Concepts of indirect calorimetry on metabolic disorders: a narrative review

Authors

DOI:

https://doi.org/10.11606/issn.1679-9836.v99i6p581-590

Keywords:

Indirect calorimetry, Substrates oxidation, Energy expenditure, Respiratory quotient, Metabolic disorders

Abstract

Introduction: Indirect calorimetry remains a gold standard in measuring resting energy expenditure in the clinical field. Through its measurements, it is possible to offers a patient’s energy needs to maximize nutritional therapy benefits. However, the concepts and methodological basis of collected data can be difficult to be interpreted by users in clinical practice. Objective: To address the concepts of total daily energy expenditure and its components and present the methodological aspects of indirect calorimetry that can guide the clinical field. Method: Narrative bibliographic review using the electronic Pubmed (US National Library of Medicine), SCOPUS, and Scientific Electronic Library Online (SCIELO) databases. The research was carried out in the period between 1905-2019, using the following identifiers in Health Sciences Descriptors: Basal Metabolism, Energy Metabolism and Indirect Calorimetry. We selected 55 researches published that presented contents related to the objectives of this study. Result: The total daily energy expenditure (TDEE) is comprised of three main components, such as physical activity (PA), thermic effect of food (TEF) and basal metabolic rate (BMR) and/or resting energy expenditure (REE). The REE is generally evaluated by indirect calorimetry, which also provides information on the respiratory coefficient (RQ) or oxidation of substrates. Its result varies depending on the existence of some metabolic disorders such as obesity or malnutrition. Therefore, the proper management of the methodological aspects of indirect calorimetry and its subsequent interpretation in metabolic disorders is essential to guarantee the results’ quality. Conclusion: Energy expenditure concepts and the methodological basis of indirect calorimetry are relevant to providing individualized attention to patients with metabolic disorders. This review can be used as a practical guide, helping to understand the correct application of the indirect calorimetry technique in studies related to energy expenditure with an emphasis on metabolic disorders.

Downloads

Download data is not yet available.

Author Biographies

  • Rocio San Martin, Universidade de São Paulo. Faculdade de Medicina de Ribeirão Preto. Departamento de Clínica Medica

    Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Clínica Medica, Ribeirão Preto, Brasil. 

  • Camila Fernanda Cunha Brandao, Universidade de São Paulo. Faculdade de Medicina de Ribeirão Preto. Departamento de Clínica Medica

    Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Clínica Medica.
    Universidade do Estado de Minas Gerais, Unidade Divinópolis, Brasil.

  • Marcia Varella Morandi Junqueira-Franco, Universidade de São Paulo. Faculdade de Medicina de Ribeirão Preto. Departamento de Clínica Medica

    Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Clínica Medica

  • Gizela Pedroso Junqueira, Universidade de São Paulo. Faculdade de Medicina de Ribeirão Preto. Departamento de Clínica Medica

    Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Clínica Medica, Ribeirão Preto, Brasil.

  • Fernando Bahdur Chueire, Universidade de São Paulo. Faculdade de Medicina de Ribeirão Preto. Departamento de Clínica Medica

    Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Clínica Medica

  • Joyce Cristina Santos de Oliveira, Universidade de São Paulo. Faculdade de Medicina de Ribeirão Preto. Departamento de Clínica Medica

    Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Clínica Medica

  • Selma Freire Carvalho da Cunha, Universidade de São Paulo. Faculdade de Medicina de Ribeirão Preto. Departamento de Clínica Medica

    Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Clínica Medica

  • Vivian Marques Miguel Suen, Universidade de São Paulo. Faculdade de Medicina de Ribeirão Preto. Departamento de Clínica Medica

    Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Clínica Medica

  • Julio Sergio Marchini, Universidade de São Paulo. Faculdade de Medicina de Ribeirão Preto. Departamento de Clínica Medica

    Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Clínica Medica

References

Rattanachaiwong S, Singer P. Indirect calorimetry as point of care testing. Clin Nutr. 2019;1-14. https://doi.org/10.1016/j.clnu.2018.12.035.

Fassini PG, Silva JH, Lima CM, Cunha SF, Wichert-Ana L, Marchini JS, et al. Indirect calorimetry: from expired CO2 production, inspired O2 consumption to energy equivalent. J Obes Weight Loss Ther. 2015;s5(001):8–10. https://doi:10.4172/2165-7904.S5-001.

Levine JA. Non-exercise activity thermogenesis (NEAT). Nutr Rev. 2004;62(2):82-97. https://doi.org/10.1111/j.1753-4887.2004.tb00094.x.

Trexler ET, Smith-Ryan AE, Norton LE. Metabolic adaptation to weight loss: Implications for the athlete. J Int Soc Sports Nutr. 2014;11(1):1-7. https://doi.org/10.1186/1550-2783-11-7.

del Re MP, de Melo CM, dos Santos MV, Tufik S, de Mello MT. Applicability of predictive equations for resting energy expenditure in obese patients with obstructive sleep apnea. Arch Endocrinol Metab. 2017;61(3):257-62.5. http://dx.doi.org/10.1590/2359-3997000000228.

Redondo RB. Gasto energético en reposo; métodos de evaluación y aplicaciones. Nutr Hosp. 2015;31:245-54. https://doi.org/10.14642/RENC.2015.21.sup1.5071.

Fullmer S, Benson-Davies S, Earthman CP, Frankenfield DC, Gradwell E, Lee PSP, et al. Evidence analysis library review of best practices for performing indirect calorimetry in healthy and non-critically ill individuals. J Acad Nutr Diet. 2015;115(9):1417-46. https://doi.org/10.1016/j.jand.2015.04.003.

von Loeffelholz C, Birkenfeld A. The role of non-exercise activity thermogenesis in human obesity. 2018 Apr 9. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dungan K, et al., editors. Endotext. South Dartmouth (MA): MDText.com, Inc.; 2000–. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25905303.

McManus AM. Physical activity - a neat solution to an impending crisis. J Sports Sci Med. 2007;6(3):368-73. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3787287/.

Lam YY, Ravussin E. Analysis of energy metabolism in humans: a review of methodologies. Mol Metab. 2016;5(11):1057-71. https://doi.org/10.1016/j.molmet.2016.09.005.

Segal KR, Pi-Sunyer FX. Exercise and obesity. Med Clin North Am. 1989;73(1):217-36.

Psota T. Measuring energy expenditure in clinical populations: rewards and challenges. Eur J Clin Nutr. 2013;67(5):436-42. https://doi.org/10.1038/ejcn.2013.38.

Kinabo JL, Durnin JVGA. Thermic effect of food in man: effect of meal composition, and energy content. Br J Nutr. 1990;64(1):37-44. https://doi.org/10.1079/BJN19900007.

Jaquier E. Human Whole Body direct calorimetry. IEEE Eng Med Biol Mag. 1986;5(2):12-4. https://doi.org/10.1109/MEMB.1986.5006277.

Melanson EL, Dykstra JC, Szuminsky N. A novel approach for measuring energy expenditure in free-living humans. Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:6873-7. doi: 10.1109/IEMBS.2009.5333124.

Schoeller DA, Webb P. Five-day comparison of the doubly labeled water method with respiratory gas exchange. Am J Clin Nutr. 1984;40(1):153-8. https://doi.org/10.1093/ajcn/40.1.153.

International Atomic Energy Agency. Assessment of body composition and total energy expenditure in humans using stable isotope technique.. IAEA, Vienna: IAEA; 2009. (Human Health Series No. 3). Available from: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1370_web.pdf.

Speakman JR, Thomson SC. Validation of the labeled bicarbonate technique for measurement of short-term energy expenditure in the mouse. Z Ernahrungswiss. 1997;36(4):273-7. https://doi.org/10.1007/BF01617797.

Westerterp KR. Doubly labelled water assessment of energy expenditure: principle, practice, and promise. Eur J Appl Physiol. 2017;117(7):1277-85. https://doi.org/10.1007/s00421-017-3641-x.

Wu XY, Han LH, Zhang JH, Luo S, Hu JW, Sun K. The influence of physical activity, sedentary behavior on health-related quality of life among the general population of children and adolescents: a systematic review. PLoS One. 2017;12(11):e0187668. https://doi.org/10.1371/journal.pone.0187668.

Brandao CFC, Carvalho FG, Souza A de O, Junqueira‐Franco MVM, Batitucci G, Couto‐Lima CA, et al. Physical training, UCP1 expression, mitochondrial density, and coupling in adipose tissue from women with obesity. Scand J Med Sci Sports. 2019;29(11):1699-706. https://doi.org/10.1111/sms.13514.

Corder K, Ekelund U, Steele RM, Wareham NJ, Brage S. Assessment of physical activity in youth. J Appl Physiol. 2008;105(3):977-87. https://doi.org/10.1152/japplphysiol.00094.2008.

Hills AP, Mokhtar N, Byrne NM. Assessment of physical activity and energy expenditure: an overview of objective measures. Front Nutr. 2014;1:5. https://doi.org/10.3389/fnut.2014.00005.

Marchini JS, Fett CA, Fett WC, Suen VM. Calorimetria: aplicações práticas e considerações críticas. Fit Perform J. 2005;4(2):90-6. doi: 10.3900/fpj.4.2.90.p.

Achten J, Jeukendrup AE. Heart Rate Monitoring. Sport Med. 2003;33(7):517-38. https://doi.org/10.2165/00007256-200333070-00004.

Tudor-Locke C, Bassett DR. How many steps/day are enough? Sport Med. 2004;34(1):1-8. https://doi.org/10.2165/00007256-200434010-00001.

Le-Masurier GC, Sidman CL, Corbin CB. Accumulating 10,000 steps: does this meet current physical activity guidelines? Res Q Exerc Sport. 2003;74(4):389-94. https://doi.org/10.1080/02701367.2003.10609109.

Tharion WJ, Yokota M, Buller MJ, DeLany JP, Hoyt RW. Total energy expenditure estimated using a foot-contact pedometer. Med Sci Monit. 2004;10(9):CR504-9.

Ridgers ND, Fairclough S. Assessing free-living physical activity using accelerometry: practical issues for researchers and practitioners. Eur J Sport Sci. 2011;11(3):205-13. https://doi.org/10.1080/17461391.2010.501116.

Bouten C V, Sauren AA, Verduin M, Janssen JD. Effects of placement and orientation of body-fixed accelerometers on the assessment of energy expenditure during walking. Med Biol Eng Comput. 1997;35(1):50-6. https://doi.org/10.1007/BF02510392.

de Oliveira BAP, Nicoletti CF, de Oliveira CC, Pinhel MA de S, Quinhoneiro DCG, Noronha NY, et al. A new resting metabolic rate equation for women with class III obesity. Nutrition. 2018;49:1-6. https://doi.org/10.1016/j.nut.2017.11.024.

Willis EA, Herrmann SD, Ptomey LT, Honas JJ, Bessmer CT, Donnelly JE, et al. Predicting resting energy expenditure in young adults. Obes Res Clin Pract. 2016;10(3):304–14. https://doi.org/10.1016/j.orcp.2015.07.002.

Brúsik M, Štrbová Z, Petrášová D, Pobeha P, Kuklišová Z, Tkáčová R, et al. Increased resting energy expenditure and insulin resistance in male patients with moderate to severe obstructive sleep apnoea. Physiol Res. 2016;65(6):969-77. doi: 10.33549/physiolres.933277.

Huang KC, Kormas N, Steinbeck K, Loughnan G, Caterson ID. Resting metabolic rate in severely obese diabetic and nondiabetic subjects. Obes Res. 2004;12(5):840-5. https://doi.org/10.1038/oby.2004.101.

Branson RD, Johannigman JA. The Measurement of Energy Expenditure. Nutr Clin Pract. 2004;19(6):622-36. https://doi.org/10.1177/0115426504019006622.

da Rocha EEMM, Alves VGF, Da Fonseca RB V. Indirect calorimetry: methodology, instruments and clinical application. Curr Opin Clin Nutr Metab Care. 2006;9(3):247-56. https://doi.org/0.1097/01.mco.0000222107.15548.f5.

Arch JRS, Hislop D, Wang SJY, Speakman JR. Some mathematical and technical issues in the measurement and interpretation of open-circuit indirect calorimetry in small animals. Int J Obes. 2006;30(9):1322-31. https://doi.org/10.1038/sj.ijo.0803280.

Birnbaumer P, Müller A, Tschakert G, Sattler MC, Hofmann P. Performance enhancing effect of metabolic pre-conditioning on upper-body strength-endurance exercise. Front Physiol. 2018;9:1-10. https://doi.org/10.3389/fphys.2018.00963.

Lusk G. Animal calorimetry. J Biol Chem. 1924;59(1):41-2. Available from: https://www.jbc.org/content/59/1/41.full.pdf.

Weir JB d. DB V. New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol. 1949;109(1–2):1-9. https://doi.org/10.1113/jphysiol.1949.sp004363.

Consolazio CF, Johnson RE, Pecora LJ. Physiological measurements of metabolic functions in man. New York: McGraw-Hill; 1963. [Resenha de Kleiber M. Science. 1963;141(3575):35]. Availabe from: https://science.sciencemag.org/content/141/3575/35.1.

Pupim LB, Martin CJ, Ikizler TA. Assessment of protein and energy nutritional status. Nutr Manag Ren Dis. 2013;137-58. https://doi.org/10.1016/j.semnephrol.2005.09.010.

Petersen MC, Vatner DF, Shulman GI. Regulation of hepatic glucose metabolism in health and disease. Nat Rev Endocrinol. 2017;13(10):572-87. https://doi.org/10.1038/nrendo.2017.80.

Simonson DC, DeFronzo RA. Indirect calorimetry: Methodological and interpretative problems. Am J Physiol Endocrinol Metab. 1990 258(321-3):E399-412. https://doi.org/10.1152/ajpendo.1990.258.3.E399.

Jequier E, Acheson K, Schutz Y. Assessment of energy expenditure and fuel utilization in man. Annu Rev Nutr. 1987;7(1):187-208. https://doi.org/10.1146/annurev.nu.07.070187.001155.

Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol. 1983;55(2):628-34. doi: https://doi.org/10.1152/jappl.1983.55.2.628.

Westenskow DR, Schipke CA, Raymond JL, Saffle JR, Becker JM, Young EW, et al. Calculation of metabolic expenditure and substrate utilization from gas exchange measurements. J Parenter Enter Nutr. 1988;12(1):20-4. https://doi.org/10.1152/jappl.1983.55.2.628.

Ferrannini E. The theoretical bases of indirect calorimetry: a review. Metabolism. 1988;37(3):287-301. https://doi.org/10.1016/0026-0495(88)90110-2.

Cathcart EP, Cuthbertson DP. The composition and distribution of the fatty substances of the human subject. J Physiol. 1931;72(3):349-60. https://doi.org/10.1113/jphysiol.1931.sp002779.

Folin O. Laws governing the chemical composition of unine. Am J Physiol. 1905;(13):66-115. Available from: https://journals.physiology.org/doi/pdf/10.1152/ajplegacy.1905.13.1.66.

Reid CL, Carlson GL. Indirect calorimetry--a review of recent clinical applications. Curr Opin Clin Nutr Metab Care. 1998;1(3):281-6. https://doi.org/10.1097/00075197-199805000-00008.

Compher C, Frankenfield D, Keim N, Roth-Yousey L. Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review. J Am Diet Assoc. 2006;106(6):881-903. https://doi.org/10.1016/j.jada.2006.02.009

Published

2020-12-20

Issue

Section

Artigos de Revisão/Review Articles

How to Cite

San Martin, R., Brandao, C. F. C., Junqueira-Franco, M. V. M., Junqueira, G. P., Chueire, F. B., Oliveira, J. C. S. de, Cunha, S. F. C. da, Suen, V. M. M., & Marchini, J. S. (2020). Concepts of indirect calorimetry on metabolic disorders: a narrative review. Revista De Medicina, 99(6), 581-590. https://doi.org/10.11606/issn.1679-9836.v99i6p581-590