise-saude-096&Itemid=965.
Prefeitura de Marabá. Covid-19: Marabá inicia vacinação contra o Coronavírus [citado 03 jul. 2021]. Disponível em: https://maraba.pa.gov.br/67235-2/.
Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronavirus esoninanimatesurfaces and the irinactivationwithbiocidalagents. J Hosp Infect. 2014;104(62):246-51. doi: https://doi.org/10.1016/j.jhin.2020.01.022.
World Health Organization. Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV). Geneva: World Health Organization; 2020 [cited 2020 July 20]. Available from: https://www.who.int/news-room/detail/30-01-2020-statement-on-the-second-meetingof-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019- ncov).
Wordometer. COVID-19 Coronavirus Pandemic [cited 2021 July 02]. Available from: https://www.worldometers.info/coronavirus/.
Brasil. Ministério da Saúde. Brasil confirma primeiro caso da doença. Brasília: Ministério da Saúde; 2020 [citado 20 julho 2020]. Disponível em: https://www.saude.gov.br/noticias/agencia-saude/46435-brasil-confirma-primeiro-caso-de-novo-coronavirus.
Mendonça FD, Santiago SR, Daniel LPP, Stefan VO. Região Norte do Brasil e a pandemia de COVID-19: análise socioeconômica e epidemiológica. J Health NPEPS. 2020;5(1):20-37. doi: http://dx.doi.org/10.30681/252610104535.
Coelho FC, Lana RM, Cruz OG, Villela D, Bastos LS, et al. Assessing the potential impact of COVID-19 in Brazil: mobility, morbidity and the Burden on the Health Care System. MedRxiv.2020;03(19):1-17. doi: https://doi.org/10.1101/2020.03.19.20039131.
Brasil. Ministério da Saúde. Painel Coronavirus. Brasília; 2020 [citado 20 julho 2020]. Disponível em: https://covid.saude.gov.br/.
Lira M. Confirmado primeiro caso de COVID no Pará. Belém: Sespa; 2020 [citado jul. 2020]. Disponível em: http://www.saude.pa.gov.br/2020/03/18/confirmado-o-primeiro-caso-de-covid-19-no-para/.
Instituto Brasileiro de Geografia e Estatística. Cidades e Estados. População estimada, 2019 [citado 25 jul. 2020]. Disponível em: ftp://ftp.ibge.gov.br/Estimativas_de_Populacao/Estimativas_2019/estimativa_TCU_2019_20200622.pdf.
Cirino S, Silva JAL. Modelo Epidemiológico SEIR de Transmissão da dengue em redes de populações acopladas. TEMA – Tend Mat Apl Comput. 2004;5(1):55-64. doi: https://doi.org/10.5540/tema.2004.05.01.0055.
Newton EA, Reiter PA. A model of the Transmission of Dengue Fever With an Evaluation of the Impact of Ultra-Low Volume (ULV) Insecticide Applications on Dengue Epidemics. Am J Trop Med Hygiene. 1992;47(6):709-20. doi: 10.4269/ajtmh.1992.47.709.
Portal de Transparência do Registro Civil. Óbitos com suspeita ou confirmação de COVID-19 [citado 25 jul. 2020]. Disponível em: https://transparencia.registrocivil.org.br/especial-covid.
Coletivo Covid-19br Team. Nota técnica de 26 de abril de 2020. Modelos Implementados [citado 20 jul. 2020]. Disponível em: https://arxiv.org/pdf/2004.13488.
Miettinen OS. Epidemiological research: terms and concepts. Dordrecht: Springer Nature; 2011. doi: 10.1007/978-94-007-1171-6.
World Health Organization. Report of the WHO-China joint mission on coronavírus disease 2019 (covid-19) [cited 2020 July 25]. Available from: https://www.who.int/publications/i/item/report-of-the-who-china-joint-mission-on-coronavirus-disease-2019-(covid-19).
Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavírus disease 2019 in China. N Engl J Med. 2020;382(18):1708-20. doi: 10.1056/NEJMoa2002032.
Chen J. Clinical progression of patients with covid-19 in Shanghai, China. J Infect. 2020;80(5):e1-e6. doi: https://doi.org/10.1016/j.jinf.2020.03.004.
Gomes ECS. Conceitos e ferramentas da epidemiologia. Recife: Ed. Universitária da UFPE; 2015.
Prefeitura Municipal de Marabá. Decreto n° 60, de 17 de junho de 2020. Decreto n° 61, de 18 de junho de 2020. Decreto n° 66, de 25 de junho de 2020 [citado 25 jul. 2020]. Disponível em: http://www.governotransparente.com.br/transparencia/4466490/leismunicipais?datainfo=MTIwMjAwOTA2MTA1MFBQUA==&clean=false.
Renardy M, Kirschner DE. Predicting the second wave of COVID-19 in Washtenaw County, MI. J Theoret Biol. 2020;492(20):413-8. doi: https://doi.org/10.1016/j.jtbi.2020.110461.
Londoño SLM. Estimação do número de reprodução basal em modelos compartimentais [dissertação]. Campinas: Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica; 2014 [citado 20 jul. 2020]. Disponível em: http://repositorio.unicamp.br/jspui/bitstream/REPOSIP/305840/1/MercadoLondono_SergioLuis_M.pdf.
Kwok KO, Lai F, Wei WI, Wong SYS, Tang JWT. Herd immunity – estimating the level required to halt the COVID-19 epidemics in affected countries. J Infect. 2020;80(6):512-9. doi: https://doi.org/10.1016/j.jinf.2020.03.027.
Aguas R, Corder RM, King JG, Gonçalves G, Ferreira MU, Gabriela GMM. Herd immunity thresholds for SARS-CoV-2 estimated from 1unfolding epidemics. MedRxiv. 2020;70(6):314-20. doi: https://doi.org/10.1101/2020.07.23.20160762.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Walisson Ferreira Barbosa, Ester Barros da Costa Moreira, Juliana Mattei de Araújo, Antônio Pazin-Filho, Cláudia Dizioli Franco Bueno

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.