Analysis of the effects of body weight-supported gait training on the electromyographic activity of the lower limbs and motor irradiation to the upper limbs in spinal cord injured patients

Authors

DOI:

https://doi.org/10.11606/issn.1679-9836.v101i4e-173259

Keywords:

Electromyography, Gait, Spinal cord injuries

Abstract

Rehabilitation on the treadmill with partial body weight support (PBWS) in individuals with spinal cord injuries can passively reproduce gait, helping them with weight bearing on the lower limbs (LL) and orthostatic posture. The objective of the study was to assess motor irradiation from the lower limbs to the upper limbs during gait training with PBWS. The participants were three male individuals diagnosed with low spinal cord injury (T10 and L1), classified as ASIA A, with partial preservation of nerve roots. Subjects were submitted to gait training with PBWS and electromyographic assessment of the muscles Biceps brachii (BB), Rectus femoris (RF) and Lateral Gastrocnemius (LG) on both sides. Statistical analysis included Shapiro-Wilk and de Levene tests, One way ANOVA test and Tukey’s HSD post-hoc test. In the resting state, there was less activity of BB muscles on both sides when compared to the RF and LG, which can be explained by the secondary impairments arising from the individuals’ injury. The gait cycle (GC) was repeated three times; in GC1 there was greater electromyographic activity in the right LG muscle and lower activity of the right BB muscle and, statistically, right LG and left BB showed higher mean activity (statistically significant results). In GC2, the same pattern of activity of GC1 was observed, but the right RF muscle reduced its activation threshold. In GC3, the activity levels of the previous cycles were maintained, but the left RF muscle showed an increase in the thresholds of electromyographic activation when compared to the other muscles. Based on these results, the BB muscle presented quantitative variations in electromyographic activation, demonstrating the presence of motor irradiation from LL to upper limbs during the GC. The qualitative analysis showed “peaks” of activity in this muscle mainly during the support phases of the gait training.

Downloads

Download data is not yet available.

Author Biographies

  • Ana Flávia Miquelutti Oliveira, Associação de Pais e Amigos dos Excepcionais de Monte Alto

    Fisioterapeuta, Especialização em Fisioterapia Neurofuncional Adulto e Infantil. Associação de Pais e Amigos dos Excepcionais de Monte Alto – APAE, Monte Alto, SP.

     

  • Matheus Furlan Paulo, Hospital Santa Casa de Misericórdia de Ribeirão Preto. Fundação Hospital Santa Lydia

    Fisioterapeuta, Especialização em Cardiorrespiratória Adulto e Infantil. Hospital Santa Casa de Misericórdia de Ribeirão Preto e Fundação Hospital Santa Lydia, Ribeirão Preto, SP.

  • Natasha Cordova Arruda, Clínica Qualidade

    Fisioterapeuta, Clínica Qualidade, Ribeirão Preto, SP.

  • Lorena Lataro Bernardes Silva, Lorena Lataro Studio de Pilates

    Fisioterapeuta, Lorena Lataro Studio de Pilates, Ribeirão Preto, SP. 

  • Luis Eduardo Faiana, Reability Saúde e Reabilitação

    Fisioterapeuta, Especialização em Traumato-Ortopedia. Reability Saúde e Reabilitação, Ribeirão Preto, SP. 

  • Giovanna Affonso, Clínica Lúdica Desenvolvimento

    Fisioterapeuta, Especialização em Saúde da Criança e do Adolescente. Clínica Lúdica Desenvolvimento, Ribeirão Preto, SP. 

  • Saulo Cesar Vallin Fabrin, Centro Universitário Claretiano de Batatais / Centro Universitário UNIFAFIBE

    Professor do curso de Fisioterapia do Centro Universitário Claretiano de Batatais e do Centro Universitário UNIFAFIBE, Bebedouro, SP. 

  • Simone Cecílio Hallak Regalo, Universidade de São Paulo, Faculdade de Odontologia de Ribeirão Preto

    Faculdade de Odontologia da Universidade de São Paulo, Professora Titular, Ribeirão Preto, SP. 

  • Edson Donizetti Verri, Centro Universitário Claretiano de Batatais

    Centro Universitário Claretiano de Batatais, Laboratório de Biomecânica do Movimento, Professor Doutor Adjunto de Anatomia e Neuroanatomia, Batatais, SP. 

  • Gabriel Padua Silva, Universidade de Ribeirão Preto, Departamento de Fisioterapia

    Departamento de Fisioterapia da Universidade de Ribeirão Preto, Professor Adjunto de Neurofuncional, Ribeirão Preto, SP. 

References

Wirz M, Mach O, Maier D, Benito-Penalva J, Taylor J, Esclarin A, et al. Effectiveness of Automated Locomotor Training in Patients with Acute Incomplete Spinal Cord Injury: A Randomized, Controlled, Multicenter Trial. J Neurotrauma. 2017;34(10):1891-96. doi: https://doi.org/10.1089/neu.2016.4643

DeVivo, M. Epidemiology of traumatic spinal cord injury: trends and future implications. Spinal Cord. 2012;50(5):365-72. https://doi.org/10.1038/sc.2011.178

Schoeller S, Martini AC, Forner S, Nogueira GC. Abordagem multiprofissional em lesão medular: saúde, direito e tecnologia. Florianópolis: Publicações IFSC; 2016. Disponível em: https://www.ifsc.edu.br/documents/30701/523474/Lesao+Medular+WEB.pdf/39df2463-bd7b-5e88-7a8f-da0594784c9b

Kasim AK, Strömbeck A, Sundgren PC. Spinal cord injuries. In: Berkovsky TC, editor. Handbook of spinal cord injuries. New York: Nova Science Publishers; 2010. p.483-99.

Oliveira DM, Figueredo NR, Alves CF, Costa PA, Moura SRG, Oliveira PC, et al. Fisioterapia neurológica na síndrome de brown séquard: relato de caso. Braz J Health Rev. 2019;2(5):4009-18. https://doi.org/10.34119/bjhrv2n5-010

Associação Brasileira de Fisioterapia Neurofuncional. Desordens da função neurológica e fisioterapia: lesão medular. Disponível em: https://abrafin.org.br/wp-content/uploads/2015/01/LESAO_MEDULAR.pdf

Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C, Curt A, et al. Traumatic spinal cord injury. Nat Rev Dis Primers. 2017;3:1-21. https://doi.org/10.1038/nrdp.2017.18

Bárbara-Bataller E, Méndez-Suárez JL, Alemán-Sánchez C, Sánchez-Enríquez J, Sosa-Henríquez M. Change in the profile of traumatic spinal cord injury over 15 years in Spain. Scand J Trauma Resusc Emerg Med. 2018;26(1):27. doi: https://doi.org/10.1186/s13049-018-0491-4

Dumont RJ, Okonkwo DO, Verma S, Hurlbert RJ, Boulos PT, Ellegala DB, et al. Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin Neuropharmacol. 2001;24(5):254-64. doi: https://doi.org/10.1097/00002826-200109000-00002

Carvalho KGB. Perfil epidemiológico de pacientes com lesão medular [TCC]. Campina Grande: Universidade Estadual da Paraíba, 2019. Disponível em: http://dspace.bc.uepb.edu.br/jspui/handle/123456789/20848

Gerzanich V, Woo SK, Vennekens R, Tsymbalyuk O, Ivanova S, Ivanov A, et al. De novo expression of Trpm4 initiates secondary hemorrhage in spinal cord injury. Nat Med. 2009;15(2):185-91. doi: https://doi.org/10.1038/nm.1899

Chen Y, He Y, DeVivo MJ. Changing demographics and injury profile of new traumatic spinal cord injuries in the United States, 1972-2014. Arch Phys Med Rehabil. 2016;97(10):1610-19. http://dx.doi.org/10.1016/j.apmr.2016.03.017

Bastos NFP, Cocolete VE, Nunciato AC. Atuação da fisioterapia na tetraplegia. Rev Bras Multidisc - ReBraM. 2016;19(1):156-63. https://doi.org/10.25061/2527-2675/ReBraM/2016.v19i1.375

Seniam. Recommendations For Sensor Locations On Individual Muscle [cited 2019 September 20] Avaliable from: http://www.seniam.org/

Vigotsky AD, Halperin I, Lehman GJ, Trajano GS, Vieira TM. Interpreting signal amplitudes in surface electromyography studies in sport and rehabilitation sciences. Front Physiol. 2018;(8):985. doi: https://doi.org/10.3389/fphys.2017.00985

Nogueira FNR. Estimulação magnética transcraniana repetitiva combinada ao treino de marcha em esteira com suspensão parcial do peso corporal na recuperação da marcha em pacientes com lesão medular incompleta crônica [dissertação]. Recife: Universidade Federal de Pernambuco; 2019. Disponível em: https://repositorio.ufpe.br/bitstream/123456789/33957/1/DISSERTA%C3%87%C3%83O%20Fernanda%20Natacha%20Rufino%20Nogueira.pdf

Hogan MK, Hamilton GF, Horner PJ. Neural stimulation and molecular mechanisms of plasticity and regeneration: a review. Front Cell Neurosci. 2020;14:271. doi: https://doi.org/10.3389/fncel.2020.00271

Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Science. 2000;288(5472):1765-69. doi: https://doi.org/10.1126/science.288.5472.1765

Lundy-Ekman L. Neurociências: fundamentos para reabilitação. Neuroplasticidade. 2a ed. Rio de Janeiro: Elsevier; 2008. p.61-71.

Harkema S, Behrman A, Barbeau H. Locomotor training: principles and practice. New York: Oxford University Press; 2011. doi: https://doi.org/10.1093/acprof:oso/9780195342086.001.0001

Calabrò RS, Filoni S, Billeri L, et al. Robotic Rehabilitation in Spinal Cord Injury: A Pilot Study on End-Effectors and Neurophysiological Outcomes. Ann Biomed Eng. 2021;49(2):732-45. doi: https://doi.org/10.1007/s10439-020-02611-z

Adler SS, Beckers D, Buck M. Facilitação neuromuscular proprioceptiva. 2a ed. São Paulo: Manole; 2007.

Souza, LAPS, Baptista CDR, Brunelli F, Dionisio VC. Effect and length of the overflow principle in proprioceptive neuromuscular facilitation: electromyographic evidences. Int J Rehabil Res. 2014;3:6-12. doi: https://doi.org/10.5455/IJTRR.00000032

Wang R. Effect of proprioceptive neuromuscular facilitation on the gait of patients with hemiplegia of long and short duration. Phys Ther. 1994;74(12):1108-15. doi: https://doi.org/10.1093/ptj/74.12.1108

Picelli A, Melotti C, Origano F, Waldner A, Fiaschi A, Santilli V, et al. Robot-assisted gait training in patients with Parkinson disease: a randomized controlled trial. Neurorehabil Neural Repair. 2012;26(4):353-61. doi: https://doi.org/10.1177/1545968311424417

Dietz V, Grillner S, Trepp A, Hubli M, Bolliger M. Changes in spinal reflex and locomotor activity after a complete spinal cord injury: a common mechanism?. Brain. 2009;132(8):2196-205. doi: https://doi.org/10.1093/brain/awp124

Dietz V, Müller R. Degradation of neuronal function following a spinal cord injury: mechanics and countermeasures. Brain. 2004;127(10):2221-31. doi: https://doi.org/10.1093/brain/awh255

Chisholm AE, Peters S, Borich MR, Boyd LA, Lam T. Short-term cortical plasticity associated with feedback-error learning after locomotor training in a patient with incomplete spinal cord injury. Phys Ther. 2015;95(2):257-66. doi: https://doi.org/10.2522/ptj.20130522

Published

2022-07-15

Issue

Section

Artigos Originais/Originals Articles

How to Cite

Oliveira, A. F. M., Paulo, M. F., Arruda, N. C., Silva, L. L. B., Faiana, L. E., Affonso, G., Fabrin, S. C. V. ., Regalo, S. C. H., Verri, E. D., & Silva, G. P. (2022). Analysis of the effects of body weight-supported gait training on the electromyographic activity of the lower limbs and motor irradiation to the upper limbs in spinal cord injured patients. Revista De Medicina, 101(4), e-173259. https://doi.org/10.11606/issn.1679-9836.v101i4e-173259