Perspectivas atuais sobre a O-GlcNAc Transferase (OGT) na resposta ao estresse gestacional
DOI:
https://doi.org/10.11606/issn.1679-9836.v104i6e-234285Palavras-chave:
Estresse gestacional, Neurodesenvolvimento, proteína OGT, viés sexual, O-linked N-acetylglucosamine transferase, placentaResumo
A exposição ao estresse no período gestacional pode afetar o desenvolvimento fetal, desencadeando danos a curto e longo prazo, desregulando vias metabólicas e transcricionais, gerando uma resposta compensatória do organismo que pode comprometer o desenvolvimento da programação neural e fetal. A proteína O-linked N-acetylglucosamine transferase (OGT) têm sido sugerida como um potencial biomarcador de estresse pré-natal, devido sua função regulatória e seu envolvimento em diversos processos intracelulares e epigenéticos. Esta revisão narrativa da literatura reúne evidências sobre a atuação da OGT em vias metabólicas e transcricionais, e como essas vias são influenciadas pelo estresse gestacional. Permanece, no entanto, uma lacuna importante: enquanto a resposta celular ao estresse tende a aumentar a atividade da OGT, na placenta observa-se uma redução de sua expressão. Compreender esse paradoxo é essencial para esclarecer mecanismos de regulação tecido e sexo-específicos. OGT modula diversos processos celulares como transcrição, síntese e degradação de proteínas, interação ou localização proteína-proteína e resposta ao estresse. Diante situações estressoras, ocorre um aumento na atividade metabólica de OGT, como um mecanismo de resposta. No tecido placentário, o estresse gestacional pode diminuir os níveis de expressão da OGT, alterando a programação fetal, funções hipotalâmicas e fatores epigenéticos. O perfil de modificação pós-traducional da proteína OGT em vias transcricionais e epigenéticas pode ser mais favorável em placentas femininas, sendo expressa duas vezes em comparação às placentas masculinas.
Downloads
Referências
Hart B, Morgan E, Alejandro EU. Nutrient sensor signaling pathways and cellular stress in fetal growth restriction. J Mol Endocrinol. 2019;62(2):R155-R165. Doi: 10.1530/JME-18-0059
Bale TL. The placenta and neurodevelopment: sex differences in prenatal vulnerability. Dialog Clin Neurosc. 2016;18(4):459-464. Doi: 10.31887/DCNS.2016.18.4/tbale
Howerton CL, Morgan CP, Fischer DB, Bale TL. O-GlcNAc transferase (OGT) as a placental biomarker of maternal stress and reprogramming of CNS gene transcription in development. Proc Natl Acad Sci U S A. 2013;110(13):5169-74. Doi: 10.1073/pnas.1300065110
Lu S, Wei F, Li G. The evolution of the concept of stress and the framework of the stress system. Cell Stress. 2021;5(6):76-85. Doi: 10.15698/cst2021.06.250
Zachara NE, Akimoto Y, Boyce M, Hart GW. The O-GlcNAc Modification. In: Varki A, Cummings RD, Esko JD, et al., eds. Essentials of Glycobiology. 4th ed. Cold Spring Harbor Laboratory Press; 2022. Accessed October 27, 2024. http://www.ncbi.nlm.nih.gov/books/NBK579950/
Ranuncolo SM, Ghosh S, Hanover JA, Hart GW, Lewis BA. Evidence of the involvement of O-GlcNAc-modified human RNA polymerase II CTD in transcription in vitro and in vivo. J Biol Chem. 2012;287(28):23549-23561. Doi: 10.1074/jbc.M111.330910
Deplus R, Delatte B, Schwinn MK, Defrance M, Méndez J, Murphy N, et al. TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. Embo J. 2013;32(5):645-55. Doi: 10.1038/emboj.2012.357
Chu CS, Lo PW, Yeh YH, Hsu PH, Peng SH, Teng YC, et al. O-GlcNAcylation regulates EZH2 protein stability and function. Proc Natl Acad Sci U S A. 2014;111(4):1355-60. Doi: 10.1073/pnas.1323226111.
Howerton CL, Bale TL. Targeted placental deletion of OGT recapitulates the prenatal stress phenotype including hypothalamic mitochondrial dysfunction. Proc Natl Acad Sci U S A. 2014;111(26):9639-44. Doi:10.1073/pnas.1401203111
Nugent BM, O’Donnell CM, Epperson CN, Bale TL. Placental H3K27me3 establishes female resilience to prenatal insults. Nat Commun. 2018;9(1):2555. Doi: 10.1038/s41467-018-04992-1
Very N, Steenackers A, Dubuquoy C, Vermuse J, Dubuquoy L, Lefebvre T, et al. Cross regulation between mTOR signaling and O-GlcNAcylation. J Bioenerg Biomembr. 2018;50(3):213-222. Doi: 10.1007/s10863-018-9747-y
Chatham JC, Zhang J, Wende AR. Role of O-linked-acetylglucosamine protein modification in cellular (patho)physiology. Physiolog Reviews. 2021;101(2):427-93. Doi: 10.1152/physrev.00043.2019
Camilo C, Vieira LM, Torrezan AC, Sousa AB, Gouveia G, Euclydes V, et al. Identification of O-linked N-acetylglucosamine transferase (OGT) expression in human placentas as a potential biomarker of prenatal stress exposure. Europ Neuropsychopharmacol. 2022;63:e127-e128. Doi: 10.1016/j.euroneuro.2022.07.238
Zhang N, Jiang H, Zhang K, Zhu J, Wang Z, Long Y, et al. OGT as potential novel target: Structure, function and inhibitors. Chem Biol Interact. 2022;357:109886. Doi: 10.1016/j.cbi.2022.109886.
Konzman D, Abramowitz LK, Steenackers A, Mukherjee MM, Na HJ, Hanover JA. O-GlcNAc: Regulator of Signaling and Epigenetics Linked to X-linked Intellectual Disability. Front Genet. 2020;11:605263. Doi: 10.3389/fgene.2020.605263
Vaidyanathan K, Wells L. Multiple tissue-specific roles for the O-GlcNAc post-translational modification in the induction of and complications arising from type II diabetes. J Biol Chem. 2014;289(50):34466-71. Doi: 10.1074/jbc.R114.591560
Vella P, Scelfo A, Jammula S, Chiacchiera F, Williams K, Cuomo A, et al. Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells. Mol Cell. 2013;49(4):645-56. Doi: 10.1016/j.molcel.2012.12.019.
Lairson LL, Henrissat B, Davies GJ, Withers SG. Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem. 2008;77:521-55. Doi: 10.1146/annurev.biochem.76.061005.092322
Lazarus MB, Nam Y, Jiang J, Sliz P, Walker S. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature. 2011;469(7331):564-7. Doi: 10.1038/nature09638
Lubas WA, Hanover JA. Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity. J Biol Chem. 2000;275(15):10983-8. Doi: 10.1074/jbc.275.15.10983
Janetzko J, Walker S. The making of a sweet modification: structure and function of O-GlcNAc transferase. J Biol Chem. 2014;289(50):34424-32. Doi: 10.1074/jbc.R114.604405
Li Y, Xie M, Men L, Du J. O-GlcNAcylation in immunity and inflammation: An intricate system (Review). Int J Mol Med. 2019;44(2):363-374. Doi: 10.3892/ijmm.2019.4238
Ruan HB, Singh JP, Li MD, Wu J, Yang X. Cracking the O-GlcNAc code in metabolism. Trends Endocrinol Metab. 2013;24(6):301-9. Doi: 10.1016/j.tem.2013.02.002
Yang X, Qian K. Protein O-GlcNAcylation: emerging mechanisms and functions. Nat Rev Mol Cell Biol. 2017;18(7):452-65. Doi: 10.1038/nrm.2017.22
Schjoldager KT, Narimatsu Y, Joshi HJ, Clausen H. Global view of human protein glycosylation pathways and functions. Nat Rev Mol Cell Biol. 2020;21(12):729-49. Doi: 10.1038/s41580-020-00294-x
Teo CF, Wollaston-Hayden EE, Wells L. Hexosamine flux, the O-GlcNAc modification, and the development of insulin resistance in adipocytes. Mol Cell Endocrinol. 2010;318(1-2):44-53. Doi: 10.1016/j.mce.2009.09.022
Bullen JW, Balsbaugh JL, Chanda D, Shabanowitz J, Hunt DF, Neumann D, et al. Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK). J Biol Chem. 2014;289(15):10592-606. Doi: 10.1074/jbc.M113.523068.
Kelly AC, Kramer A, Rosario FJ, Powell TL, Jansson T. Inhibition of mechanistic target of rapamycin signaling decreases levels of O-GlcNAc transferase and increases serotonin release in the human placenta. Clin Sci (Lond). 2020;134(23):3123-36. Doi: 10.1042/CS20201050
Fisi V, Miseta A, Nagy T. The Role of Stress-Induced O-GlcNAc Protein Modification in the Regulation of Membrane Transport. Oxid Med Cell Longev. 2017;2017:1308692. Doi: 10.1155/2017/1308692
Constable S, Lim JM, Vaidyanathan K, Wells L. O-GlcNAc transferase regulates transcriptional activity of human Oct4. Glycobiology. 2017;27(10):927-37. Doi: 10.1093/glycob/cwx055
Willems AP, Gundogdu M, Kempers MJE, Giltay JC, Pfundt R, Elferink M, et al. Mutations in N-acetylglucosamine (O-GlcNAc) transferase in patients with X-linked intellectual disability. J Biol Chem. 2017;292(30):12621-31. Doi: 10.1074/jbc.M117.790097
Liu C, Li J. O-GlcNAc: A Sweetheart of the Cell Cycle and DNA Damage Response. Front Endocrinol (Lausanne). 2018;9:415. Doi: 10.3389/fendo.2018.00415
Lewis BA, Burlingame AL, Myers SA. Human RNA Polymerase II Promoter Recruitment in Vitro Is Regulated by O-Linked N-Acetylglucosaminyltransferase (OGT). J Biol Chem. 2016;291(27):14056-61. Doi: 10.1074/jbc.M115.684365
Dehennaut V, Leprince D, Lefebvre T. O-GlcNAcylation, an Epigenetic Mark. Focus on the Histone Code, TET Family Proteins, and Polycomb Group Proteins. Front Endocrinol (Lausanne). 2014;5:155. Doi: 10.3389/fendo.2014.00155
Decourcelle A, Leprince D, Dehennaut V. Regulation of Polycomb Repression by O-GlcNAcylation: Linking Nutrition to Epigenetic Reprogramming in Embryonic Development and Cancer. Front Endocrinol (Lausanne). 2019;10:117. Doi: 10.3389/fendo.2019.00117
Love DC, Krause MW, Hanover JA. O-GlcNAc cycling: emerging roles in development and epigenetics. Semin Cell Dev Biol. 2010;21(6):646-54. Doi: 10.1016/j.semcdb.2010.05.001
Nugent BM, Bale TL. The omniscient placenta: Metabolic and epigenetic regulation of fetal programming. Front Neuroendocrinol. 2015;39:28-37. Doi: 10.1016/j.yfrne.2015.09.001
Martinez MR, Dias TB, Natov PS, Zachara NE. Stress-induced O-GlcNAcylation: an adaptive process of injured cells. Biochem Soc Trans. 2017;45(1):237-49. Doi: 10.1042/BST20160153
Yaribeygi H, Panahi Y, Sahraei H, Johnston TP, Sahebkar A. The impact of stress on body function: A review. EXCLI J. 2017;16:1057-72. Doi: 10.17179/excli2017-480
Zuliani I, Lanzillotta C, Tramutola A, Francioso A, Pagnotta S, Barone E, et al. The Dysregulation of OGT/OGA Cycle Mediates Tau and APP Neuropathology in Down Syndrome. Neurotherapeutics. 2021;18(1):340-63. Doi: 10.1007/s13311-020-00978-4
Groves JA, Lee A, Yildirir G, Zachara NE. Dynamic O-GlcNAcylation and its roles in the cellular stress response and homeostasis. Cell Stress Chaperones. 2013;18(5):535-58. Doi:10.1007/s12192-013-0426-y
Akan I, Olivier‐Van Stichelen S, Bond MR, Hanover JA. Nutrient‐driven O‐GlcNAc in proteostasis and neurodegeneration. J Neurochem. 2018;144(1):7-34. Doi:10.1111/jnc.14242
Maltepe E, Bakardjiev AI, Fisher SJ. The placenta: transcriptional, epigenetic, and physiological integration during development. J Clin Invest. 2010;120(4):1016-25. Doi: 10.1172/JCI41211
Soma-Pillay P, Nelson-Piercy C, Tolppanen H, Mebazaa A. Physiological changes in pregnancy. Cardiovasc J Afr. 2016;27(2):89-94. Doi: 10.5830/CVJA-2016-021
Guardino CM, Schetter CD. Coping during pregnancy: a systematic review and recommendations. Health Psychol Rev. 2014;8(1):70-94. Doi: 10.1080/17437199.2012.752659
Glover V, O’Donnell KJ, O’Connor TG, Fisher J. Prenatal maternal stress, fetal programming, and mechanisms underlying later psychopathology-A global perspective. Dev Psychopathol. 2018;30(3):843-54. Doi: 10.1017/S095457941800038X
Lautarescu A, Craig MC, Glover V. Prenatal stress: Effects on fetal and child brain development. Int Rev Neurobiol. 2020;150:17-40. Doi: 10.1016/bs.irn.2019.11.002
Ning J, Yang H. O-GlcNAcylation in Hyperglycemic Pregnancies: Impact on Placental Function. Front Endocrinol (Lausanne). 2021;12:659733. Doi: 10.3389/fendo.2021.659733
Armitage JA, Khan IY, Taylor PD, Nathanielsz PW, Poston L. Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals? J Physiol. 2004;561(2):355-77. Doi: 10.1113/jphysiol.2004.072009
Andres LM, Blong IW, Evans AC, Rumachik NG, Yamaguchi T, Pham ND, et al. Chemical Modulation of Protein O-GlcNAcylation via OGT Inhibition Promotes Human Neural Cell Differentiation. ACS Chem Biol. 2017;12(8):2030-9. Doi: 10.1021/acschembio.7b00232
Patrat C, Ouimette JF, Rougeulle C. X chromosome inactivation in human development. Development. 2020;147(1):dev183095. Doi: 10.1242/dev.183095
Christians JK. The Placenta’s Role in Sexually Dimorphic Fetal Growth Strategies. Reprod Sci. 2022;29(6):1895-1907. Doi: 10.1007/s43032-021-00780-3
Gabory A, Roseboom TJ, Moore T, Moore LG, Junien C. Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics. Biol Sex Differ. 2013;4(1):5. Doi: 10.1186/2042-6410-4-5
Gong S, Sovio U, Aye IL, Gaccioli F, Dopierala J, Johnson MD, et al. Placental polyamine metabolism differs by fetal sex, fetal growth restriction, and preeclampsia. JCI Insight. 2018;3(13):e120723. Doi: 10.1172/jci.insight.120723
Morgan E, Chung G, Jo S, Clifton B, Wernimont SA, Alejandro EU. Gene and Protein Expression of Placental Nutrient-Stress Sensor Proteins in Fetal Growth Restriction. Stresses. 2024;4(2):308-19. Doi:10.3390/stresses4020019
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Antonia Beatriz da Silva Sousa, Gisele Rodrigues Gouveia, Caroline Perez Camilo

Este trabalho está licenciado sob uma licença Creative Commons Attribution-ShareAlike 4.0 International License.