Efeitos cardiovasculares de linalol livre ou complexado à β-ciclodextrina: um foco para ação anti-hipertensiva
DOI:
https://doi.org/10.11606/issn.1679-9836.v102i6e-203574Palavras-chave:
Doenças Cardiovasculares, Linalol, Ciclodextrina, Hipertensão arterial, Beta- CiclodextrinasResumo
Introdução: O monoterpeno linalol (LIN) apresenta várias atividades farmacológicas, inclusive como anti-hipertensivo, porém, apresenta problemas de solubilidade devido ao seu caráter lipofílico. Dessa forma, estratégias de estabilização e melhoria de parâmetros farmacocinéticos e farmacodinâmicos vem sendo estudadas, como a formação de complexos de inclusão com ciclodextrinas (CDs). Objetivo: O objetivo desta revisão é reunir informações sobre os efeitos cardiovasculares do LIN e avaliar a possibilidade do uso de CDs para melhorar as propriedades biológicas do LIN. Metodologia: Esta revisão de literatura abrangeu artigos no período entre 1998 e 2022, coletadas nas bases de dados PUBMED, SciELO, LILACS e MEDLINE. Resultados: Em ratos normotensos, o LIN induziu hipotensão associada à taquicardia, enquanto em ratos hipertensos, reduziu a pressão arterial sem alterar a frequência cardíaca. O LIN tem ação direta sobre a vasculatura promovendo relaxamento vascular e melhora da função cardíaca. Interessantemente, a complexação de LIN com β-CDs melhorou a atividade anti-hipertensiva do monoterpeno. Conclusão: Foi evidenciado nesta revisão o potencial farmacológico do LIN como agente hipotensor, relaxante vascular e anti-hipertensivo. Além disso, há evidências que é possível melhorar o efeito anti-hipertensivo do LIN com a utilização de sistemas de inclusão com CDs, porém, estudos adicionais sobre este tema deverão ser realizados.
Downloads
Referências
World Health Oranization. Cardiovascular diseases (CVDs) key facts. World Heal Organ. 2021;(June):1-5. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
Whelton PK, Carey RM, Aronow WS, CaseyJr DE, Collins KJ, Himmelfarb CD, et al. 2017 ACC/AHA/APA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the american college of cardiology/american heart association task force on clinical pr. Hypertension. 2018;71(6):E13-E115. doi:10.1161/HYP.0000000000000065.
Chor D, Pinho Ribeiro AL, Sá Carvalho M, Ducan BB, Andrade LP, Araújo NA, et al. Prevalence, awareness, treatment and influence of socioeconomic variables on control of high blood pressure: results of the ELSA-Brasil study. Moore S, ed. PLoS One. 2015;10(6):e0127382. doi:10.1371/journal.pone.0127382.
Unger T, Borghi C, Charchar F, Khan NA, Poulter NR, Prabhakaran D, et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension. 2020;75(6):1334-57. doi:10.1161/HYPERTENSIONAHA.120.15026.
Sanjuliani AF. Fisiopatologia da hipertensão arterial: conceitos teóricos úteis para a prática clínica. Rev SOCERJ. 2002; XV(4):210-8. a2002;15(4):art02 http://sociedades.cardiol.br/socerj/revista/2002_04/a2002_v15_n04_art02.pdf.
Piccini RX, Facchini LA, Tomasi E, Siqueira FV, Silveira DS, Thumé E, et al. Promotion, prevention and arterial hypertension care in Brazil. Rev Saude Publica. 2012;46(3):543-50. doi:10.1590/S0034-89102012005000027.
World Health Oranization. A global brief on hypertension: silent killer, global public health crisis. World Health Oranization. World Heal Organ. 2013. http://ish-world.com/downloads/pdf/global_brief_hypertension.pdf.
Kaczmarski KR, Sozio SM, Chen J, Sang Y, Shafi T. Resistant hypertension and cardiovascular disease mortality in the US: results from the National Health and Nutrition Examination Survey (NHANES). BMC Nephrol. 2019;20(1):138. doi:10.1186/s12882-019-1315-0.
Santos MRV, Moreira FV, Fraga BP, Souza DP de, Bonjardim LR, Quintans-Junior LJ. Cardiovascular effects of monoterpenes: a review. Rev Bras Farmacogn. 2011;21(4):764-71. doi:10.1590/S0102-695X2011005000119.
Simões CMO, Schenkel EP, Gosmann G, Mello JCP, Mentz, LA, Petrovick PR, organizators. Farmacognosia: da planta ao medicamento. 6. ed. Floranópolis: Editora da UFSC; 2007.
Quintans-Júnior LJ, Barreto RSS, Menezes PP, Almeida JR, Viana AF, Oliveira RC et al. β-Cyclodextrin-complexed ( − ) linalool produces antinociceptive effect superior to that of ( − )-linalool in experimental pain protocols. Basic Clin Pharmacol Toxicol. 2013;113(3):167-72. doi:10.1111/bcpt.12087.
Yin C, Liu B, Wang P, Li X, Li Y, Zheng X et al. Eucalyptol alleviates inflammation and pain responses in a mouse model of gout arthritis. Br J Pharmacol. 2020;177(9):2042-57. doi:10.1111/bph.14967.
Silva DF, de Almeida MM, Chaves CG, Braz AL, Gomes MA, Pinho-da-Silva L et al. TRPM8 Channel activation induced by monoterpenoid rotundifolone underlies mesenteric artery relaxation. PLoS One. 2015;10(11):e0143171. doi:10.1371/journal.pone.0143171.
Andrade JC, Monteiro ÁB, Andrade HHN, Gonzaga TK, Silva PR, Alves DN et al. Involvement of GABAA Receptors in the anxiolytic-Llike effect of hydroxycitronellal. Tamba B, ed. Biomed Res Int..2021:1-17. doi:10.1155/2021/9929805.
Linck VM, da Silva AL, Figueiró M, Caramão EB, Moreno PRH, Elisabetsky E. Effects of inhaled Linalool in anxiety, social interaction and aggressive behavior in mice. Phytomedicine. 2010;17(8-9):679-83. doi:10.1016/j.phymed.2009.10.002.
Guzmán-Gutiérrez SL, Bonilla-Jaime H, Gómez-Cansino R, Reyes-Chilpa R. Linalool and β-pinene exert their antidepressant-like activity through the monoaminergic pathway. Life Sci. 2015;128:24-9. doi:10.1016/j.lfs.2015.02.021.
Hassanzadeh S-A, Abbasi-Maleki S, Mousavi Z. Anti-depressive-like effect of monoterpene trans-anethole via monoaminergic pathways. Saudi J Biol Sci. 2022;29(5):3255-61. doi:10.1016/j.sjbs.2022.01.060.
Heldwein CG, Silva L de L, Gai EZ, Roman C, Parodi TV, Bürger ME et al. S-(+)-Linalool from Lippia alba: sedative and anesthetic for silver catfish (Rhamdia quelen). Vet Anaesth Analg. 2014;41(6):621-9. doi:10.1111/vaa.12146.
Sugawara Y, Hara C, Tamura K, Fugii T, Nakamura K, Masujima T, et al. Sedative effect on humans of inhalation of essential oil of linalool: Anal Chim Acta. 1998;365(1-3):293-9. doi:10.1016/S0003-2670(97)00639-9.
Barreto da Silva L, Camargo SB, Moraes R A, Medeiros CF, Jesus AD, Evangelista A et al. Antihypertensive effect of carvacrol is improved after incorporation in β‐cyclodextrin as a drug delivery system. Clin Exp Pharmacol Physiol. 2020;47(11):1798-807. doi:10.1111/1440-1681.13364.
Camargo SB, Simões LO, Medeiros CF de A, de Melo Jesus A, Fregoneze JB, Evangelista A, et al. Antihypertensive potential of linalool and linalool complexed with β-cyclodextrin: effects of subchronic treatment on blood pressure and vascular reactivity. Biochem Pharmacol. 2018;151:38-46. doi:10.1016/j.bcp.2018.02.014.
Bastos JFA, Moreira ÍJA, Ribeiro TP, Medeiros IA, Antoniolli AR, De Sousa DP, et al. Hypotensive and vasorelaxant effects of citronellol, a monoterpene alcohol, in Rats. Basic Clin Pharmacol Toxicol. 2009;106(4):331-7. doi:10.1111/j.1742-7843.2009.00492.x.
Wang Y, Zhang X, Fu Y, Fu D, Dong Z, Xing A, et al. 1, 8-cineole protects against ISO-induced heart failure by inhibiting oxidative stress and ER stress in vitro and in vivo. Eur J Pharmacol. 2021;910:174472. doi:10.1016/j.ejphar.2021.174472.
Cheang WS, Lam MY, Wong WT, Tian X, Chi Wai Lau, Zhu Z, et al. Menthol relaxes rat aortae, mesenteric and coronary arteries by inhibiting calcium influx. Eur J Pharmacol. 2013;702(1-3):79-84. doi:10.1016/j.ejphar.2013.01.028.
Peixoto-Neves D, Silva-Alves KS, Gomes MDM, Lima FC, Lahlou S, Magalhães PJC, et al. Vasorelaxant effects of the monoterpenic phenol isomers, carvacrol and thymol, on rat isolated aorta. Fundam Clin Pharmacol. 2009;24(3):341-50. doi:10.1111/j.1472-8206.2009.00768.x
Alsaffar RM, Rashid S, Ahmad SB, Rehman MU, Hussain I, Ahmad S, et al. D-limonene (5 (one-methyl-four-[1-methylethenyl]) cyclohexane) diminishes CCl 4 -induced cardiac toxicity by alleviating oxidative stress, inflammatory and cardiac markers. Redox Rep. 2022;27(1):92-9. doi:10.1080/13510002.2022.2062947.
Menezes IAC, Barreto CMN, Antoniolli ÂR, Santos MR V, Sousa DP de. Hypotensive Activity of terpenes found in essential oils. Zeitschrift für Naturforsch C. 2010;65(9-10):562-6. doi:10.1515/znc-2010-9-1005.
Camargo SB, De Vasconcelos DFSA. Atividades biológicas de Linalol: conceitos atuais e possibilidades futuras deste monoterpeno. Rev Ciên Méd Biol. 2015;13(3):381. doi:10.9771/cmbio.v13i3.12949.
Anjos PJC, Lima AO, Cunha PS, De Sousa DP, Onofre ASC, Ribeiro TP, et al. Cardiovascular effects induced by Linalool in normotensive and hypertensive rats. Zeitschrift für Naturforsch C. 2013;68(5-6):181-90. doi:10.1515/znc-2013-5-603.
Letizia C., Cocchiara J, Lalko J, Api A. Fragrance material review on linalool. Food Chem Toxicol. 2003;41(7):943-64. doi:10.1016/S0278-6915(03)00015-2.
Peana AT, D’Aquila PS, Chessa ML, Moretti MDL, Serra G, Pippia P. (−)-Linalool produces antinociception in two experimental models of pain. Eur J Pharmacol. 2003;460(1):37-41. doi:10.1016/S0014-2999(02)02856-X.
Peana AT, Graziella De Montis M, Sechi S, Sircana G, D’Aquila PS, Pippia P. Effects of (−)-linalool in the acute hyperalgesia induced by carrageenan, l-glutamate and prostaglandin E2. Eur J Pharmacol. 2004;497(3):279-84. doi:10.1016/j.ejphar.2004.06.006.
Peana AT, Marzocco S, Popolo A, Pinto A. (−)-Linalool inhibits in vitro NO formation: Probable involvement in the antinociceptive activity of this monoterpene compound. Life Sci. 2006;78(7):719-23. doi:10.1016/j.lfs.2005.05.065.
Batista PA, Werner MF de P, Oliveira EC, Burgos L, Pereira P, Brum LFS, et al. Evidence for the involvement of ionotropic glutamatergic receptors on the antinociceptive effect of (−)-linalool in mice. Neurosci Lett. 2008;440(3):299-303. doi:10.1016/j.neulet.2008.05.092.
Alviano WS, Mendonca-Filho RR, Alviano DS, Bizzo HR, Souto-Padron T, Rodrigues ML, et al. Antimicrobial activity of Croton cajucara Benth linalool-rich essential oil on artificial biofilms and planktonic microorganisms. Oral Microbiol Immunol. 2005;20(2):101-5. doi:10.1111/j.1399-302X.2004.00201.x
de Siqueira RJ, Rodrigues KMS, da Silva MTB, Correia Junior CAB, Duarte GP, Magalhães PJC, et al. Linalool-rich rosewood oil induces vago-vagal bradycardic and depressor reflex in rats. Phyther Res. 2014;28(1):42-8. doi:10.1002/ptr.4953.
Szejtli J. Past, present and futute of cyclodextrin research. Pure Appl Chem. 2004;76(10):1825-45. doi:10.1351/pac200476101825.
Kuroda K, Inoue N, Ito Y, Kubota K, Sugimoto A, Kakuda T, et al. Sedative effects of the jasmine tea odor and (R)-(−)-linalool, one of its major odor components, on autonomic nerve activity and mood states. Eur J Appl Physiol. 2005;95(2-3):107-14. doi:10.1007/s00421-005-1402-8.
Höferl M, Krist S, Buchbauer G. Chirality influences the effects of Linalool on physiological parameters of stress. Planta Med. 2006;72(13):1188-92. doi:10.1055/s-2006-947202.
Baccelli C, Martinsen A, Morel N, Quetin-Leclercq J. Vasorelaxant Activity of Essential oils from Croton zambesicus and some of their constituents. Planta Med. 2010;76(14):1506-11. doi:10.1055/s-0030-1249820.
Kundu S, Shabir H, Basir SF, Khan LA. Inhibition of As(III) and Hg(II) caused aortic hypercontraction by eugenol, linalool and carvone. J Smooth Muscle Res. 2014;50(1):93-102. doi:10.1540/jsmr.50.93.
Kang P, Seol GH. Linalool elicits vasorelaxation of mouse aortae through activation of guanylyl cyclase and K+ channels. J Pharm Pharmacol. 2015;67(5):714-19. doi:10.1111/jphp.12359.
Zheng X, Liu C-P, Hao Z-G, Wang Y-F, Li X-L. Protective effect and mechanistic evaluation of linalool against acute myocardial ischemia and reperfusion injury in rats. RSC Adv. 2017;7(55):34473-81. doi:10.1039/C7RA00743D.
Kaur T, Kaul S, Bhardwaj A. Efficacy of linalool to ameliorate uremia induced vascular calcification in wistar rats. Phytomedicine. 2018;51:191-5. doi:10.1016/j.phymed.2018.10.007.
Ke J, Zhu C, Zhang Y, Zhang W. Anti‐Arrhythmic effects of Linalool via Cx43 Expression in a rat model of myocardial infarction. Front Pharmacol. 2020;11(June):1-8. doi:10.3389/fphar.2020.00926.
Liang Y, Zhong Y, Li X, Xiao Y, Wu Y, Xie P. Biological evaluation of linalool on the function of blood vessels. Mol Med Rep. 2021;24(6):874. doi:10.3892/mmr.2021.12514.
Mohamed ME, Abduldaium MS, Younis NS. Cardioprotective Effect of Linalool against Isoproterenol-Induced Myocardial Infarction. Life. 2021;11(2):120. doi:10.3390/life11020120.
Rosa MSS, Mendonça-Filho RR, Bizzo HR, Rodrigues IA, Soares RMA, Souto-Padrón T, et al. Antileishmanial activity of a Linalool-Rich Essential Oil from Croton cajucara. Antimicrob Agents Chemother. 2003;47(6):1895-901. doi:10.1128/AAC.47.6.1895-1901.2003.
Azevedo M, Chaves F, Almeida C, Bizzo H, Duarte R, Campos-Takaki G, et al. Antioxidant and Antimicrobial Activities of 7-Hydroxy-calamenene-Rich Essential Oils from Croton cajucara Benth. Molecules. 2013;18(1):1128-37. doi:10.3390/molecules18011128.
Linck VM, Silva AL, Figueiró M, Piato ÂL, Herrmann AP, Birck FD, et al. Inhaled linalool-induced sedation in mice. Phytomedicine. 2009;16(4):303-7. doi:10.1016/j.phymed.2008.08.001.
Jenner PM, Hagan EC, Taylor JM, Cook EL, Fitzhugh OG. Food flavourings and compounds of related structure I. Acute oral toxicity. Food Cosmet Toxicol. 1964;2(C):327-43. doi:10.1016/S0015-6264(64)80192-9.
Politano VT, Lewis EM, Hoberman AM, Christian MS, Diener RM, Api AM. Evaluation of the developmental toxicity of Linalool in rats. Int J Toxicol. 2008;27(2):183-8. doi:10.1080/10915810801977948.
Bhandari BR, D’Arc BR, Padukka I. Encapsulation of Lemon Oil by Paste Method Using β-Cyclodextrin: Encapsulation efficiency and profile of oil volatiles. J Agric Food Chem. 1999;47(12):5194-7. doi:10.1021/jf9902503.
Ceborska M, Asztemborska M, Luboradzki R, Lipkowski J. Interactions with β-cyclodextrin as a way for encapsulation and separation of camphene and fenchene. Carbohydr Polym. 2013;91(1):110-4. doi:10.1016/j.carbpol.2012.07.072.
Menezes PP, Serafini MR, Quintans-Júnior LJ, Silva GF, Oliveira JF, Carvalho FMS, et al. Inclusion complex of (−)-linalool and β-cyclodextrin. J Therm Anal Calorim. 2014;115(3):2429-37. doi:10.1007/s10973-013-3367-x.
Velázquez-Contreras F, Zamora-Ledezma C, López-González I, Meseguer-Olmo L, Núñez-Delicado E, Gabaldón JA. Cyclodextrins in Polymer-Based Active Food Packaging: a Fresh Look at Nontoxic, Biodegradable, and Sustainable Technology Trends. Polymers (Basel). 2021;14(1):104. doi:10.3390/polym14010104.
Nascimento SS, Camargo EA, DeSantana JM, Adriano ASA, Menezes PP, Waldecy Lucca-Júnior, et al. Linalool and linalool complexed in β-cyclodextrin produce anti-hyperalgesic activity and increase Fos protein expression in animal model for fibromyalgia. Naunyn Schmiedebergs Arch Pharmacol. 2014;387(10):935-42. doi:10.1007/s00210-014-1007-z.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2023 Daniele Santana de Brito, Raiana dos Anjos Moraes, Rafael Leonne Cruz de Jesus, Fênix Alexandra de Araújo Araújo, Liliane Barreto da Silva, Gabriela Brandão de Carvalho Lima, Samuel Barbosa Camargo, Darízy Flávia Silva, Isnar Lima Pereira da Silva
Este trabalho está licenciado sob uma licença Creative Commons Attribution-ShareAlike 4.0 International License.