Qual a importância das tenascinas na fisiopatologia de diversas doenças?

Autores

DOI:

https://doi.org/10.11606/issn.1679-9836.v103i2e-209844

Palavras-chave:

Tenascinas, Fisiopatologia, Doenças

Resumo

As tenascinas são um grupo de proteínas que compõem a matriz extracelular de diferentes tecidos. Estão envolvidas com a sinalização e função estrutural de diferentes órgãos, o que justifica o desenvolvimento de estudos devido sua relação com doenças em diferentes sistemas. Nosso objetivo foi lançar luz, através de uma revisão, mostrando as vias de envolvimento que as tenascinas têm em diferentes distúrbios orgânicos. Cada tipo de tenascina está relacionada com uma desordem específica. A tenascina X está envolvida no desencadeamento de doenças do colágeno, enquanto a tenascina C e W destacam-se em situações de trauma, inflamação e tumores. A tenascina R está envolvida exclusivamente no sistema nervoso central e na migração neuronal e no processo de diferenciação. Compreender o real papel dessas proteínas é um recurso valioso para a compreensão da fisiopatologia de diversas doenças, além de possibilitar a pesquisa de novos métodos diagnósticos e a prospecção de alvos terapêuticos para o desenvolvimento de fármacos.  

Downloads

Os dados de download ainda não estão disponíveis.

Referências

RP, Chiquet-Ehrismann R. The regulation of tenascin expression by tissue microenvironments. Bioch Biophys Acta. 2009;1793:888-92. Doi: https://doi.org/10.1016/j.bbamcr.2008.12.012.

Alberts B. et al. Analisando células, moléculas e sistemas. [s.l: s.n.].

Nozato T, Sato A, Hikita H, Takahashi A, Imanaka-Yoshida K, Yoshida T, et al. Impact of serum tenascin-C on the aortic healing process during the chronic stage of type B acute aortic dissection. Int J Cardiol. 2015;191:97-9. Doi: https://doi.org/10.1016/j.ijcard.2015.05.009.

Oliveira CC de, Teodoro WR, Velosa APP, Yoshinari NH. Auto-imunidade e colágeno V. Rev Bras Reumatol. 2006;46:194-8. Doi: https://doi.org/10.1590/s0482-50042006000300006.

Leprini A, Gherzi R, Siri A, Querzé G, Viti F, Zardi L. The Human Tenascin-R Gene. J Biol Chem. 1996;271:31251-4. Doi: https://doi.org/10.1074/jbc.271.49.31251.

Chiovaro F, Chiquet-Ehrismann R, Chiquet M. Transcriptional regulation of tenascin genes. Cell Adhes Migrat. 2015;9:34-47. Doi: https://doi.org/10.1080/19336918.2015.1008333.

Morawski M, Dityatev A, Hartlage-Rübsamen M, Blosa M, Holzer M, Flach K, et al. Tenascin-R promotes assembly of the extracellular matrix of perineuronal nets via clustering of aggrecan. Philosop Transact Royal Soc. B: Biological Sciences 2014;369:20140046. Doi: https://doi.org/10.1098/rstb.2014.0046.

Imanaka-Yoshida K, Matsumoto K. Multiple Roles of Tenascins in Homeostasis and Pathophysiology of Aorta. Ann Vasc Dis. 2018;11:169-80. Doi: https://doi.org/10.3400/avd.ra.17-00118.

Degen M, Brellier F, Schenk S, Driscoll R, Zaman K, Stupp R, et al. Tenascin-W, a new marker of cancer stroma, is elevated in sera of colon and breast cancer patients. Int J Cancer. 2008;122:2454-61. Doi: https://doi.org/10.1002/ijc.23417.

Giblin SP, Midwood KS. Tenascin-C: Form versus function. Cell Adhes Migrat. 2014;9:48-82. Doi: https://doi.org/10.4161/19336918.2014.987587.

Chawla S, Ghosh S. Regulation of fibrotic changes by the synergistic effects of cytokines, dimensionality and matrix: Towards the development of an in vitro human dermal hypertrophic scar model. Acta Biomat. 2018;69:131-45. Doi: https://doi.org/10.1016/j.actbio.2018.01.002.

Wallace DM, Murphy-Ullrich JE, Downs JC, O’Brien CJ. The role of matricellular proteins in glaucoma. Matrix Biology: J Int Soc Matrix Biol. 2014;37:174-82. Doi: https://doi.org/10.1016/j.matbio.2014.03.007.

Wallace DM, Pokrovskaya O, O’Brien CJ. The Function of Matricellular Proteins in the Lamina Cribrosa and Trabecular Meshwork in Glaucoma. J Ocular Pharmacol Therapeut. 2015;31:386-95. Doi: https://doi.org/10.1089/jop.2014.0163.

Vicente A, Byström B, Lindström M, Stenevi U, Pedrosa Domellöf F. Aniridia-related keratopathy: Structural changes in naïve and transplanted corneal buttons. PLOS ONE. 2018;13:e0198822. Doi: https://doi.org/10.1371/journal.pone.0198822.

Liu Z, Gao Q, Zhang S, You X, Cui Y. Expression of tenascin and fibronectin in nasal polyps. J Huazhong University of Science and Technology Medical Sciences = Hua Zhong Ke Ji Da Xue Xue Bao Yi Xue Ying de Wen Ban = Huazhong Keji Daxue Xuebao Yixue Yingdewen Ban 2002;22:371-4. Doi: https://doi.org/10.1007/BF02896790.

Payne SC, Han JK, Huyett P, Negri J, Kropf EZ, Borish L, et al. Microarray analysis of distinct gene transcription profiles in non-eosinophilic chronic sinusitis with nasal polyps. Am J Rhinol. 2008;22:568-81. Doi: https://doi.org/10.2500/ajr.2008.22.3233.

Holloway JW, Koppelman GH. Identifying novel genes contributing to asthma pathogenesis. Cur Opin Allergy Clin Immunol. 2007;7:69-74. Doi: https://doi.org/10.1097/aci.0b013e328013d51b.

Amin K. The Role of the T lymphocytes and Remodeling in Asthma. Inflammation 2016;39:1475-82. Doi: https://doi.org/10.1007/s10753-016-0380-9.

Minear MA, Crosslin DR, Sutton BS, Connelly JJ, Nelson SC, Gadson-Watson S, et al. Polymorphic variants in tenascin-C (TNC) are associated with atherosclerosis and coronary artery disease. Human Genet. 2011;129:641-54. Doi: https://doi.org/10.1007/s00439-011-0959-z.

Frangogiannis NG. Matricellular Proteins in Cardiac Adaptation and Disease. Physiol. Rev. 2012;92:635-88. Doi: https://doi.org/10.1152/physrev.00008.2011.

Guo T, Zhou X, Zhu A, Peng W, Zhong Y, Chai X. The Role of Serum Tenascin-C in Predicting In-Hospital Death in Acute Aortic Dissection. Int Heart J. 2019;60:919-23. Doi: https://doi.org/10.1536/ihj.18-462.

Islam M, Kusakabe M, Horiguchi K, Iino S, Nakamura T, Iwanaga K, et al. PDGF and TGF-β promote tenascin-C expression in subepithelial myofibroblasts and contribute to intestinal mucosal protection in mice. Brit J Pharmacol. 2014;171:375-88. Doi: https://doi.org/10.1111/bph.12452.

Aktar R, Peiris M, Fikree A, Cibert-Goton V, Walmsley M, Tough IR, et al. The extracellular matrix glycoprotein tenascin-X regulates peripheral sensory and motor neurones. J Physiol. 2018;596:4237-51. Doi: https://doi.org/10.1113/JP276300.

Farrell AM, Dean D, Charnock FM, Wojnarowska F. Alterations in distribution of tenascin, fibronectin and fibrinogen in vulval lichen sclerosus. Dermatology (Basel, Switzerland) 2000;201:223-9. Doi: https://doi.org/10.1159/000018492.

Deffieux X, Fernandez H. Physiopathologic, diagnostic and therapeutic evolution in the management of adenomyosis: review of the literature. J Gynecol Obstet Biol Reproduc. 2004;33:703-12. Doi: https://doi.org/10.1016/s0368-2315(04)96631-8.

Leimgruber C, Quintar AA, Sosa LDV, García LN, Figueredo M, Maldonado CA. Dedifferentiation of prostate smooth muscle cells in response to bacterial LPS. Prostate. 2010;71:1097- 107. Doi: https://doi.org/10.1002/pros.21322.

Alford AI, Hankenson KD. Matricellular proteins: Extracellular modulators of bone development, remodeling, and regeneration. Bone. 2006;38:749-57. Doi: https://doi.org/10.1016/j.bone.2005.11.017.

Tojyo I, Yamaguchi A, Nitta T, Yoshida H, Fujita S, Yoshida T. Effect of hypoxia and interleukin-1beta on expression of tenascin-C in temporomandibular joint. Oral Dis. 2008b;14:45-50. Doi: https://doi.org/10.1111/j.1601-0825.2006.01344.x.

Ribitsch I, Gueltekin S, Keith MF, Minichmair K, Peham C, Jenner F, et al. Age‐related changes of tendon fibril micro‐morphology and gene expression. J Anat. 2020;236:688-700. Doi: https://doi.org/10.1111/joa.13125.

Bot M, Chan MK, Jansen R, Lamers F, Vogelzangs N, Steiner J, et al. Serum proteomic profiling of major depressive disorder. Translat Psych. 2015;5:e599–9. Doi: https://doi.org/10.1038/tp.2015.88.

Krivosova M, Grendar M, Hrtanek I, Ondrejka I, Tonhajzerova I, Sekaninova N, et al. Potential Major Depressive Disorder Biomarkers in Pediatric Population – a Pilot Study. Physiol Res. 2021;69:S523-32. Doi: https://doi.org/10.33549/physiolres.934590.

Chen W, Li Y-S, Gao J, Lin X-Y, Li X-H. AMPA Receptor Antagonist NBQX Decreased Seizures by Normalization of Perineuronal Nets. PLOS ONE 2016;11:e0166672. Doi: https://doi.org/10.1371/journal.pone.0166672.

Kawakita F, Kanamaru H, Asada R, Suzuki H. Potential roles of matricellular proteins in stroke. Exp Neurol. 2019;322:113057. Doi: https://doi.org/10.1016/j.expneurol.2019.113057.

Minta K, Cullen NC, Nimer FA, Thelin EP, Piehl F, Clarin M, et al. Dynamics of extracellular matrix proteins in cerebrospinal fluid and serum and their relation to clinical outcome in human traumatic brain injury. Clin Chem Lab Med. 2019;57:1565-73. Doi: https://doi.org/10.1515/cclm-2019-0034.

Griffiths DR, Jenkins TM, Addington CP, Stabenfeldt SE, Lifshitz J. Extracellular matrix proteins are time-dependent and regional-specific markers in experimental diffuse brain injury. Brain Behav. 2020;10:e01767. Doi: https://doi.org/10.1002/brb3.1767.

Demirkiran MA, Koksoy C, Okcu Heper A, Bengisun U. Does extracellular matrix of the varicose vein wall change according to clinical stage? Turkish J Surg. 2014;30:186-91. Doi: https://doi.org/10.5152/ucd.2014.2664.

Publicado

2024-05-27

Edição

Seção

Artigos de Revisão/Review Articles

Como Citar

Santos, L. C. F., Santos, M. P. dos ., Nascimento, C. R. do ., Cavalcante, R. L., Mendes, R. ., & Tenório, P. P. (2024). Qual a importância das tenascinas na fisiopatologia de diversas doenças?. Revista De Medicina, 103(2), e-209844. https://doi.org/10.11606/issn.1679-9836.v103i2e-209844