Nova apresentação fenotípica de rara variante de splicing na deficiência de laminina α2Nova apresentação fenotípica de rara variante de splicing na deficiência de laminina α2

Autores

  • Dr. Giuliano da Paz Oliveira UFDPar, Universidade Federal do Delta do Parnaíba, Parnaíba, Piauí. Brasil. https://orcid.org/0000-0002-3141-0032
  • Petrone Bandeira UFDPar, Universidade Federal do Delta do Parnaíba, Parnaíba, Piauí. Brasil.

DOI:

https://doi.org/10.11606/issn.1679-9836.v104i5e-227689

Palavras-chave:

Distrofias musculares, Laminina, História natural, Variante de splicing proteico

Resumo

A distrofia muscular congênita com deficiência da subunidade laminina α2 é considerada a segunda maior causa de distrofias musculares congênitas, levando a deficiência de merosina juntamente com anomalias na matriz extracelular. Com autorização por meio de comitê de ética e de termo de consentimento livre e esclarecido, descreve-se o caso de um paciente de seis anos com distrofia muscular merosina negativa ocasionada por uma variante de splicing homozigótica vista apenas uma vez antes no Brasil, bem como uma apresentação clínica mais branda frente aos demais casos descritos na literatura, indicando um bom prognóstico. Enfatiza-se a importância deste relato para melhor compreender as correlações genótipo-fenótipo em pacientes com distrofia muscular com deficiência de laminina α2.  

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Camelo CG, Moreno C de AM, Artilheiro M da C, Fonseca ATQM, Gurgel Gianetti J, Barbosa AV, et al. Genetic profile of Brazilian patients with LAMA2-related dystrophies. Clin Genet. 2024. Doi: https://doi.org/10.1111/cge.14538.

Oliveira J, Parente Freixo J, Santos M, Coelho T. LAMA2 Muscular Dystrophy. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJ, et al., editors. GeneReviews®, Seattle (WA): University of Washington, Seattle; 1993. https://www.ncbi.nlm.nih.gov/sites/books/NBK97333/.

Graziano A, Bianco F, D’Amico A, Moroni I, Messina S, Bruno C, et al. Prevalence of congenital muscular dystrophy in Italy: a population study. Neurology 2015;84:904–11. Doi: https://doi.org/10.1212/WNL.0000000000001303.

Müller KI, Ghelue MV, Lund I, Jonsrud C, Arntzen KA. The prevalence of hereditary neuromuscular disorders in Northern Norway. Brain and Behavior 2021;11:e01948. Doi: https://doi.org/10.1002/brb3.1948.

Cauley ES, Pittman A, Mummidivarpu S, Karimiani EG, Martinez S, Moroni I, et al. Novel mutation identification and copy number variant detection via exome sequencing in congenital muscular dystrophy. Mol Genet Genomic Med 2020;8:e1387. Doi: https://doi.org/10.1002/mgg3.1387.

Tran VK, Nguyen N-L, Tran LNT, Le PT, Tran AH, Pham TLA, et al. Merosin-deficient congenital muscular dystrophy type 1a: detection of LAMA2 variants in Vietnamese patients. Front Genet 2023;14:1183663. Doi: https://doi.org/10.3389/fgene.2023.1183663.

Oliveira J, Gruber A, Cardoso M, Taipa R, Fineza I, Gonçalves A, et al. LAMA2 gene mutation update: Toward a more comprehensive picture of the laminin-α2 variome and its related phenotypes. Hum Mutat 2018;39:1314–37. Doi: https://doi.org/10.1002/humu.23599.

Allamand V, Guicheney P. Merosin-deficient congenital muscular dystrophy, autosomal recessive (MDC1A, MIM#156225, LAMA2 gene coding for α2 chain of laminin). Eur J Hum Genet 2002;10:91–4. Doi: https://doi.org/10.1038/sj.ejhg.5200743.

Leite CC, Lucato LT, Martin MGM, Ferreira LG, Resende MBD, Carvalho MS, et al. Distrofia muscular congênita (TMC) deficiente em merosina: estudo de 25 pacientes brasileiros por meio de RM. Pediatr Radiol 2005;35:572–9. Doi: https://doi.org/10.1007/s00247-004-1398-y.

Tan D, Ge L, Fan Y, Chang X, Wang S, Wei C, et al. Natural history and genetic study of LAMA2-related muscular dystrophy in a large Chinese cohort. Orphanet J Rare Dis 2021;16:319. Doi: https://doi.org/10.1186/s13023-021-01950-x.

Jinxian Zheng, Shuai Han, Wen Ye, Shulie Yao, Ming Qi, Jianfen Chen, et al. Carrier screening model for Duchenne muscular dystrophy for women of reproductive age based on a pre-pregnancy birth defect control platform. Chin J Med Genet 2021; 38(5):485-487. Doi: 10.3760/cma.j.cn511374-20200331-00223

Han S, Xu H, Zheng J, Sun J, Feng X, Wang Y, et al. Population‐Wide Duchenne Muscular Dystrophy Carrier Detection by CK and Molecular Testing. BioMed Research International 2020; 2020:8396429. Doi: https://doi.org/10.1155/2020/8396429.

Tawil R, Kissel JT, Heatwole C, Pandya S, Gronseth G, Benatar M, et al. Evidence-based guideline summary: Evaluation, diagnosis, and management of facioscapulohumeral muscular dystrophy: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology and the Practice Issues Review Panel of the American Association of Neuromuscular & Electrodiagnostic Medicine. Neurology 2015;85:357–64. Doi: https://doi.org/10.1212/WNL.0000000000001783.

Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine 2015;17:405–24. Doi: https://doi.org/10.1038/gim.2015.30.

Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Research 2018;46:D1062–7. Doi: https://doi.org/10.1093/nar/gkx1153.

Enzmann C, Steiner L, Pospieszny K, Zweier C, Plattner K, Baumann D, et al. A Multicenter Cross-Sectional Study of the Swiss Cohort of LAMA2-Related Muscular Dystrophy. J Neuromuscul Dis 2024;11:1021–33. Doi: https://doi.org/10.3233/JND-240023.

VCV000444699.32 - ClinVar - NCBI n.d. https://www.ncbi.nlm.nih.gov/clinvar/variation/444699/.

Fokkema IF, Taschner PE, Schaafsma GC, Celli J, Laros JF, den Dunnen JT (2011). LOVD v.3.0: the next generation in gene variant databases. Hum Mutat. 2024 May;32(5):557-63.

Chausova P, Cherevatova T, Dadali E, Murtazina A, Bulakh M, Kurbatov S, et al. A Spectrum of Pathogenic Variants in the LAMA2 Gene in the Russian Federation. IJMS. 2025;26:1257. Doi: https://doi.org/10.3390/ijms26031257.

Camelo CG, Artilheiro MC, Martins Moreno CA, Ferraciolli SF, Serafim Silva AM, Fernandes TR, et al. Brain MRI Abnormalities, Epilepsy and Intellectual Disability in LAMA2 Related Dystrophy – a Genotype/Phenotype Correlation. J Neuromusc Dis. 2023;10:483–92. Doi: https://doi.org/10.3233/JND-221638.

Dahui Q. Next-generation sequencing and its clinical application. Cancer Biol Med. 2019;16:4–10. Doi: https://doi.org/10.20892/j.issn.2095-3941.2018.0055.

Scheid, M. R. Identificação e análise de variantes no gene ATM em pacientes com risco de câncer de mama familiar. Repositório digital LUME UFRGS, 2016. https://lume.ufrgs.br/bitstream/handle/10183/182577/001076112.pdf?sequence=1.

Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–43. Doi: https://doi.org/10.1038/s41586-020-2308-7.

Publicado

2025-09-10

Edição

Seção

Relato de Caso/Case Report

Como Citar

Paz , G. da, & Bandeira, P. (2025). Nova apresentação fenotípica de rara variante de splicing na deficiência de laminina α2Nova apresentação fenotípica de rara variante de splicing na deficiência de laminina α2. Revista De Medicina, 104(5), e-227689. https://doi.org/10.11606/issn.1679-9836.v104i5e-227689