Coronary artery calcification in endurance athletes: a narrative review

Authors

DOI:

https://doi.org/10.11606/issn.1679-9836.v101i3e-191536

Keywords:

Vascular calcification, Calcification, Athletes, Cardiovascular disease, Coronary

Abstract

Introduction: cardiovascular disease is the leading cause of death worldwide and coronary artery disease stands out for the number of deaths. Increased coronary artery calcification is a risk factor for coronary events, however, healthy adult men with a high training load over the years and with a history of long endurance tests demonstrate high CAC values. Objective: in view of the paradox between the effects of strenuous physical training and the development of CAC, this study aims to assess the CAC in physically active adult men. Methods: This study is characterized as a narrative review, based on scientific productions in Portuguese and English, in the following databases: National Library of Medicine (PubMed), Scientific Electronic Library Online (SciELO) and US National Library of Medicine (NCBI). Results: In the study,150 of 284 participants (53%) had a median CAC score of 35.8 [9.3-145.8]. The mean lifetime exercise volume was 2.9 [1.9-4.4] hours/week, resulting in 1356 [851-2030] metabolic equivalent of task (MET)-min/week. In addition, the presence of CAC was more common in those with higher exercise volumes throughout life. As in other studies, it can be considered that higher CAC scores and higher coronary plaques in athletes can be interpreted as a deleterious effect of exercise on the coronary arteries, however, the calcified and stable nature of the plaques in male athletes can also be considered as protective against plaque rupture and acute myocardial infarction. Conclusion: Endurance athletes are more predisposed to increased coronary artery calcification than less active or sedentary individuals, however, what is observed is that high loads of physical exercise throughout life seem to promote more benefits than risk to cardiovascular health.

Downloads

Download data is not yet available.

Author Biographies

  • Gabriele Justo Canevazzi, Centro Universitário das Américas

    Graduada em Medicina pelo Centro Universitário das Américas (FAM), São Paulo, SP. 

  • Francielle Santos Almeida, Centro Universitário das Américas

    Graduada em Medicina pelo Centro Universitário das Américas (FAM), São Paulo, SP. 

  • Adriana Boiteux do Carmo, Centro Universitário das Américas

    Graduanda em Medicina, Centro Universitário das Américas (FAM). São Paulo, SP. 

  • Marianne Peixoto Sobral Giroldo Badessa, Centro Universitário São Camilo

    Mestre pela UNIFESP e docente no curso de medicina do Centro Universitário São Camilo, São Paulo, SP. 

  • Pedro Gabriel Senger Braga, Universidade de São Paulo. Faculdade de Medicina. Hospital das Clínicas. Instituto do Coração

    Laboratório de Metabolismo de Lípides do Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HC-FMUSP). São Paulo, SP. 

  • Marcelo Luiz Peixoto Sobral, Centro Universitário das Américas

    Doutor em ciências pela Universidade de São Paulo (USP), Departamento de Cirurgia Cardiovascular e Torácica, Instituto do Coração, São Paulo, SP. Docente no curso de medicina do Centro Universitário das Américas (FAM) e do Centro Universitário São Camilo, São Paulo, SP.

References

Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Shay CM, Spartano NL, Stokes A, Tirschwell DL, VanWagner LB, Tsao CW; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141(9):e139-e596. doi: 10.1161/CIR.0000000000000757.

Gottlieb MGV, Bonardi G, Moriguchi EH. Physiopathology and inflammatory aspects of atherosclerosis. Scientia Med. (Porto Alegre). 2005;15(3). Available from: https://revistaseletronicas.pucrs.br/ojs/index.php/scientiamedica/article/view/1568

Aengevaeren VL, Eijsvogels TMH. Coronary atherosclerosis in middle-aged athletes: Current insights, burning questions, and future perspectives. Clin Cardiol. 2020;43(8):863-71. doi: 10.1002/clc.23340.

Merghani A, Maestrini V, Rosmini S, Cox AT, Dhutia H, Bastiaenan R, David S, Yeo TJ, Narain R, Malhotra A, Papadakis M, Wilson MG, Tome M, AlFakih K, Moon JC, Sharma S. Prevalence of subclinical coronary artery disease in masters endurance athletes with a low atherosclerotic risk profile. Circulation. 2017;136(2):126-37. doi: 10.1161/CIRCULATIONAHA.116.026964.

Aengevaeren VL, Mosterd A, Braber TL, Prakken NHJ, Doevendans PA, Grobbee DE, Thompson PD, Eijsvogels TMH, Velthuis BK. Relationship between lifelong exercise volume and coronary atherosclerosis in athletes. Circulation. 2017;136(2):138-48. doi: 10.1161/CIRCULATIONAHA.117.027834.

Möhlenkamp S, Lehmann N, Breuckmann F, Bröcker-Preuss M, Nassenstein K, Halle M, Budde T, Mann K, Barkhausen J, Heusch G, Jöckel KH, Erbel R; Marathon Study Investigators; Heinz Nixdorf Recall Study Investigators. Running: the risk of coronary events: prevalence and prognostic relevance of coronary atherosclerosis in marathon runners. Eur Heart J. 2008;29:1903-10. doi: 10.1093/eurheartj/ehn163.

Aengevaeren VL, Eijsvogels TMH. Coronary atherosclerosis in middle-aged athletes: current insights, burning questions, and future perspectives. Clin Cardiol. 2020;43(8):863-71. doi: 10.1002/clc.23340.

Jafar O, Friedman J, Bogdanowicz I, Muneer A, Thompson PD, Ling J, Messina A, Yen M, Wakefield D, Varanasi P, Haleem K. Assessment of coronary atherosclerosis using calcium scores in short- and long-distance runners. Mayo Clin Proc Innov Qual Outcomes. 2019;3(2):116-21. doi: 10.1016/j.mayocpiqo.2019.03.009.

DeFina LF, Radford NB, Barlow CE, et al. Association of all-cause and cardiovascu-lar mortality with high Levels of physical activity and concurrent coronary artery calcification. JAMA Cardiol. 2019;4:174-81. https://doi.org/10.1001/jamacardio.2018.4628.

Jafar O, Friedman J, Bogdanowicz I, Muneer A, Thompson PD, Ling J, Messina A, Yen M, Wakefield D, Varanasi P, Haleem K. assessment of coronary atherosclerosis using calcium scores in short- and long-distance runners. Mayo Clin Proc Inn Qual Out. 2019;3(2):116-21. https://doi.org/10.1016/j.mayocpiqo.2019.03.009

Libby P. Mechanisms of acute coronary syndromes and their implications for therapy. N Engl J Med. 2013;368(21):2004-13. doi: 10.1056/NEJMra1216063.

Freitas P, Piccinato CE, Martins WP, Mauad Filho F. Aterosclerose carotídea avaliada pelo eco-Doppler: associação com fatores de risco e doenças arteriais sistêmicas. J Vasc Bras 2008;7(4):298-307. https://doi.org/10.1590/S1677-54492009005000001.

Locatelli EC, Pelizzari S, Scapini KB, Leguisamo CP, Silva AB. Exercícios físicos na doença arterial obstrutiva periférica. J Vasc Bras 2009;8(3):247-54. https://doi.org/10.1590/S1677-54492009000300010.

Favarato D, Luz PL. Hipertenso e aterosclerose: aspectos fisiopatológicos. Rev Soc Bras Hipertens. 2004;6(4):126-30.

Guyton AC, Hall JE. Tratado de fisiologia médica. Rio de Janeiro: Elsevier; 2011.

Junqueira LC, Carneiro J. Histologia básica. Rio de Janeiro: Guanabara Koogan; 2004.

Hackam GD, Anand SS. Emerging risk factors for atherosclerotic vascular disease: a critical review of the evidence. JAMA. 2003;290:932-40. doi: 10.1001/jama.290.7.932.

Braunwald E. Atlas de doenças cardiovasculares. Porto Alegre: Artmed; 1998.

Mann S, Beedie C, Jimenez A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports Med. 2014;44:211-21. doi: 10.1007/s40279-013-0110-5.

Whelton SP, Chin A, Xin X, He J. Effect of aerobic exercise on blood pressure: a metaanalysis of randomized, controlled trials. Ann Intern Med. 2002;136:493-503. doi: 10.7326/0003-4819-136-7-200204020-00006.

Thomas DE, Elliott EJ, Naughton GA. Exercise for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2006:CD002968. doi: 10.1002/14651858.CD002968.pub2.

Szostak J, Laurant P. The forgotten face of regular physical exercise: a ’natural’ anti-atherogenic activity. Clin Sci (Lond). 2011;121:91-106. doi: 10.1042/CS20100520.

Joyner MJ, Green DJ. Exercise protects the cardiovascular system: effects beyond traditional risk factors. J Physiol. 2009;587:5551-8. doi: 10.1113/jphysiol.2009.179432.

Beere PA, Glagov S, Zarins CK. Experimental atherosclerosis at the caroti bifurca-tion of the cynomolgus monkey. Localization, compensatory enlargement, and the spar-ing effect of lowered heart rate. Arterioscler Thromb. 1992;12:1245-53. doi: 10.1161/01.atv.12.11.1245.

Eijsvogels TM, Molossi S, Lee DC, Emery MS, Thompson PD. Exercise at the Extremes: The Amount of Exercise to Reduce Cardiovascular Events. J Am Coll Cardiol. 2016;67(3):316-29. doi: 10.1016/j.jacc.2015.11.034.

Mora S, Cook N, Buring JE, Ridker PM, Lee IM. Physical activity and reduced risk of cardiovascular events: potential mediating mechanisms. Circulation. 2007;116(19):2110-8. doi: 10.1161/CIRCULATIONAHA.107.729939.

Kroger K, Lehmann N, Rappaport L, et al. Carotid and peripheral atherosclerosis in male marathon runners. Med Sci Sports Exerc. 2011;43:1142-7. doi: 10.1249/MSS.0b013e3182098a51.

Aengevaeren VL, Mosterd A, Sharma S, Prakken NHJ, Möhlenkamp S, Thompson PD, Velthuis BK, Eijsvogels TMH. Exercise and coronary atherosclerosis: observations, explanations, relevance, and clinical management. Circulation. 2020;141(16):1338-50. doi: 10.1161/CIRCULATIONAHA.119.044467.

Franck G, Even G, Gautier A, Salinas M, Loste A, Procopio E, Gaston AT, Morvan M, Dupont S, Deschildre C, et al. Haemodynamic stress-induced breaches of the arterial intima trigger inflammation and drive atherogenesis. Eur Heart J. 2019;40:928-37. doi: 10.1093/eurheartj/ehy822.

Kronmal RA, McClelland RL, Detrano R, Shea S, Lima JA, Cushman M, Bild DE, Burke GL. Risk factors for the progression of coronary artery calcification in asympto-matic subjects: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation. 2007;115:2722-30. doi: 10.1161/CIRCULATIONAHA.106.674143.

Watson KE, Abrolat ML, Malone LL, Hoeg JM, Doherty T, Detrano R, Demer LL. Active serum vitamin D levels are inversely correlated with coronary calcification. Circulation. 1997;96:1755-60. doi: 10.1161/01.cir.96.6.1755.

Malik R, Aneni EC, Roberson L, Ogunmoroti O, Ali SS, Shaharyar S, Younus A, Jamal O, Aziz MA, Martin SS, et al. Measuring coronary artery calcification: is serum vitamin D relevant? Atherosclerosis. 2014;237:734-8. doi: 10.1016/j.atherosclerosis.2014.10.087.

Farrokhyar F, Tabasinejad R, Dao D, Peterson D, Ayeni OR, Hadioonzadeh R, Bhandari M. Prevalence of vitamin D inadequacy in athletes:a systematic-review and meta. Sports Med. 2015;45:365-78. doi: 10.1007/s40279-014-0267-6.

Ter Braake AD, Shanahan CM, de Baaij JHF. Magnesium counteracts vascular calci-fication: passive interference or active modulation? Arterioscler Thromb Vasc Biol. 2017;37:1431-45. doi: 10.1161/ATVBAHA.117.309182.

Lee SY, Hyun YY, Lee KB, Kim H. Low serum magnesium is associated with cor-onary artery calcification in a Korean population at low risk for cardiovascular disease. Nutr Metab Cardiovasc Dis. 2015;25:1056-61. doi: 10.1016/j.numecd.2015.07.010.

Nielsen FH, Lukaski HC. Update on the relationship between magnesium and exercise. Magnes Res. 2006;19:180-9. doi: 10.1684/mrh.2006.0060.

Bouassida A, Latiri I, Bouassida S, Zalleg D, Zaouali M, Feki Y, Gharbi N, Zbidi A, Tabka Z. Parathyroid hormone and physical exercise: a brief review. J Sports Sci Med. 2006;5:367-74. Available from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3842136/.

Kohrt WM, Wherry SJ, Wolfe P, Sherk VD, Wellington T, Swanson CM, Weaver CM, Boxer RS. Maintenance of serum ionized calcium during exercise attenuates para-thyroid hormone and bone resorption responses. J Bone Miner Res. 2018;33:1326-34. doi: 10.1002/jbmr.3428.

Hagström E, Michaëlsson K, Melhus H, Hansen T, Ahlström H, Johansson L,Ingelsson E, Sundström J, Lind L, Arnlöv J. Plasma-parathyroid hormone is associat-ed with subclinical and clinical atherosclerotic disease in 2 community-based cohorts. Arterioscler Thromb Vasc Biol. 2014;34:1567-73. doi: 10.1161/ATVBAHA.113.303062.

Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685-95. doi: 10.1056/NEJMra04343066.

Palmefors H, DuttaRoy S, Rundqvist B, Börjesson M. The effect of physical activi-ty or exercise on key biomarkers in atherosclerosis–a systematic review. Atherosclerosis. 2014;235:150-61. doi:10.1016/j.atherosclerosis.2014.04.026.

Suzuki K, Nakaji S, Yamada M, Liu Q, Kurakake S, Okamura N, Kumae T, Umeda T, Sugawara K. Impact of a competitive marathon race on systemic cytokine and neu-trophil responses. Med Sci Sports Exerc. 2003;35:348-55. doi: 10.1249/01.MSS.0000048861.57899.04

Ruiz JL, Weinbaum S, Aikawa E, Hutcheson JD. Zooming in on the genesis of atherosclerotic plaque microcalcifications. J Physiol. 2016;594(11):2915-27. https://doi.org/10.1113/JP271339.

Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation. 2001;103(8):1051-6. doi: 10.1161/01.cir.103.8.1051.

Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, et al. Cardiorespira-tory Fitness as a Quantitative Predictor of All-Cause Mortality and Cardiovascular Events in Healthy Men and Women. J Am Med Assoc. 2009;301(19):2024-35. doi: 10.1001/jama.2009.681.

Panh L, Lairez O, Ruidavets JB, Galinier M, Carrié D, Ferrières J. Coronary artery calcification: From crystal to plaque rupture. Arch Cardiovasc Dis. 2017;110(10):550-61. doi: 10.1016/j.acvd.2017.04.003.

Mori H, Torii S, Kutyna M, Sakamoto A, Finn AV, Virmani R. Coronary Artery Calcification and its Progression: What Does it Really Mean? JACC Cardiovasc Imaging. 2018;11(1):127-42. doi: 10.1016/j.jcmg.2017.10.012.

Kockx MM, De Meyer GR, Muhring J, Jacob W, Bult H, Herman AG. Apoptosis and related proteins in different stages of human atherosclerotic plaques. Circulation 1998;97:2307-15. doi: 10.1161/01.cir.97.23.2307.

Vengrenyuk Y, Carlier S, Xanthos S, et al. A hypothesis for vulnerable plaque rup-ture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci U S A 2006;103:14678-83. doi: 10.1073/pnas.0606310103.

Kelly-Arnold A, Maldonado N, Laudier D, Aikawa E, Cardoso L, Weinbaum S. Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proc Natl Acad Sci U S A 2013;110:10741-6. doi: 10.1073/pnas.1308814110.

Blaha MJ, Mortensen MB, Kianoush S, Tota-Maharaj R, Cainzos-Achirica M. Coro-nary artery calcium scoring: is it time for a change in methodology? J Am Coll Cardiol. Cardiovasc Imaging. 2017;10:923-37. doi: 10.1016/j.jcmg.2017.05.007.

Bamberg F, Sommer WH, Hoffmann V, Achenbach S, Nikolaou K, Conen D, Rei-ser MF, Hoffmann U, Becker CR. Meta-analysis and systematic review of the long-term predictive value of assessment of coronary atherosclerosis by contrast-enhanced coro-nary computed tomography angiography. J Am Coll Cardiol. 2011;57:2426-36. doi: 10.1016/j.jacc.2010.12.043.

Cho I, Chang HJ, Sung JM, Pencina MJ, Lin FY, Dunning AM, Achenbach S, Al-Mallah M, Berman DS, Budoff MJ, et al; CONFIRM Investigators. Coronary computed tomographic angiography and risk of all-cause mortality and nonfatal myocardial infarc-tion in subjects without chest pain syndrome from the CONFIRM Registry (Coronary CT Angiography Evaluation for Clinical Outcomes: an International Multicenter regis-try). Circulation. 2012;126:304-13. doi: 10.1161/CIRCULATIONAHA.111.081380.

Leipsic J, Abbara S, Achenbach S, et al. SCCT guidelines for the interpretation and reporting of coronary CT angiography: a report of the Society of Cardiovascular Com-puted Tomography Guidelines Committee. J Cardiovasc Comput Tomogr. 2014;8:342-58. https://doi.org/10.1016/j.jcct.2014.07.003.

Laughlin MH, Bowles DK, Duncker DJ. The coronary circulation in exercise train-ing. Am J Physiol Heart Circ Physiol. 2012;302:H10–H23. doi: 10.1152/ajpheart.00574.2011.

Haskell WL, Sims C, Myll J, Bortz WM, St Goar FG, Alderman EL. Coronary ar-tery size and dilating capacity in ultradistance runners. Circulation. 1993;87:1076-82. doi: 10.1161/01.cir.87.4.1076.

Nguyen PK, Terashima M, Fair JM, Varady A, Taylor-Piliae RE, Iribarren C, Go AS, Haskell WL, Hlatky MA, Fortmann SP, et al. Physical activity in older subjects is associated with increased coronary vasodilation: the ADVANCE study. JACC Cardiovasc Imaging. 2011;4:622-29. doi: 10.1016/j.jcmg.2011.05.001.

Hou ZH, Lu B, Gao Y, Jiang SL, Wang Y, Li W, Budoff MJ. Prognostic value of coronary CT angiography and calcium score for major adverse cardiac events in outpatients. JACC Cardiovasc Imaging. 2012;5(10):990-9. doi: 10.1016/j.jcmg.2012.06.006.

Nerlekar N, Ha FJ, Cheshire C, Rashid H, Cameron JD, Wong DT, Seneviratne S, Brown AJ. Computed tomographic coronary angiography-derived plaque characteristics predict major adverse cardiovascular events: a systematic review and meta-analysis. Circ Cardiovasc Imaging. 2018;11:e006973. doi: 10.1161/CIRCIMAGING.117.006973.

Puri R, Nicholls SJ, Shao M, Kataoka Y, Uno K, Kapadia SR, Tuzcu EM, Nissen SE. Impact of statins on serial coronary calcification during atheroma progression and regression. J Am Coll Cardiol. 2015;65:1273-82. doi: 10.1016/j.jacc.2015.01.036.

Published

2022-05-03

Issue

Section

Artigos de Revisão/Review Articles

How to Cite

Canevazzi, G. J., Almeida, F. S., Carmo, A. B. do, Badessa, M. P. S. G., Braga, P. G. S., & Sobral, M. L. P. (2022). Coronary artery calcification in endurance athletes: a narrative review. Revista De Medicina, 101(3), e-191536. https://doi.org/10.11606/issn.1679-9836.v101i3e-191536