O-GlcNAc Transferase (OGT) in the Context of Prenatal Stress: Current Perspectives

Authors

DOI:

https://doi.org/10.11606/issn.1679-9836.v104i6e-234285

Keywords:

Neurodevelopment, OGT protein, prenatal stress, sex bias, O-linked N-acetylglucosamine transferase, placenta

Abstract

Exposure to stress during the gestational period can adversely affect fetal development, leading to both short- and long-term consequences. Such exposure  disrupts metabolic and transcriptional pathways and triggers compensatory responses that may impair fetal and neural programming. The O-linked N-acetylglucosamine transferase (OGT) protein has emerged as a potential biomarker of prenatal stress due to its key regulatory role in intracellular signaling  and epigenetic modulation. This narrative review synthesizes current findings on the involvement of OGT in metabolic and transcriptional pathways and how these are influenced by gestational stress. A key knowledge gap remains: while cellular stress responses usually increase OGT activity, placental stress is linked to reduced OGT expression. Understanding this paradox is essential to clarify tissue-specific and sex-specific mechanisms of vulnerability. OGT  regulates a wide range of cellular processes, including transcription, protein synthesis and degradation, and protein-protein interactions or localization. Under stress conditions, OGT activity typically increases as part of an adaptive response. However, in placental tissue, gestational stress may lead to reduced OGT expression, affecting fetal programming, hypothalamic functions, and epigenetic regulation. Interestingly, OGT appears to be more highly expressed in female placentas, up to twice as much as in male placentas, suggesting a sex-specific post-translational regulatory profile that may confer differential susceptibility to prenatal stress.

 

Downloads

Download data is not yet available.

Author Biographies

  • Gisele Rodrigues Gouveia, Universidade de São Paulo, Faculdade de Medicina, São Paulo, SP. Brasil

    Bachelor and Licentiate in Biological Sciences, from São Judas Tadeu University (SP). Has Scientific Initiation by the Research Center of the São Judas Tadeu University (SP); Professional Improvement in the area of #8203;#8203;Hematology by the Adolfo Lutz Institute (SP) and Doctorate in Medical Sciences by the Faculty of Medicine of the University of São Paulo. He has experience in the areas of Clinical Analysis, Hematology and Molecular Biology. She is currently a Servant at the Faculty of Medicine of the University of São Paulo (FMUSP), where she works on research projects in the areas of Epigenetics, Biomarkers of psychiatric disorders and Biomarkers of exposure to gestational stress and neurodevelopment. In addition, he acts as a Laboratory manager and responsible for the multi-user core of specialized Biorepository Services for research in Psychiatry, Neurology and Neurodevelopment (BIOB-04) at FMUSP.

  • Caroline Perez Camilo, Universidade de São Paulo, Faculdade de Medicina, São Paulo, SP. Brasil

    Bachelor's degree in Biomedicine from Centro Universitário das Faculdades Metropolitanas Unidas (2010), Masters (2015), and Ph.D. (2021) in Sciences Psychiatry from the Faculty of Medicine, University of São Paulo. Currently, a Postdoctoral Researcher (FAPESP) at the Faculty of Medicine, University of São Paulo, a collaborating researcher at the Laboratory of Psychopathology and Psychiatric Therapeutics - LIM/23 HC FMUSP, and the Data and Operations Manager at the PSysBio - System Biology in Psychiatry Laboratory / LIM23 HCFMUSP. Her work involves the administrative and financial management of research projects, as well as the supervision and coordination of research stages. She conducts research in Genetics and Molecular Biology, with an emphasis on Psychiatric Genetics, focusing on the following topics: Epigenetics, DNA Methylation, Substance Dependence, Epigenetic Markers of Psychiatric Disorders, Biological Markers of Prenatal Stress Exposure, Multivariate Data Analysis, and Structural Equation Modeling.

References

Hart B, Morgan E, Alejandro EU. Nutrient sensor signaling pathways and cellular stress in fetal growth restriction. J Mol Endocrinol. 2019;62(2):R155-R165. Doi: 10.1530/JME-18-0059

Bale TL. The placenta and neurodevelopment: sex differences in prenatal vulnerability. Dialog Clin Neurosc. 2016;18(4):459-464. Doi: 10.31887/DCNS.2016.18.4/tbale

Howerton CL, Morgan CP, Fischer DB, Bale TL. O-GlcNAc transferase (OGT) as a placental biomarker of maternal stress and reprogramming of CNS gene transcription in development. Proc Natl Acad Sci U S A. 2013;110(13):5169-74. Doi: 10.1073/pnas.1300065110

Lu S, Wei F, Li G. The evolution of the concept of stress and the framework of the stress system. Cell Stress. 2021;5(6):76-85. Doi: 10.15698/cst2021.06.250

Zachara NE, Akimoto Y, Boyce M, Hart GW. The O-GlcNAc Modification. In: Varki A, Cummings RD, Esko JD, et al., eds. Essentials of Glycobiology. 4th ed. Cold Spring Harbor Laboratory Press; 2022. Accessed October 27, 2024. http://www.ncbi.nlm.nih.gov/books/NBK579950/

Ranuncolo SM, Ghosh S, Hanover JA, Hart GW, Lewis BA. Evidence of the involvement of O-GlcNAc-modified human RNA polymerase II CTD in transcription in vitro and in vivo. J Biol Chem. 2012;287(28):23549-23561. Doi: 10.1074/jbc.M111.330910

Deplus R, Delatte B, Schwinn MK, Defrance M, Méndez J, Murphy N, et al. TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. Embo J. 2013;32(5):645-55. Doi: 10.1038/emboj.2012.357

Chu CS, Lo PW, Yeh YH, Hsu PH, Peng SH, Teng YC, et al. O-GlcNAcylation regulates EZH2 protein stability and function. Proc Natl Acad Sci U S A. 2014;111(4):1355-60. Doi: 10.1073/pnas.1323226111.

Howerton CL, Bale TL. Targeted placental deletion of OGT recapitulates the prenatal stress phenotype including hypothalamic mitochondrial dysfunction. Proc Natl Acad Sci U S A. 2014;111(26):9639-44. Doi:10.1073/pnas.1401203111

Nugent BM, O’Donnell CM, Epperson CN, Bale TL. Placental H3K27me3 establishes female resilience to prenatal insults. Nat Commun. 2018;9(1):2555. Doi: 10.1038/s41467-018-04992-1

Very N, Steenackers A, Dubuquoy C, Vermuse J, Dubuquoy L, Lefebvre T, et al. Cross regulation between mTOR signaling and O-GlcNAcylation. J Bioenerg Biomembr. 2018;50(3):213-222. Doi: 10.1007/s10863-018-9747-y

Chatham JC, Zhang J, Wende AR. Role of O-linked-acetylglucosamine protein modification in cellular (patho)physiology. Physiolog Reviews. 2021;101(2):427-93. Doi: 10.1152/physrev.00043.2019

Camilo C, Vieira LM, Torrezan AC, Sousa AB, Gouveia G, Euclydes V, et al. Identification of O-linked N-acetylglucosamine transferase (OGT) expression in human placentas as a potential biomarker of prenatal stress exposure. Europ Neuropsychopharmacol. 2022;63:e127-e128. Doi: 10.1016/j.euroneuro.2022.07.238

Zhang N, Jiang H, Zhang K, Zhu J, Wang Z, Long Y, et al. OGT as potential novel target: Structure, function and inhibitors. Chem Biol Interact. 2022;357:109886. Doi: 10.1016/j.cbi.2022.109886.

Konzman D, Abramowitz LK, Steenackers A, Mukherjee MM, Na HJ, Hanover JA. O-GlcNAc: Regulator of Signaling and Epigenetics Linked to X-linked Intellectual Disability. Front Genet. 2020;11:605263. Doi: 10.3389/fgene.2020.605263

Vaidyanathan K, Wells L. Multiple tissue-specific roles for the O-GlcNAc post-translational modification in the induction of and complications arising from type II diabetes. J Biol Chem. 2014;289(50):34466-71. Doi: 10.1074/jbc.R114.591560

Vella P, Scelfo A, Jammula S, Chiacchiera F, Williams K, Cuomo A, et al. Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells. Mol Cell. 2013;49(4):645-56. Doi: 10.1016/j.molcel.2012.12.019.

Lairson LL, Henrissat B, Davies GJ, Withers SG. Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem. 2008;77:521-55. Doi: 10.1146/annurev.biochem.76.061005.092322

Lazarus MB, Nam Y, Jiang J, Sliz P, Walker S. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature. 2011;469(7331):564-7. Doi: 10.1038/nature09638

Lubas WA, Hanover JA. Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity. J Biol Chem. 2000;275(15):10983-8. Doi: 10.1074/jbc.275.15.10983

Janetzko J, Walker S. The making of a sweet modification: structure and function of O-GlcNAc transferase. J Biol Chem. 2014;289(50):34424-32. Doi: 10.1074/jbc.R114.604405

Li Y, Xie M, Men L, Du J. O-GlcNAcylation in immunity and inflammation: An intricate system (Review). Int J Mol Med. 2019;44(2):363-374. Doi: 10.3892/ijmm.2019.4238

Ruan HB, Singh JP, Li MD, Wu J, Yang X. Cracking the O-GlcNAc code in metabolism. Trends Endocrinol Metab. 2013;24(6):301-9. Doi: 10.1016/j.tem.2013.02.002

Yang X, Qian K. Protein O-GlcNAcylation: emerging mechanisms and functions. Nat Rev Mol Cell Biol. 2017;18(7):452-65. Doi: 10.1038/nrm.2017.22

Schjoldager KT, Narimatsu Y, Joshi HJ, Clausen H. Global view of human protein glycosylation pathways and functions. Nat Rev Mol Cell Biol. 2020;21(12):729-49. Doi: 10.1038/s41580-020-00294-x

Teo CF, Wollaston-Hayden EE, Wells L. Hexosamine flux, the O-GlcNAc modification, and the development of insulin resistance in adipocytes. Mol Cell Endocrinol. 2010;318(1-2):44-53. Doi: 10.1016/j.mce.2009.09.022

Bullen JW, Balsbaugh JL, Chanda D, Shabanowitz J, Hunt DF, Neumann D, et al. Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK). J Biol Chem. 2014;289(15):10592-606. Doi: 10.1074/jbc.M113.523068.

Kelly AC, Kramer A, Rosario FJ, Powell TL, Jansson T. Inhibition of mechanistic target of rapamycin signaling decreases levels of O-GlcNAc transferase and increases serotonin release in the human placenta. Clin Sci (Lond). 2020;134(23):3123-36. Doi: 10.1042/CS20201050

Fisi V, Miseta A, Nagy T. The Role of Stress-Induced O-GlcNAc Protein Modification in the Regulation of Membrane Transport. Oxid Med Cell Longev. 2017;2017:1308692. Doi: 10.1155/2017/1308692

Constable S, Lim JM, Vaidyanathan K, Wells L. O-GlcNAc transferase regulates transcriptional activity of human Oct4. Glycobiology. 2017;27(10):927-37. Doi: 10.1093/glycob/cwx055

Willems AP, Gundogdu M, Kempers MJE, Giltay JC, Pfundt R, Elferink M, et al. Mutations in N-acetylglucosamine (O-GlcNAc) transferase in patients with X-linked intellectual disability. J Biol Chem. 2017;292(30):12621-31. Doi: 10.1074/jbc.M117.790097

Liu C, Li J. O-GlcNAc: A Sweetheart of the Cell Cycle and DNA Damage Response. Front Endocrinol (Lausanne). 2018;9:415. Doi: 10.3389/fendo.2018.00415

Lewis BA, Burlingame AL, Myers SA. Human RNA Polymerase II Promoter Recruitment in Vitro Is Regulated by O-Linked N-Acetylglucosaminyltransferase (OGT). J Biol Chem. 2016;291(27):14056-61. Doi: 10.1074/jbc.M115.684365

Dehennaut V, Leprince D, Lefebvre T. O-GlcNAcylation, an Epigenetic Mark. Focus on the Histone Code, TET Family Proteins, and Polycomb Group Proteins. Front Endocrinol (Lausanne). 2014;5:155. Doi: 10.3389/fendo.2014.00155

Decourcelle A, Leprince D, Dehennaut V. Regulation of Polycomb Repression by O-GlcNAcylation: Linking Nutrition to Epigenetic Reprogramming in Embryonic Development and Cancer. Front Endocrinol (Lausanne). 2019;10:117. Doi: 10.3389/fendo.2019.00117

Love DC, Krause MW, Hanover JA. O-GlcNAc cycling: emerging roles in development and epigenetics. Semin Cell Dev Biol. 2010;21(6):646-54. Doi: 10.1016/j.semcdb.2010.05.001

Nugent BM, Bale TL. The omniscient placenta: Metabolic and epigenetic regulation of fetal programming. Front Neuroendocrinol. 2015;39:28-37. Doi: 10.1016/j.yfrne.2015.09.001

Martinez MR, Dias TB, Natov PS, Zachara NE. Stress-induced O-GlcNAcylation: an adaptive process of injured cells. Biochem Soc Trans. 2017;45(1):237-49. Doi: 10.1042/BST20160153

Yaribeygi H, Panahi Y, Sahraei H, Johnston TP, Sahebkar A. The impact of stress on body function: A review. EXCLI J. 2017;16:1057-72. Doi: 10.17179/excli2017-480

Zuliani I, Lanzillotta C, Tramutola A, Francioso A, Pagnotta S, Barone E, et al. The Dysregulation of OGT/OGA Cycle Mediates Tau and APP Neuropathology in Down Syndrome. Neurotherapeutics. 2021;18(1):340-63. Doi: 10.1007/s13311-020-00978-4

Groves JA, Lee A, Yildirir G, Zachara NE. Dynamic O-GlcNAcylation and its roles in the cellular stress response and homeostasis. Cell Stress Chaperones. 2013;18(5):535-58. Doi:10.1007/s12192-013-0426-y

Akan I, Olivier‐Van Stichelen S, Bond MR, Hanover JA. Nutrient‐driven O‐GlcNAc in proteostasis and neurodegeneration. J Neurochem. 2018;144(1):7-34. Doi:10.1111/jnc.14242

Maltepe E, Bakardjiev AI, Fisher SJ. The placenta: transcriptional, epigenetic, and physiological integration during development. J Clin Invest. 2010;120(4):1016-25. Doi: 10.1172/JCI41211

Soma-Pillay P, Nelson-Piercy C, Tolppanen H, Mebazaa A. Physiological changes in pregnancy. Cardiovasc J Afr. 2016;27(2):89-94. Doi: 10.5830/CVJA-2016-021

Guardino CM, Schetter CD. Coping during pregnancy: a systematic review and recommendations. Health Psychol Rev. 2014;8(1):70-94. Doi: 10.1080/17437199.2012.752659

Glover V, O’Donnell KJ, O’Connor TG, Fisher J. Prenatal maternal stress, fetal programming, and mechanisms underlying later psychopathology-A global perspective. Dev Psychopathol. 2018;30(3):843-54. Doi: 10.1017/S095457941800038X

Lautarescu A, Craig MC, Glover V. Prenatal stress: Effects on fetal and child brain development. Int Rev Neurobiol. 2020;150:17-40. Doi: 10.1016/bs.irn.2019.11.002

Ning J, Yang H. O-GlcNAcylation in Hyperglycemic Pregnancies: Impact on Placental Function. Front Endocrinol (Lausanne). 2021;12:659733. Doi: 10.3389/fendo.2021.659733

Armitage JA, Khan IY, Taylor PD, Nathanielsz PW, Poston L. Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals? J Physiol. 2004;561(2):355-77. Doi: 10.1113/jphysiol.2004.072009

Andres LM, Blong IW, Evans AC, Rumachik NG, Yamaguchi T, Pham ND, et al. Chemical Modulation of Protein O-GlcNAcylation via OGT Inhibition Promotes Human Neural Cell Differentiation. ACS Chem Biol. 2017;12(8):2030-9. Doi: 10.1021/acschembio.7b00232

Patrat C, Ouimette JF, Rougeulle C. X chromosome inactivation in human development. Development. 2020;147(1):dev183095. Doi: 10.1242/dev.183095

Christians JK. The Placenta’s Role in Sexually Dimorphic Fetal Growth Strategies. Reprod Sci. 2022;29(6):1895-1907. Doi: 10.1007/s43032-021-00780-3

Gabory A, Roseboom TJ, Moore T, Moore LG, Junien C. Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics. Biol Sex Differ. 2013;4(1):5. Doi: 10.1186/2042-6410-4-5

Gong S, Sovio U, Aye IL, Gaccioli F, Dopierala J, Johnson MD, et al. Placental polyamine metabolism differs by fetal sex, fetal growth restriction, and preeclampsia. JCI Insight. 2018;3(13):e120723. Doi: 10.1172/jci.insight.120723

Morgan E, Chung G, Jo S, Clifton B, Wernimont SA, Alejandro EU. Gene and Protein Expression of Placental Nutrient-Stress Sensor Proteins in Fetal Growth Restriction. Stresses. 2024;4(2):308-19. Doi:10.3390/stresses4020019

Published

2025-11-18

Issue

Section

Artigos de Revisão/Review Articles

How to Cite

Sousa, A. B. da S., Gouveia, G. R., & Camilo, C. P. (2025). O-GlcNAc Transferase (OGT) in the Context of Prenatal Stress: Current Perspectives. Revista De Medicina, 104(6), e-234285. https://doi.org/10.11606/issn.1679-9836.v104i6e-234285