Investigation of the impacts of traumatic medular injury on the neuroanatomic structure of sensoriomotor cortical areas

Authors

DOI:

https://doi.org/10.11606/issn.1679-9836.v100i6p570-577

Keywords:

Spinal cord injury, Neuroplasticity, Cortical changes, Paraplegia

Abstract

Loss of motor control is one of the most debilitating consequences of spinal cord injury. Partial or complete disruption of the sensory ascending and motor descending pathways render the individual unable to walk and perform activities in a functional manner. The occurrence of spontaneous sensorimotor cortical reorganization immediately after injury and continuously over time may occur in specific areas, as well as in the entire cerebral cortex, as evidenced in previous studies. Understanding the complex interaction between anatomical changes, functionality, and cortical reorganization induced by spinal cord injury, as well as defining its effects, is crucial for the evaluation of rehabilitation therapies and consequent improvement in the subject’s quality of life. In this study, magnetic resonance images were obtained to explore morphological changes in the Gray Matter (GM) and White Matter (WM) in the cerebral cortex of individuals with thoracic spinal cord injury. Two groups of volunteers were recruited for this research (spinal cord injury - Experimental Group; and non-injured - Control Group). Intergroup comparison was performed considering time after injury. The global evaluation of the brain did not detect changes in the total GM volume. Volumetric differences in cortical GM were found in the pre-central gyrus and lower pre-central sulcus. The change observed in the pre-central gyrus occurred in the left hemisphere, responsible for motor control of the right lower limb, compatible with the dominance of the volunteers of both groups (right-handed). The findings provide evidence that post-injury time does not have a significant influence on the overall volumetric loss. However, changes in specific regions associated with motor control of regions below the lesion were evidenced in this study.

Downloads

Download data is not yet available.

Author Biographies

  • Gabriela Dyonísio, Universidade Federal de Uberlândia, Faculdade de Engenharia Elétrica

    Laboratório de Engenharia Biomédica, Faculdade de Engenharia Elétrica, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brasil.
    Hospital de Clínicas da Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brasil.

  • Dhainner Rocha Dhainner, Universidade Federal de Uberlândia, Faculdade de Engenharia Elétrica

    Laboratório de Engenharia Biomédica, Faculdade de Engenharia Elétrica, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brasil.

  • Eduardo Batista de Carvalho, Universidade Federal de Uberlândia, Faculdade de Engenharia Elétrica

    Laboratório de Engenharia Biomédica, Faculdade de Engenharia Elétrica, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brasil.

  • Tulio Augusto Alves Macedo, Universidade Federal de Uberlândia, Hospital de Clínicas

    Hospital de Clínicas da Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brasil.

  • Andrea de Martino Luppi, Universidade Federal de Uberlândia, Hospital de Clínicas

    Hospital de Clínicas da Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brasil.

  • Alcimar Barbosa Soares, Universidade Federal de Uberlândia, Faculdade de Engenharia Elétrica

    Laboratório de Engenharia Biomédica, Faculdade de Engenharia Elétrica, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brasil.

References

Jurkiewicz MT, Mikulis DT, Mellrov WE, Fwehlings MG, Verrier MC. Sensoriomotor cortical plasticity during recovery following spinal cord injury: a longitudinal fMRI study. Neurorehabil Neural Repair. 2007;21(6):527-38. doi: 10.1177/1545968307301872.

Freund P, Weiskopf N, Ashburner J, Wolf K, Sutter R, Altmandn DR, Friston K, Thompson A, Curt A. MRI investigation of the sensoriomotor córtex and the corticospinal tract after acute spinal cord injury: a prospective longitudinal study. Lancet Neurol. 2013;12(9):873-81. doi: 10.1016/S1474-4422(13)70146-7.

Yoon EJ, Kim YK, Shin H, Lee Y, Kim SE. Cortical and white matter alterations in patients with neuropathic pain after spinal cord injury. Brain Res. 2013;1540:64-73. doi: 10.1016/j.brainres.2013.10.007.

Wrigley PJ, Gustin SM, Macey PM, Nash PG, Gandevia SC, Macefield CG, Siddal PJ, Henderson LA. Anatomical changes in human motor córtex and motor pathways following complete thoracic spinal cord injury. Cereb Cortex. 2009;19(1): 224-32. doi: 10.1093/cercor/bhn072.

Aguillar J, Humanes-Valera D, Alonso-Calviño E, Yague JG, Moxon KA, Oliviero A, Foffani G. Spinal cord injury immediately changes the state of the brain. J Neurosci. 2010;30:7528-37. doi: 10.1523/JNEUROSCI.0379-10.2010.

Henderson LA, Gustin SM, Macey PM, Wrigley PJ, Siddal PJ. Functional reorganization of the brain in humans following spinal cord injury: evidence for underlying changes in cortical anatomy. J Neurosci. 2011;31(7):2630-37. doi: 10.1523/JNEUROSCI.2717-10.2011.

Lundell H, Christense MS, Barthélemy D, Willerslev-Olsen M, Biering-Sørense, Nielsen JB. Cerebral activation is correlated to region atrophy of the spinal cord injured individuals. Neuroimage; 2011;54(2):1254-61. doi: 10.1016/j.neuroimage.2010.09.009.

Freund P, Weiskopf N, Ward NS, Hutton C, Gall A, Ciccarelli O, Craggs M. Friston K, Thompson AJ. Disability, atrophy and cortical reorganization following spinal cord injury. Brain. 2011;134(6):1610-22. doi: 10.1093/brain/awr093.

Zheng W, Chen Q, Chen X, Wan L, Qin W, Qi Z, Chen N, Li K. Brain white matter impairment in patients with spinal cord injury. Neural Plast. 2017:4671607. doi: https://doi.org/10.1155/2017/4671607.

Beaud ML, Schmidlin E, Wannier T, Freund P, Bloch J, Mir A, Schwab ME, Rouiller EM. Anti-Nogo-A antibody treatment does not prevent cell body shrinkage in the motor cortex in adult monkeys subjected to unilateral cervical cord lesion. BMC Neurosci. 2008;9:5. doi: 10.1186/1471-2202-9-5.

Wall PD, Egger MD. Formation of new connections in adult rat brains after partial deafferentation. Nature. 1971;232(5312):542-5. doi: 10.1038/232542a0.

Höller Y, Tadzic A, Thomschewski AC, Höller P, Leis S, Tomasi SO, Hofer C, Bathke A, Nardone R, Trinka E. Factors affecting volume changes of the somatosensory cortex in patients with spinal cord injury: to be considered for future neuroprosthetic design. Front Neurol. 2017;8:662. doi: 10.3389/fneur.2017.00662.

Crawley AP, Jurkiewicz MT, Yim A, Heyn S, Verrier MC, Fehlings MG, Mikulis DJ. Absence of localized grey matter volume changes in the motor cortex following spinal cord injury. Brain Res. 2004;1028:19-25. doi: 10.1016/j.brainres.2004.08.060.

Chen Q, Zheng W, Chen X, Wan L, Qin W, Zhigang Q, Chen N, Kuncheng L. Brain gray matter atrophy after spinal cord injury: a voxel-based morphometry study. Front Hum Neurosci. 2017;11:211. doi: 10.3389/fnhum.2017.00211.

American Spinal Injury Association. International standards for neurological classification of spinal cord injury. Atlanta (US): American Spinal Injury Association; 2011 [cited 2019 July 1]. Available from: http://www.asia-spinalinjury.org/publications/59544_sc_Exam_Sheet_r4.pdf.

Hedges L, Olkin I. Statistical methods for meta-analysis. Chapter 14 - Estimation of effect size when not all study outcomes are observed. New York: Academic Press; 1985. p.285-309.

Jurkiewicz MT, Crawley AP, Verrier MC, Fwehlings MD, Mikulis DJ. Somatosensory cortical atrophy after spinal cord injury: a voxel-based morphometry study. Neurology 2006; 66:762-4. doi: 10.1212/01.wnl.0000201276.28141.40.

National Spinal Cord Injury Statistical Center. Spinal cord injury facts and figures at a glance. Birmingham, AL: University of Alabama at Birmingham; 2018 [cited 2019 November 29]. Available from: https://www.nscisc.uab.edu/Public/Facts%20and%20Figures%20-%202018.pdf.

Devivo MJ. Epidemiology of traumatic spinal cord injury: trends and future implications. Spinal Cord. 2012;50:365-72. doi: 10.1038/sc.2011.178.

Kim BG, Dai HN, Mcatee M, Vicini S, Bregman BS. Remodeling of synaptic structures in the motor cortex following spinal cord injury. Exp Neurol. 2006;198(2):401-15. doi: 10.1016/j.expneurol.2005.12.010.

Felix M, Popa N, Djelloul M, Boucraut J, Gauthier P, Bauer S, Matarazzo VA. Alteration of forebrain neurogenesis after cervical spinal cord injury in the adult rat. Front Neurosci. 2012;6:45. doi: 10.3389/fnins.2012.00045.

Wang W, Tang S, Li C, Chen J, Li H, Su Y, Ning B. Specific brain morphometric changes in spinal cord injury: a voxel-based meta-analysis of white and grey matter volume. J Neurotrauma. 2019;36(15):2348-57. doi: 10.1089/neu.2018.6205.

karunakaran KD, He J, Zhao J, Cui JL, Zang YF, Zhang Z, Biswal BB. Differences in cortical gray matter atrophy of paraplegia and tetraplegia after complete spinal cord injury. J Neurotrauma. 2019;36(12):2045-51. doi: 10.1089/neu.2018.6040.

Cohen-Adad J, El Mendili MM, Lehericy S, Pradat PF, Blancho S, Rossignol S, Benali H. Demyelination and degeneration in the injured human spinal cord detected with diffusion and magnetization transfer MRI. Neuroimage. 2011;55:1024-33. doi: 10.1016/j.neuroimage.2010.11.089.

Published

2021-12-26

Issue

Section

Artigos/Articles

How to Cite

Dyonísio, G., Dhainner, D. R., Carvalho, E. B. de, Macedo, T. A. A., Luppi, A. de M., & Soares, A. B. (2021). Investigation of the impacts of traumatic medular injury on the neuroanatomic structure of sensoriomotor cortical areas. Revista De Medicina, 100(6), 570-577. https://doi.org/10.11606/issn.1679-9836.v100i6p570-577