Relação entre os níveis de ferritina e o prognóstico da COVID-19

Autores

DOI:

https://doi.org/10.11606/issn.1679-9836.v101i1e-190974

Palavras-chave:

Ferritina, COVID-19, Inflamação, Hiperferritinemia, Síndrome do desconforto respiratório agudo, Tratamentos

Resumo

O elevado nível de ferritina sérica tem sido associado à COVID-19 grave devido à sua estimulação por citocinas relacionadas com o processo inflamatório. Embora este aumento seja esperado, esta revisão propõe analisar o quão elevado o nível de ferritina pode estar relacionado com esta severidade. Nesta linha de pensamento, a hiperferritinemia na COVID-19 poderia ser um importante factor de previsão e outra forma de compreender as complicações da COVID-19 - coagulopatia, síndrome do desconforto respiratório agudo (SDRA). Além disso, esta correlação tem sido vista como uma possível quinta síndrome entre as outras "síndromes hiperferritinêmicas", todas caracterizadas por ferritina sérica elevada; esta é uma comparação e análise pertinente em termos de tratamentos.

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

  • Elson Cavalcante Silva de Sousa Júnior, Universidade de Pernambuco (UPE)

    Discente da Universidade de Pernambuco. Campus Garanhuns.

  • Artur Pereira de França Medeiros, Universidade de Pernambuco (UPE)

    Discente da Universidade de Pernambuco. Campus Garanhuns.

  • Igor Vasconcelos e Silva, Universidade de Pernambuco (UPE)

    Discente da Universidade de Pernambuco. Campus Garanhuns.

  • Rafael de Freitas e Silva, Universidade de Pernambuco (UPE)

    Docente da Universidade de Pernambuco. Campus Garanhuns. É o orientador deste manuscrito.

Referências

Shi Y, Wang G, Cai X, et al. An overview of COVID-19. J Zhejiang Univ-Sci B. 2020;21(5):343-360. doi: 10.1631/jzus.B2000083

Lin Z, Long F, Yang Y, Chen X, Xu L, Yang M. Serum ferritin as an independent risk factor for severity in COVID-19 patients. J Infect. 2020;81(4):647-79. doi: 10.1016/j.jinf.2020.06.053

Huang I, Pranata R, Lim MA, Oehadian A, Alisjahbana B. C-reactive protein, procalcitonin, D-dimer, and ferritin in severe coronavirus disease-2019: a meta-analysis. Ther Adv Respir Dis. 2020;14:175346662093717. doi: 10.1177/1753466620937175

Ruscitti P, Di Benedetto P, Berardicurti O, et al. Pro-inflammatory properties of H-ferritin on human macrophages, ex vivo and in vitro observations. Sci Rep. 2020;10(1):12232. doi: 10.1038/s41598-020-69031-w

Colafrancesco S, Alessandri C, Conti F, Priori R. COVID-19 gone bad: a new character in the spectrum of the hyperferritinemic syndrome? Autoimmun Rev. 2020;19(7):102573. doi: 10.1016/j.autrev.2020.102573

Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020;7(6):e438-e440. doi: 10.1016/S2352-3026(20)30145-9

Fontana P, Casini A, Robert-Ebadi H, Glauser F, Righini M, Blondon M. Venous thromboembolism in COVID-19: systematic review of reported risks and current guidelines. Swiss Med Wkly. 2020;150:w20301. doi: 10.4414/smw.2020.20301

Al-Samkari H, Karp Leaf RS, Dzik WH, et al. COVID-19 and coagulation: bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood. 2020;136(4):489-500. doi: 10.1182/blood.2020006520

Cohen LA, Gutierrez L, Weiss A, et al. Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway. Blood. 2010;116(9):1574-84. doi: 10.1182/blood-2009-11-253815

Harrison PM, Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta BBA - Bioenerg. 1996;1275(3):161-203. doi: 10.1016/0005-2728(96)00022-9

Rosário C, Zandman-Goddard G, Meyron-Holtz EG, D’Cruz DP, Shoenfeld Y. The Hyperferritinemic Syndrome: macrophage activation syndrome, Still’s disease, septic shock and catastrophic antiphospholipid syndrome. BMC Med. 2013;11(1):185. doi: 10.1186/1741-7015-11-185

Recalcati S, Invernizzi P, Arosio P, Cairo G. New functions for an iron storage protein: The role of ferritin in immunity and autoimmunity. J Autoimmun. 2008;30(1-2):84-89. doi:10.1016/j.jaut.2007.11.003

Wang W, Knovich MA, Coffman LG, Torti FM, Torti SV. Serum ferritin: Past, present and future. Biochim Biophys Acta. 2010;1800(8):760-9. doi: 10.1016/j.bbagen.2010.03.011

Torti FM, Torti SV. Regulation of ferritin genes and protein. Blood. 2002;99(10):3505-16. doi: 10.1182/blood.V99.10.3505

Kernan KF, Carcillo JA. Hyperferritinemia and inflammation. Int Immunol. 2017;29(9):401-9. doi: 10.1093/intimm/dxx031

Worwood M, Dawkins S, Wagstaff M, Jacobs A. The purification and properties of ferritin from human serum. Biochem J. 1976;157(1):97-103. doi: 10.1042/bj1570097

Zacharski LR, Ornstein DL, Woloshin S, Schwartz LM. Association of age, sex, and race with body iron stores in adults: Analysis of NHANES III data. Am Heart J. 2000;140(1):98-104. doi: 10.1067/mhj.2000.106646

Grotto HZW. Diagnóstico laboratorial da deficiência de ferro. Rev Bras Hematol Hemoter. 2010;32:22-8. doi: 10.1590/S1516-84842010005000046

Cairo G, Pietrangelo A. Iron regulatory proteins in pathobiology. Biochem J. 2000;352 Pt 2:241-250.

Kim S, Ponka P. Control of Transferrin Receptor Expression via Nitric Oxide-mediated Modulation of Iron-regulatory Protein 2. J Biol Chem. 1999;274(46):33035-42. doi: 10.1074/jbc.274.46.33035

Mikhael M, Kim SF, Schranzhofer M, et al. Iron regulatory protein-independent regulation of ferritin synthesis by nitrogen monoxide: IRP-independent effects of NO+ on Ft synthesis. FEBS J. 2006;273(16):3828-36. doi: 10.1111/j.1742-4658.2006.05390.x

Rogers J, Lacroix L, Durmowitz G, Kasschau K, Andriotakis J, Bridges KR. The role of cytokines in the regulation of ferritin expression. Adv Exp Med Biol. 1994;356:127-32. doi: 10.1007/978-1-4615-2554-7_14

Li JY, Paragas N, Ned RM, et al. Scara5 is a ferritin receptor mediating non-transferrin iron delivery. Dev Cell. 2009;16(1):35-46. doi: 10.1016/j.devcel.2008.12.002

Gray CP, Franco AV, Arosio P, Hersey P. Immunosuppressive effects of melanoma-derived heavy-chain ferritin are dependent on stimulation of IL-10 production. Int J Cancer. 2001;92(6):843-50. doi: 10.1002/ijc.1269

Li R, Luo C, Mines M, Zhang J, Fan G-H. Chemokine CXCL12 induces binding of ferritin heavy chain to the chemokine receptor CXCR4, Alters CXCR4 signaling, and induces phosphorylation and nuclear translocation of ferritin heavy chain. J Biol Chem. 2006;281(49):37616-27. doi: 10.1074/jbc.M607266200

Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-3. doi: 10.1038/s41586-020-2012-7

Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581(7807):215-20. doi: 10.1038/s41586-020-2180-5

Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363-74. doi: 10.1038/s41577-020-0311-8

Yang M. Cell pyroptosis, a potential pathogenic mechanism of 2019-nCoV infection. SSRN. 2020. doi: http://dx.doi.org/10.2139/ssrn.3527420

Zhang C, Wu Z, Li J-W, Zhao H, Wang G-Q. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int J Antimicrob Agents. 2020;55(5):105954. doi: 10.1016/j.ijantimicag.2020.105954

Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5

Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine Storm’ in COVID-19. J Infect. 2020;80(6):607-13. doi: 10.1016/j.jinf.2020.03.037

Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. Into the eye of the cytokine storm. Microbiol Mol Biol Rev. 2012;76(1):16-32. doi: 10.1128/MMBR.05015-11

Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71(15):762-8. doi: 10.1093/cid/ciaa248

Wang F, Hou H, Luo Y, et al. The laboratory tests and host immunity of COVID-19 patients with different severity of illness. JCI Insight. 2020;5(10):e137799. doi: 10.1172/jci.insight.137799

Ni M, Tian F, Xiang D, Yu B. Characteristics of inflammatory factors and lymphocyte subsets in patients with severe COVID‐19. J Med Virol. 2020;92(11):2600-6. doi: 10.1002/jmv.26070

Ruddell RG, Hoang-Le D, Barwood JM, et al. Ferritin functions as a proinflammatory cytokine via iron-independent protein kinase C zeta/nuclear factor kappaB-regulated signaling in rat hepatic stellate cells. Hepatology. 2009;49(3):887-900. doi: 10.1002/hep.22716

Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int J Mol Sci. 2019;20(13):3328. doi: 10.3390/ijms20133328

Swanson KV, Deng M, Ting JP-Y. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19(8):477-89. doi: 10.1038/s41577-019-0165-0

Kell DB, Pretorius E. Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells. Metallomics. 2014;6(4):748-73. doi: 10.1039/C3MT00347G

Ware LB, Matthay MA. The Acute Respiratory Distress Syndrome. N Engl J Med. 2000;342(18):1334-49. doi: 10.1056/NEJM200005043421806

Connelly KG, Moss M, Parsons PE, et al. Serum ferritin as a predictor of the acute respiratory distress syndrome. Am J Respir Crit Care Med. 1997;155(1):21-5. doi: 10.1164/ajrccm.155.1.9001283

Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708-20. doi: 10.1056/NEJMoa2002032

Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020;135(23):2033-40. doi: 10.1182/blood.2020006000

Iba T, Levy JH. Inflammation and thrombosis: roles of neutrophils, platelets and endothelial cells and their interactions in thrombus formation during sepsis. J Thromb Haemost. 2018;16(2):231-41. doi: 10.1111/jth.13911

Pretorius E, Kell DB. Diagnostic morphology: biophysical indicators for iron-driven inflammatory diseases. Integr Biol. 2014;6(5):486-510. doi: 10.1039/C4IB00025K

Lipinski B, Pretorius E, Oberholzer HM, Van Der Spuy WJ. Iron enhances generation of fibrin fibers in human blood: Implications for pathogenesis of stroke. Microsc Res Tech. 2012;75(9):1185-90. doi: 10.1002/jemt.22047

Eckly A, Hechler B, Freund M, et al. Mechanisms underlying FeCl3-induced arterial thrombosis: Characterization of the FeCl3-induced thrombosis model. J Thromb Haemost. 2011;9(4):779-89. doi: 10.1111/j.1538-7836.2011.04218.x

Perricone C, Bartoloni E, Bursi R, et al. COVID-19 as part of the hyperferritinemic syndromes: the role of iron depletion therapy. Immunol Res. 2020;68(4):213-24. doi: 10.1007/s12026-020-09145-5

Levi M, van der Poll T. Coagulation and sepsis. Thromb Res. 2017;149:38-44. doi: 10.1016/j.thromres.2016.11.007

Giamarellos-Bourboulis EJ, Netea MG, Rovina N, et al. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host Microbe. 2020;27(6):992-1000.e3. doi: 10.1016/j.chom.2020.04.009

Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med. 2020;382(17):e38. doi: 10.1056/NEJMc2007575

National Institutes of Health. COVID-19 Treatment. Coronavirus disease 2019 (COVID-19) treatment guidelines. Bethesda, Maryland; s.d. [cited 2021 June 14]. Available from: https://www.covid19treatmentguidelines.nih.gov/.

Xie Y, Cao S, Dong H, et al. Effect of regular intravenous immunoglobulin therapy on prognosis of severe pneumonia in patients with COVID-19. J Infect. 2020;81(2):318-56. doi: 10.1016/j.jinf.2020.03.044

Mohtadi N, Ghaysouri A, Shirazi S, et al. Recovery of severely ill COVID-19 patients by intravenous immunoglobulin (IVIG) treatment: A case series. Virology. 2020;548:1-5. doi: 10.1016/j.virol.2020.05.006

Shi H, Zhou C, He P, et al. Successful treatment with plasma exchange followed by intravenous immunoglobulin in a critically ill patient with COVID-19. Int J Antimicrob Agents. 2020;56(2):105974. doi: 10.1016/j.ijantimicag.2020.105974

Khamis F, Al-Zakwani I, Al Hashmi S, et al. Therapeutic plasma exchange in adults with severe COVID-19 infection. Int J Infect Dis. 2020;99:214-18. doi: 10.1016/j.ijid.2020.06.064

Ma J, Xia P, Zhou Y, et al. Potential effect of blood purification therapy in reducing cytokine storm as a late complication of critically ill COVID-19. Clin Immunol. 2020;214:108408. doi: 10.1016/j.clim.2020.108408

Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol. 2011;335(1):2-13. doi:10.1016/j.mce.2010.04.005

Nguyen AA, Habiballah SB, Platt CD, Geha RS, Chou JS, McDonald DR. Immunoglobulins in the treatment of COVID-19 infection: Proceed with caution! Clin Immunol. 2020;216:108459. doi: 10.1016/j.clim.2020.108459

Jawhara S. Could Intravenous Immunoglobulin Collected from Recovered Coronavirus Patients Protect against COVID-19 and Strengthen the Immune System of New Patients? Int J Mol Sci. 2020;21(7):2272. doi: 10.3390/ijms21072272

Shum HP, Yan WW, Chan TM. Extracorporeal blood purification for sepsis. Hong Kong Med J. 2016;22(5):478-85. doi: 10.12809/hkmj164876

Keith P, Day M, Perkins L, Moyer L, Hewitt K, Wells A. A novel treatment approach to the novel coronavirus: an argument for the use of therapeutic plasma exchange for fulminant COVID-19. Crit Care. 2020;24(1):128,s13054-020-2836-4. doi: 10.1186/s13054-020-2836-4

Castañeda S, Blanco R, González-Gay MA. Adult-onset Still’s disease: advances in the treatment. Best Pract Res Clin Rheumatol. 2016;30(2):222-38. doi: 10.1016/j.berh.2016.08.003

Mavragani CP, Spyridakis EG, Koutsilieris M. Adult-Onset Still’s disease: From pathophysiology to targeted therapies. Int J Inflamm. 2012;2012:1-10. doi: 10.1155/2012/879020

The REMAP-CAP Investigators. Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19. N Engl J Med. 2021;384(16):1491-502. doi: 10.1056/NEJMoa2100433

Abani O, Abbas A, Abbas F, et al. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2021;397(10285):1637-45. doi: 10.1016/S0140-6736(21)00676-0

Huet T, Beaussier H, Voisin O, et al. Anakinra for severe forms of COVID-19: a cohort study. Lancet Rheumatol. 2020;2(7):e393-e400. doi: 10.1016/S2665-9913(20)30164-8

Cavalli G, De Luca G, Campochiaro C, et al. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. 2020;2(6):e325-e331. doi: 10.1016/S2665-9913(20)30127-2

Publicado

2022-02-23

Edição

Seção

Artigos de Revisão/Review Articles

Como Citar

Sousa Júnior, E. C. S. de, Medeiros, A. P. de F., & Silva, R. de F. e . (2022). Relação entre os níveis de ferritina e o prognóstico da COVID-19 (I. V. e Silva , Trad.). Revista De Medicina, 101(1), e-190974. https://doi.org/10.11606/issn.1679-9836.v101i1e-190974