3D printing in forensic medicine and crime solving: integrative literature review

Authors

DOI:

https://doi.org/10.11606/issn.1679-9836.v100i1p62-69

Keywords:

Forensic science, 3D printer, Criminal expertise, Rapid prototyping

Abstract

3D printing technology provided opportunities for explorations in new biological areas, such as Forensic Medicine, helping to solve crimes. Considering the use of this technology in Criminal Forensics, this work consists of a literary review that aims to report the contribution of 3D printing in solving criminal acts. The main 3D impressions used, their advantages and disadvantages were reported. As an adjunct, molecular techniques were also presented in 3D printing that can assist in solving crimes. Data analysis revealed that the use of 3D printing collaborated in the expert reports that elucidated investigations conducted in the criminal area. Technology was presented as an option to reduce costs, deadlines and invasive impacts on the body, in forensic contexts. It was concluded that it is necessary to plan the construction of the object taking into account technical restrictions of 3D printers, mainly the digitization process. In addition, determining which computational method to combine to obtain the best results in Forensic Medicine are critical steps in the printing process.

Downloads

Download data is not yet available.

Author Biographies

  • Brizza Fernandes dos Santos Vargas, Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais - Campus Barbacena

    Bióloga pelo Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais - Campus Barbacena, Minas Gerais, Brasil. 

  • Melina Almeida Coutinho, Universidade Estadual de Santa Cruz - UESC

    Acadêmica do Curso de Medicina da Universidade Estadual de Santa Cruz - UESC - Ilhéus, Bahia, Brasil. 

  • Flaviane Silva Coutinho, Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais - Campus Barbacena

    Professora substituta do Departamento de Ciências Biológica do Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais - Campus Barbacena, Minas Gerais, Brasil. Doutora em Bioquímica Aplicada pela Universidade Federal de Viçosa. 

References

Santos AE. As principais linhas da biologia forense e como auxiliam na resolução de crimes. Rev Bras Criminalística. 2018;7:12-20. doi: https://doi.org/10.15260/rbc.v7i3.190.

Goodman M. Future crimes: tudo está conectado, todos somos vulneráveis e o que podemos fazer sobre isso. São Paulo: HSM; 2015.

George E, Liacouras P, Rybicki FJ, Mitsouras D. Measuring and establishing the accuracy and reproducibility of 3D printed medical models. Radiographics. 2017;37:1424-50. doi: https://doi.org/10.1148/rg.2017160165.

Urbanová P, Jurda M, Ross AH, Splíchalová I. The virtual approach to the assessment of skeletal injuries in human skeletal remains of forensic importance. J Forensic Legal Med. 2017;49:59-75. doi: https://doi.org/10.1016/j.jflm.2017.05.015.

Gibson I, Rosen DW, Stucker B. Additive manufacturing technologies– rapid prototyping to direct digital manufacturing. New York: Springer; 2010.

Berman B. 3-D printing: The new industrial revolution. Business Horizons. 2012;55:155-62. doi: https://doi.org/10.1016/j.bushor.2011.11.003.

Mankovich NJ, Cheeeseman AM, Stoker NG. The display of three-dimensional anatomy with stereolithographic models. J Digital Imaging. 1990;3:200-03. doi: https://doi.org/10.1007/BF03167610.

Lauridsen H, Hansen K, Norgard MO, Wang T, Pedersen M. From tissue to silicon to plastic: three-dimensional printing in comparative anatomy and physiology. Royal Soc Open Sci. 2016;3:01-15. doi: https://doi.org/10.1098/rsos.150643.

Zur Nedden D, Knapp R, Wicke K, Judmaier W, Murphy WA, Seidler H, Platzer W. Skull of a 5300-year-old mummy. Reproduction and investigation with CT-guided stereolithography. Radiology. 1994;193:269-72. doi: https://doi.org/10.1148/radiology.193.1.8090905.

Recheis W, Weber GW, Schaefer K, Horst S, Knapp R, Nedden DZ. Virtual reality and anthropology. Eur J Radiol. 1999;31:88-96. doi: https://doi.org/10.1016/s0720-048x(99)00089-3.

Pérès F, Taha F, Lumley MA, Cabanis EA. Digital modelling and stereolithographic production of a Homo erectus skull. Rapid Prototyping J. 2004;10:247-54. doi: https://doi.org/10.1108/13552540410551379.

Adams JW, Paxton L, Burlak K, Dawes K, Quayle MR, Mcmenamin PG. 3D printed reproductions of orbital dissections: a novel mode of visualising anatomy for trainees in ophthalmology or optometry. Brit J Ophthalmol. 2015;99(9). doi: https://doi.org/10.1136/bjophthalmol-2014-306189.

Azuma M, Ishibashi-Kanno N, Ito T, Hasegawa S, Adachi S, Sekido M, Yanagawa T, Uchida F, Yamagata K, Sasaki K, Tabuchi K, Bukawa K. Mandibular reconstruction using plates prebent to fit rapid prototyping 3-dimensional printing models ameliorates contour deformity. Head Face Med. 2014;10:01-10. doi: https://doi.org/10.1186/1746-160X-10-45.

Moraes PH, Olate S, Assis AF, Cantín M, Santos EC, Silva LO, Silva FO. Anatomical reproducibility through 3D printing in cranio-maxillo-facial defects. Int J Morphol. 2015;33:826-30. doi: https://doi.org/10.4067/S0717-95022015000300003.

Elgalal M, Kozakiewicz M, Olszycki M, Walkowiak B, Stefanczyk L. Custom implant design and surgical pre-planning using rapid prototyping and anatomical models for the repair of orbital floor fractures. Eur Soc Radiol. 2009;01-17. https://dx.doi.org/10.1594/ecr2009/C-292.

Kim MS, Hansgen AR, Wink O, Quaife RA, Carroll JD. Rapid prototyping a new tool in understanding and treating structural heart disease. Circulation. 2008;117:2388-94. doi: https://doi.org/10.1161/CIRCULATIONAHA.107.740977.

Urbanová P, Vojtisek T, Frishons J, Sandor O, Jurda M, Krajsa J. Applying 3D prints to reconstructing postmortem craniofacial features damaged by devastating head injuries. Legal Med. 2018;33:48-52. doi: https://doi.org/10.1016/j.legalmed.2018.05.005.

Woźniak K, Woźniak ER, Moskala A, Pohl J, Latacz K, Dybala B. Weapon identification using antemortem computed tomography with virtual 3D and rapid prototype modeling-A report in a case of blunt force head injury. Forensic Sci Int. 2012;222:29-32. doi: https://doi.org/10.1016/j.forsciint.2012.06.012.

Baier W, Warnett JM, Williams MA, Payne M. Introducing 3D printed models as demonstrative Evidence at Criminal Trials. J Forensic Sci. 2017;63. doi: https://doi.org/10.1111/1556-4029.13700.

Edwards J, Rogers R. The accuracy and applicability of 3D modeling and printing blunt force cranial injuries. J Forensic Sci. 2017;63:683-691. doi: https://doi.org/10.1111/1556-4029.13627.

Dedouit F, Costagliola R, Joffre F, No T, Otal P, Rougé D. Virtual anthropology and forensic identification: report of one case. Forensic Sci Int. 2007;173:182-7. doi: https://doi.org/10.1016/j.forsciint.2007.01.002.

Brough AL, Rutty GN, Black S, Morgan B. Post-mortem computed tomography and 3D imaging: anthropological applications for juvenile remains. Forensic Sci Med Pathol. 2012;8:270-9. doi: https://doi.org/10.1007/s12024-012-9344-z.

Liscio E. Forensic uses of 3D printing. Forensic Magazine. 2013 [cited 2019 Oct 19]. Available from: https://www.forensicmag.com/article/2013/06/forensic-uses-3d-printing.

Errickson D, Thompson TJU, Rankin B. The application of 3D visualization of osteological trauma for the courtroom: a critical review. J Forensic Radiol Imaging. 2014;2:132-7. doi: https://doi.org/10.1016/j.jofri.2014.04.002.

Killgrove K. How 3D printed bones are revolutionizing forensics and bioarchaeology. Forbes [cited 2019 Oct 19]. Available from: https://www.forbes.com/sites/kristinakillgrove/2015/05/28/how-3d-printed-bonesare- revolutionizing-forensics-and-bioarchaeology/#2dbaa3861a39.

Thali M, Vock P, Kneubuehl BP, Dirnhofer R, Yen K, et al. Image-guided virtual autopsy findings of gunshot victims performed with multi-slice computed tomography (MSCT) and magnetic resonance imaging (MRI) and subsequent correlation between radiology and autopsy findings. Forensic Sci Int. 2004;138:08-16. doi: https://doi.org/10.1016/S0379-0738(03)00225-1.

Jackowski C, Thali M, Allmen GV, Dirnhofer R, Sonnenschein M, et al. Virtopsy: Postmortem minimally invasive angiography using cross section techniques-implementation and preliminary results. J Forensic Sci. 2005;50:1175-86. doi: https://doi.org/10.1520/JFS2005023.

Dirnhofer R, Vock P, Thali M, Jackowski C, Potter K. Virtopsy: minimally invasive, imaging-guided virtual autopsy. Radiographics. 2006;26:1305-33. doi: https://doi.org/10.1148/rg.265065001.

Thali M, Dirnhofer R, Vock P. The virtopsy approach: 3D optical and radiological scanning and reconstruction in forensic medicine. Boca Raton, Fl.: CRC Press; 2009.

Mantini S, Ripani M. Modern morphometry: new perspectives in physical anthropology. New Biotechnol. 2009;25:325-30. doi: https://doi.org/10.1016/j.nbt.2009.03.009.

Scott C. Could 3D printed fingerprints help criminals break through security? MSU researchers demonstrate It’s possible. 3DPRINT; 2016 [cited 2019 October 18]. Available from: https://3dprint.com/153234/3d-printed-fingerprints-security/.

Lorkiewicz-Muszynska D, Kociemba W, Zaba C, Koralewskakordel M, Abreu-Glowacka M, Przystanska A, Labecka M. The conclusive role of postmortem computed tomography (CT) of the skull and computer-assisted superimposition in identification of an unknown body. Int J Legal Med. 2012;127:653-60. doi: https://doi.org/10.1007/s00414-012-0805-4.

Schuh P, Scheurer E, Fritz K, Pavlic M, Hassler EM, Yen K, Rienmueller R. Can clinical CT data improve forensic reconstruction? Int J Legal Med. 2013;3:631-8. doi: https://doi.org/10.1007/s00414-013-0830-y.

Bakker B, Bakker HM, Soerdjbalie-Maikoe V. The use of 3D-CT in weapon caused impression fractures of the skull, from a forensic radiological point of view. J Forensic Radiol Imaging. 2013;176-9. doi: https://doi.org/10.1016/j.jofri.2013.07.005.

Kettner M, Schmidt P, Potente S, Ramsthaler F, Chrodt M. Reverse engineering-rapid prototyping of the skull in forensic trauma analysis. J Forensic Sci. 2011;56:1015-7. doi: https://doi.org/10.1111/j.1556-4029.2011.01764.x.

Thimmesch D. 3D printing plays critical role in solving decades-old cold cases in Florida. 3DPRINT; 2015 [cited 2019 Oct 18]. Available from: https://3dprint.com/102606/3dprint-solving-cold-cases/.

Carew R, Errickson D. Imaging in forensic science: five years on. J Forensic Radiol Imaging. 2019;16:24-33. doi: https://doi.org/10.1016/j.jofri.2019.01.002.

Ebert LC, Thali M, Ross S. Getting in touch-3D printing in forensic imaging. Forensic Sci Int. 2011;211:e1-e6. doi: https://doi.org/10.1016/j.forsciint.2011.04.022.

Jarvis PM. A Primer on the use of dangerous trial exhibits. Am J Trial Advocacy. 2014;37:519-32. Available from: https://nsuworks.nova.edu/cgi/viewcontent.cgi?article=1232&context=law_facarticles.

Chan K, Hardick J, Wong KY, Wilson SA, Wong SSS, Coen M, et al. Low-cost 3D printers enable high-quality and automated sample preparation and molecular detection. PLoS One. 2016;11. doi: https://doi.org/10.1371/journal.pone.0158502.

Byagathvalli G, Pomerantz A, Sinha S, Standeven J, Bhamla MS. A 3D-printed hand-powered centrifuge for molecular biology. PLoS Biol. 2019;17(5):e3000251. doi: https://doi.org/10.1371/journal.pbio.3000251.

Parker J, Devey D, Papadopulos A, Helmstetter A, Wilkinson T. Field-based species identification of closely-related plants using real-time nanopore sequencing. Scient Rep. 2017;7:01-08. doi: https://doi.org/10.1038/s41598-017-08461-5.

Pomerantz A, Arteaga A, Pichardo F, Amoros BC, Prost S, Penafiel N, et al. Realtime DNA barcoding in a rainforest using nanopore sequencing: opportunities for rapid biodiversity assessments and local capacity building. GigaScience. 2018;7. doi: https://doi.org/10.1093/gigascience/giy033.

Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, et al. Real-time, portable genome sequencing for Ebola surveillance. Nature. 2016;530:228-32. doi: https://doi.org/10.1038/nature16996.

Edwards A, Debbonaire AR, Nicholls SM, Rassner SME, Sattler B, Cook JM, et al. In-field metagenome and 16S rRNA gene amplicon nanopore sequencing robustly characterize glacier microbiota. BioRxiv. 2019;073965. doi: https://doi.org/10.1101/073965.

Johnson SS, Zaikova E, Goerlitz DS, Bai Y, Tighe SW. Real-time DNA sequencing in the Antarctic Dry Valleys using the Oxford Nanopore sequencer. J Biomol Techn. 2017;8:1-7. doi: https://doi.org/10.7171/jbt.17-2801-009.

Ventola CL. Medical applications for 3D printing: current and projected uses. P&T. 2014;39:704-11. doi: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4189697/.

Published

2021-03-17

Issue

Section

Artigos de Revisão/Review Articles

How to Cite

Vargas, B. F. dos S., Coutinho, M. A., & Coutinho, F. S. (2021). 3D printing in forensic medicine and crime solving: integrative literature review. Revista De Medicina, 100(1), 62-69. https://doi.org/10.11606/issn.1679-9836.v100i1p62-69