MEDIDA DA FILTRAÇÃO GLOMERULAR NO CÃO PELO 51Cr-EDTA E 113min-DTPA.

Carmelindo MALISKA*
Oduvaldo S. MACIEL**
J.C.G. SARAIVA***

RFMV-A/24

MALISKA, C.; MACIEL, O. S.; SARAIVA, J. C. G. Medida da filtração glomerular no cão pelo 51Cr-EDTA e 113mln-DTPA. Rev. Fac. Med. vet. Zootec. Univ. S. Paulo, 14(2): 231-238, 1977.

RESUMO: Em 15 cães clinicamente normais foi medida a taxa de filtração glomerular (TFG) pela técnica de injeção única, com ${}^51\text{Cr}\text{-}ETA$ e ${}^{113m}\text{In}\text{-}DTPA$. A média e desvio padrão das determinações da TFG forma de 3,01 \pm 0,71 ml/min/kg de peso e de 70,44 \pm 19,60 ml/min/m² de área corporal. Não foi verificada significância estatística entre as médias das medidas pelo ${}^{51}\text{Cr}\text{-}EDTA$ e oelo ${}^{113m}\text{In}\text{-}DTPA$ e entre as médias dos grupos segundo o sexo e peso.

UNITERMOS: Radioisótopos*; Cães*; Rim, função*; Filtração glomerular*; 51 Cr-EDTA; 113m_{In-DTPA}.

INTRODUÇÃO

A medida da filtração glomerular é, sem dúvida, o mais importante parâmetro da função renal. Na prática, porém, é pouco realizada, porque os métodos clássicos de medida da taxa de filtração glomerular (TFG) são trabalhosos e exigem cateterismo vesical ou ureteral e infusão contínua, da substância teste, na veia.

Essas técnicas, laboriosas, demoradas e incômodas, somente podem ser realizadas com uma total colaboração do paciente, o que as torna quase impraticáveis em clínica pediátrica⁴ ou em clínica veterinária.

A inulina, polissacarídeo de peso molecular de aproximadamente 5.000, formado pela polimerização de moléculas de frutose, extraída de raízes de dália, é universalmente aceita como substância padrão da medida da

TFG, para todos os vertebrados; por ser filtrada pelos glomérulos e não ser excreta ou reabsorvida pelos túbulos renais 13, 19, 25. A medida da depuração da creatinina endógena, se bem que menos incômoda para o paciente, não apresenta a mesma precisão que a inulina, na determinação da TFG no homem¹.

Com a finalidade de eliminar as meticulosas análises químicas dos métodos clássicos, foram pesquisadas diversas substâncias marcadas com isótopos radioativos, como substitutos para a inulina^{7, 16,21,24,26,29}

Baseados no trabalho de WATKIN e cols.³⁰, que demonstraram ter a vitamina B-12, não ligada às proteínas plasmáticas, excreção renal semelhante a da inulina, NELP e cols.¹⁶ estudaram a eliminação renal da vitamina B-12, livre, em peixes aglomerulados e verificaram que essa espécie é incapaz de eli-

Professor Assistente.
 Faculdade de Odontologia de Nova Friburgo, RJ.

^{**} Aluno do Curso de Pós-Graduação em Biociências Nucleares. Universidade do Estado do Rio de Janeiro.

^{***} Aluno do Curso de Pós-Graduação em Química Orgânica. Instituto Militar de Engenharia, RJ.

minar a vitamina B-12, por via renal. Em três cães e em 19 pessoas, determinaram a TFG, simultaneamente com a inulina, pela técnica de infusão contínua, e verificaram uma relação, vitamina B-12/inulina, de 0,99.

WINTER e MYERS³¹ empregaram o quelato 51 Cromo-Acido Etileno-diamino-tetraacético(51Cr-EDTA), como novo traçador para o radionefrograma, rotineiramente realizado com Hippuran-131I, que sofre eliminação tubular, e verificaram que a depuração do 51 Cr-EDTA é muito lenta para aquela finalidade. STACY e THORBURN²⁶ (1966), experimentaram o complexo 51Cr-EDTA, preparado por DOWNES e MCDONALD⁹ com o objetivo de servir de marcador solúvel do rúmen, para medir a filtração glomerular em ovelhas. Pela técnica padrão da inulina, encontraram uma relação 51Cr-EDTA/inulina de 0,95 ± 0,03, em 41 determinações simultâneas, em cinco ovelhas. GARNETT e cols.¹¹ (1967), realizaram 56 depurações simultâneas do 51Cr-EDTA e da inulina, no homem, constatando correlação altamente significativa entre as duas substâncias (r = 0.995).

O quelato Indio-113 metaestável — Acido Dietileno-triamino-penta-acético (113mIn-DTPA), apresentou depuração igual à da ¹⁴C-inulina em cães e em humanos normais ou com alterações renais²⁹.

Após a administração de uma única dose de ⁵¹Cr-EDTA, e transcorrido um período de tempo necessário para ser atingido o equilíbrio do quelato no seu espaço de distribuição, a radioatividade plasmática, plotada em função do tempo, apresenta uma curva exponencial simples, em indivíduos com função renal normal, enquanto que, em pacientes anúricos, GARNETT e cols. ¹¹ verificaram que esta parte da curva permanece horizontal, até além de 48 horas após a administração da dose.

Recentemente, diversos trabalhos foram publicados sobre determinação da TFG no homem, pela técnica de injeção única^{5,12,14,15,17,22-23}. Empregando EDTA e DTPA marcados com 51Cr, 58Co, 114mIn, 115mIn e 169Yb, MÔLNÂR e cols.¹⁵ verificaram correlação significativa em testes simultâneos com creatinina (r = 0,982) e inulina (r = 0,894).

Por suas características físicas e biológicas, o 51Cr e o 113mIn, podem ser empregados em doses maiores que as diagnósticas sem irradiar significativamente o paciente, mesmo no órgão crítico, a bexiga.

Com o objetivo de comparar com os resultados obtidos pelos métodos tradicionais, determinamos a TFG, em cães clinicamente normais, empregando a técnica de injeção única de 51Cr-EDTA ou 113mIn-DTPA.

MATERIAL E MÉTODOS

a) Animais

Realizamos o estudo em 15 cães, clinicamente sãos, sem raça definida, sendo 10 machos e 5 fêmeas. A idade dos animais variou entre 11 e 36 meses e o peso entre 5 e 23 kg. Não houve critérios de escolha quanto à raça, porte ou sexo dos animais estudados. Os animais n.9 04 e 06 eram doadores de sangue do Hospital de Pequenos Animais da Escola de Veterinária do Exército e os outros, animais de experimentação.

Os animais foram mantidos com alimentação adequada à espécie e com água à vontade, antes da realização dos estudos.

Entre uma determinação e outra num mesmo animal, fez-se um intervalo mínimo de 72h para o 51Cr e de 24 h para o 113mIn. Todos os estudos foram realizados com os animais sem serem anestesiados, tendo-se em vista a variação da TFG, pela creatinina, logo após a administração de dose anestésica de Pentobarbital sódico, em cães (BLATTEIS e HORVATH²).

b) Radioisótopos e Técnica

Empregamos o 51Cr-EDTA da Farbweke Hoechst, com atividade específica de 40 mCi/mg de Cr. em doses de 4 a 6/uCi por kg de peso vivo. O 51Cr é um emissor gama de 320 keV e meia vida de 27,8 dias.

O 113mIn foi obtido de gerador (vaca de índio) de atividade de 25 mCi. O complexo 113mIn-DTPA foi preparado pelo método descrito por STERN e cols.²⁷ e empregado em doses de 80 a 100/uCi/kg de peso corporal. O 113mIn é um emissor gama puro de 393 keV e meia vida de 1,66 h.

Uma alíquota de dose foi diluída em 500 ml de água e separados 5 ml, para servir de amostra padrão.

Recolhemos amostras sangüíneas, da veia oposta à da injeção da dose, aos 10, 20, 40, 60, 90 e 120 min., nos realizados com 51Cr-EDTA e aos 15, 30, 45, 60 e 90 min. a pós a dose nos realizados com 113mIn-DTPA.

As amostras de plasma e a amostra padrão foram contadas em cintilador de poço, com escalímetro e eletrônica associada (Elscint, Israel).

A atividade específica da amostra padrão foi anotada em contagens por mililitro (cpm/ml). A atividade específica (A_t) das amostras de plasma foi determinada da mesma maneira que a do padrão.

c) Cálculo da TFG

As At das amostras de cada animal foram plotadas em papel semi-logarítimico. Verificamos que a curva apresentava duas componentes distintas, uma rápida, durante a primeira meia hora e outra lenta, até a última amostra. A componente rápida, que apresentou maior variação, de animal para animal, representa a fase em que o radiotraçador, além de estar sendo filtrado pelos glomérulos, está se difundindo no espaço vascular e saindo deste para o espaço intersticial, não tendo ainda atingido o equilíbrio dentro de seu espaço de distribuição²⁰.

Uma vez em equilíbrio no espaço extra-celular, a depuração do radiotraçador, como a da inulina, ocorre por filtração glomerular e corresponde a uma exponencial negativa^{11,20}, assim:

$$A_t = A_0 \cdot e^{-kt}$$

em que A_t é a atividade específica da amostra retirada após ter transcorrido um tempo t, A_0 é a atividade específica inicial , quando t é igual a zero, e é a base dos logaritmos neperianos e k a constante de decaimento da radioatividade plasmática.

A taxa de depuração plasmática (D) pode ser determinada, a partir do conhecimento do volume de distribuição (Vd) da substância e da sua constante de depuração (no nosso caso, de decaimento da radioatividade plasmática), pela fórmula:

$$D = Vd \cdot k$$

Inicialmente calculamos o valor de K, fazendo:

$$K = \frac{\ln \frac{A_0}{A_t}}{t}$$

Como trabalhamos na segunda componente da curva, onde só ocorre diluição crescente do radiotraçador por filtração, consideramos como A_O a A_t da amostra de 40 e 30 min. respectivamente, conforme a determinação tenha sido feita pelo ⁵¹Cr ou pelo 113mIn. As A_t, selecionadas pela comparação de todas as combinações de duas a duas das atividades das amostras, com a reta de regressão (obtida pelo método dos mínimos quadrados), foram as de 120 e 90 min., respectivamente para o ⁵¹Cr e ¹¹3mIn.

Obtivemos o Vd. dividindo a atividade da dose por A_O, que foi obtida pela fórmula inversa da de depuração:

$$A_0 = A_t \cdot e^{kt}$$

De posse do valor de k e de Vd, calculamos a TFG, em ml/min. pela fórmula de depuração:

$$TFG = Vd \cdot k$$

A área corporal foi calculada segundo DUBOIS apud 25.

RESULTADOS

Os valores da TFG determinada pelo 51Cr-EDTA foram de $68,55 \text{ ml/min/m}^2$ da área corporal (Tabela 1) e pelo 113mIn-DTPA de $72,22 \text{ ml/min/m}^2$ (Tabela 2). A diferença entre as medidas realizadas com os dois quelatos não apresentou significância estatística (P < 0.05).

Em valores absolutos a TFG, nas 28 determinações, variou de 10,41 a 91.89 ml/min. Em ml/min/kg de peso corporal, as 28 medidas apresentaram média e desvio padrão de $3,01\pm0,71$ e em ml/min/m² de área corporal, $70,44\pm19,60$.

Reunidos por sexo, os machos apresentaram TFG média de 73,52 ml/min/m² e as fêmas, 63,47 ml/min/m², (Tabela 3),não apresentando significância estatística (P < 0,05), a diferença das médias da TFG entre machos e fêmeas.

Arbitrando como linha de separação a

média aritmética dos pesos dos animais (12,89 kg), comparamos os valores da TFG do grupo de menor peso ($\overline{x} = 9,24$ kg), 2,71 ± 1,61 ml/min/kg, com os do grupo de maior peso ($\overline{x} = 17,0$ kg), 3,44 ± 0,32 ml/min/kg de peso corporal, não sendo também significativa a diferença entre os dois

grupos mediante a aplicação do teste t de Student ao nível de 5%. Os resultados do animal nº 04, de aparência discrepante em relação aos demais, encontram-se, porém, dentro dos limites de confiança de 95% em relação ao grupo estudado pelo 51Cr-EDTA e em relação ao grupo todo.

TABELA 1 — Taxa de Filtração Glomerular em 6 cães normais, pela técnica de injeção única, com 51 Cr.EDTA.

Animal (Nº)	Sexo	Idade (meses)	Peso (kg)	TAXA DE	FILTRAÇÃO G (ml/min/kg)	LOMERULAR (ml/min/m ²)
03	F	13	5,0	15,39	3,08	52,67
				16,23	3,25	55,54
01	M	13	6,0	10,41	1,74	31,59
				14,47	2,41	43,92
02	M	14	8,0	19,74	2,46	49,55
				20,71	2,58	51,98
				15,76	1,97	39,56
05	M	18	13,5	51,88	3,84	92,18
				49,46	3,66	87,88
06	М	24	20,0	70,38	3,52	96,49
04	M	36	23,0	85,17	3,70	106,47
				91,89	4,00	114,87
Média	· · · · <u>·</u>	19,6	12,58	42,58	3,04	68,55
Desvio I	Padrão	9,0	6,90	29,28	0,62	28,86

TABELA~2-Taxa de Filtração Glomerular em 11 cães normais, pela técnica de injeção única, com 113mIn.DTPA.

Animal (Nº)	Sexo	Idade (meses)	Peso (kg)	TAXA DE FILTRAÇÃO CLOMERULAR				
				(ml/min)	(ml/min/kg)	(ml/min/m ²)		
07	F	18	9,0	29,03	3,22	67,40		
08	M	16	10,5	30,39	2,86	63,74		
				33,06	3,15	69,34		
09	F	13	11,0	32,90	2,99	66,93		
10	M	12	12,0	30,45	2,53	58,48		
				31,70	2,64	60,88		
11	F	17	12,4	36,46	2,94	68,52		
				34,22	2,75	64,31		
				34,69	2,79	65,19		
05	M	18	13,5	44,20	3,27	78,54		
15	F	14	14,0	38,76	2,77	67,24		
12	M	19	14,2	49,01	3,45	84,24		
				48,53	3,41	83,41		
13	M	19	16,8	54,13	3,22	83,25		
14	M	11	18,0	60,10	3,34	88,33		
06	M	24	20,0	62,50	3,12	85,69		
Média		16,4	13,8	40,63	3,03	72,22		
Desvio Pac	trão	3,8	3,4	11,02	0,28	9,90		

TABELA 3 — Média (x) e desvio padrão (s) da Taxa de Filtração Glomerular (T F G) determinada pelo ⁵¹Cr-EDTA e ^{113m}In.DTPA em 15 cães normais.

MEDIDAS	MACHOS			FEMEAS			TOTAL		
	N	x	8	N	x	8	N	x	s
Idade ^{a)}	10	18,20	7,39	5	15,00	2,09	15	17,12	5,25
Peso (kg)	10	14,20	5,34	5	10,28	3,48	15	12,89	5,04
T F G b	20	73,52	22,83	8	63,47	5,98	28	70,44	19,60
$T F G^{c}$	20	3,04	0,62	8	2,87	0,26	28	3,01	0,71

a) Idade em meses;

a) Idade em meses;
 b) Taxa de Filtração Glomerular em ml/min/m² de área corporal;
 c) Taxa de Filtração Glomerular em ml/min/kg de peso corporal.

DISCUSSÃO

Como substituto da inulina, a vitamina B-12, marcada com cobalto radioativo, abole as trabalhosas determinações químicas da inulina, porém apresenta duas desvantagens: sua meia vida biológica é muito grande, armazenando-se principalmente no fígado, o que impede a realização de outro exame com radioisótopos, para acompanhar a evolução de um estado patológico, dentro de um espaço de tempo considerável; e uma fração variável da dose liga-se às proteínas plasmáticas, tornando impraticável a realização do estudo pela técnica de injecão única.

Os complexos 51Cr-EDTA e 113mIn-DTPA apresentam todas as vantagens e nenhuma das desvantagens da vitamina B-12 marcada, pois são eliminados seletivamente por filtração glomerular, não tendo sido encontrado mais que 1% do quelato, ligado a proteínas plasmáticas, mesmo após 24 h de diálise e de separação por passagem em coluna de Sefadex^{11,26}. Após a administração parenteral o quelato é completamente eliminado pelos rins¹¹.

O único estudo realizado no cão com o emprego de EDTA, como indicador da TFG, foi realizado por FOR-LAND e cols. 10, em 38 cães, pela técnica de infusão contínua e determinação por métodos químicos da concentração do complexo Ca-EDTA e da inulina. A relação Ca-EDTA/inulina foi de 1,02, em 60 determinações simultâneas. Após a administração de Probenecid, que é um inibidor do mecanismo de transporte tubular, FORLAND e cols. 10 não verificaram qualquer alteração na TFG, tanto do Ca-EDTA, como da inulina.

Nossos resultados da medida da TFG pelo 51 Cr-EDTA e pelo s,113mln-DTPA no cão, são perfeitamente comparáveis aos de diversos pesquisadores, realizados pela inulina e pela creatinina. BLATTEIS e HORVATH³ obtiveram TFG de 63 ± 22 ml/min/m² da área corporal em 6 cães pela creatinina. Em 7 cães, cujo peso variou entre 14 e 27 kg, STEVENS e cols.² encontraram através de determinações simultâneas, TFG de 46 a 81 ml/min/m², pela inulina e de 74 a 106 ml/min/m² pela creatinina. CORCO-

RAN e PAGE⁸, pela técnica de infusão contínua, obtiveram, em 7 cães uma média de 69,0 ml/min/m², pela inulina.

CLAPP e cols.⁶ através recoleção do filtrado glomerular por micropuntura do túbulo proximal, obteve uma TFG média de 20,77 ml/min em um cão de 9,6 kg (aproximadamente 2,16 ml/min/kg) pela inulina.

As relações 51 Cr-EDTA/inulina (0,95 ± 0,03) em ovelhas²⁶ e Ca-EDTA/inulina (1,02) em cães¹⁰, foram mais próximas da unidade que a relação creatinina/inulina (1,37) em cães²⁸, no entanto são ambas, inulina e creatinina, universalmente aceitas como indicadores da filtração glomerular na especie canina²⁵.

Nossos resultados são perfeitamente comparáveis aos índices apresentados por OSBORNE e cols. 18 pela creatinina, de 2,98 ± 0,96 ml/min/kg.

As apreciações acima nos levam a considerar os complexos ⁵¹Cr-EDTA e 113mIn-DTPA como traçadores indicados para substituir a inulina e a creatinina na determinação da TFG no cão.

A irradiação a que é submetido o paciente é praticamente desprezível, mesmo permanecendo sem urinar por mais de uma hora, após a realização do exame. Ao nível de bexiga, não chega a 0,39 rad por mCi de 113mIn e em todo o corpo, menos que 0,005 rad por mCi²¹. Ao nível do rim, a dose recebida é inferior a 0,005 rads, em exames realizados com ⁵¹Cr-EDTA¹¹.

Tomando-se somente dois pontos, das atividades das amostras de 40 e 120 min, para o 51Cr, e de 30 e 90 min, para o 113mIn, verificamos que as retas por eles determinadas são muito próximas das de regressão; as outras amostras combinadas de todas as maneiras possíveis não apresentaram retas tão fiéis. Desta maneira, a TFG pode ser calculada, com precisão nada menor que pelos métodos tradicionais, sem inflingir ao paciente sofrimento maior que a injeção de pequeno volume de uma substância completamente inócua e da retirada de duas amostras sangüíneas, abolindo-se por completo as recoleções urinárias e os cateterismos venosos.

MALISKA, C.; MACIEL, O. S.; SARAIVA, J. C. G. Measurement of glomerular filtration in dog using 51Cr-EDTA and 113mIn-DTPA. Rev. Fac. Med. vet. Zootec. Univ. S. Paulo, 14(2): 231-238, 1977.

SUMMARY: The glomerular filtration rate (GFR) was measured in 15 normal dogs using 51Cr-EDTA and 113mIn-DTPA, by a single injection technique. The results of GFR measurements was 3,01 (S.D. $\pm 0,71$) ml/min/kg body weight, and 70.44 (S.D. $\pm 19,60$) ml/min/m² surface area. Difference in GFR (means) between the measurement by 51Cr-EDTA and 113mIn-DTPA and between the male and female group was not statistically significant (P < 0,05).

UNITERMS: Radioisotopes*; Dogs*; Glomerular filtration*; Kidney, function*; ⁵¹Cr-EDTA and 113mIn.DTPA.

AGRADECIMENTOS

Ao prof. Antonio Fernando Gonçalves da Rocha, na ocasião, Chefe do Laboratório de Radioisótopos do Hospital de Clínicas Gaffrée-Guinle da FEFIERJ, pela orientação e estímulo na realização deste trabalho. Ao colega Dr. Joseli Nunes e ao Sr. João Luiz do Nascimento pela valiosa assistência técnica.

REFERENCIAS BIBLIOGRÁFICAS

- 1 BERLYNE, G. M., VARLEY, H.; NILWA-RANGKUR, S.; HOERNI, M. Endogenous-Creatinine Clearence and Glomerular-Filtration Rate. Lancet 2: 874, 1964.
- 2 BLATTEIS, C. M. & HORVATH, S. M. Renal and Cardiovascular effects of anesthesic doses of pentobarbital sodium. Amerc. J. Physiol. 192: 353-56, 1958.
- 3 BLATTEIS, C. M. & HORVATH, S. M. Renal, cardiovascular and respiratory responses and their interrelations during hipothermia. Amer. J. Physiol., 192: 357-63, 1958.
- 4 BLAUFOX, M. D.; SILCALUS, G.; JECK, D.; SPITZER, A.; CHERVU, L. R.; EL-MANN, C.M. (jr.) Renal function studies in pediatrics. In: JAMES, A. E.; WAGNER, H. N. (Jr.); COOKE, R. E. Pediatric nuclear medicine. Philadelphia, W. B. Saunder, 1974, p. 324-31.
- 5 CHÁVEZ, R.; DARIACA, J.; BARRAGÁN, M. L. F. Determinación de la filtracion glomerular en la altura por medio del ⁵¹Cr-EDTA y la creatinina endógena. Rev. Biol. Med. nucl. 4: 25-31, 1972.
- 6 CLAPP, J. R.; WATSON, J. F.; BERLINER, R. W. Osmolality, bicabornate con-

- centration, and water reabsorption im proximal butule of the dog nephron. Amer. J. Physiol., 205: 273-80, 1963.
- 7 CONCANNON, J. P.; SUMMERS, R. E.; BREWER, R.; COLE, C.; WELL, C.; FOSTER, W.D. 125 In-Allyl-Inulin for determination of glomerular filtration rate. Amer. J. Roentgnol., 92: 302-08 1964.
- 8 CORCORAN, A. C. & PAGE, I. H. The effects of renin, pitressin and Pitressin and atropine on renal blood flow and clearance. Amer. J. Physiol., 126: 354-67, 1939.
- 9 DOWNES, A. M. & McDONALD, I. W. Labelled EDTA witth Cr⁵¹. Brit. J. Nutr., 18: 153, 1964.
- 10 FORLAND, M.; PULLMAN, T. N.; LAVEN-DER, A. R.; AHO, I. The renal excretion of ethylenediaminetraacetate in the dog. J. Pharmacol. exp. Ther., 153: 142-47, 1966.
- 11 GARNETT, E. S.; PARSONS, V.; VEALL, N. Measurement of glomerular filtration-rate in man using a ⁵¹Cr-Edetic-Acid complex. Lancet, 1: 818-19, 1967.
- 12 LADEGAARD-PEDERSEN, H. J. & EN-GELL, H. C., ,A comparison between

- the changes in the distribution volumes of inulin and (51Cr)EDTA after major surgery. Scand. J. clin. Lab. Invest, 35: 109-113, 1975.
- 13 MALNIC, C. & MARCONDES, M. Fisiologia renal. São Paulo, EDART, 1972.
- 14 MARTINEZ, V. D. & BUSH, M. P. La determinación del filtrado glomerular con el yodotalamato de sodio marcado con 1311 y con el quelato ácido dietilentriaminopentacético-113mIn. Rev. Biol. Med. nucl., 2: 37-47, 1970.
- 15 MÓLNÁR, G., PAL, I., STUTZEI, M.; JÁKY, L. Determination of glomerular filtration rate with 51Cr. 58Co. 114mIn. 115mIn and 169Yb labelled EDTA and DTPA complexes. In: IAEA, Dinamic Studies with Radioisotopes in Medicine. Vienna, 1971. p. 359-68.
- 16 NELP, W. B.; WAGNER, H. N. (Jr.); REBA, R. C. Renal excretion of vitamin B12 and its use in measurement of glomerular filtration rate in man. J. Lab. clin. Med., 63: 480-91, 1964.
- 17 OBERHAUSER, A. E. Estudios dinamicos renales con radioisotopos Rev. Biol. Med. nucl., 6: 86-90, 1974.
- 18 OSBORNE, C. A.; LOW, D. G.; FINCO, D. R. Canine and feline urology. Philadelphia, W. B. Saunders C., 1972.
- 19 PITTS, R. F. Physiology of the kidney and body fluids. Chicago, Years Gook Medical, 1968.
- 20 PLUTH, J. R.; CLELAND, J.; MEADOR, C. K.; TAUXE, W. N.; KIRKLIN, J. N.; MOORE, F. D. Effect of surgery on the volume distribution of extracellular fluid determined by the sulfate and bromide methods. In: BERGNER, P.E. & LUSHBAUGH, C. C. Compartments, pools, and spaces in medical physiology. Oak Ridge, USAEC. p. 217-239.
- 21 REBA, R. C.; HOSAIN, F.; WAGNER, H.N.
 (Jr). Indium-113m Diethylenetriaminepentaacetic Acid (DTPA): A new
 radiopharmaceutical for study of the
 kidneys. Radiology, 90: 147-49,
 1968.
- 22 ROCHA, A. F. G.; SÁ, C. A. M.; MARTINS, N.; MALISKA, C.; FRANZEN, H.

- R. Studies on nephron dinamics with radioisotopes. In: IAEA. Dynamic Studies with Radioisotopes in Medicine. Viena, 1971. p. 337-45.
- 23 ROCHA, A. F. G. Aplicações en nefrologia. In: ROCHA, A. F. G. Medicina nuclear, Rio de Janeiro, e.3 Guanabara Koogan, 1976, p. 335-46.
- 24 SIGMAN, E.M.; ELWOOD, C. M.; KNOX, F. The measurement of glomerular filtration rate in man with sodium iolamate ¹³¹I (Conray). J. nucl. Med., 7: 60-68, 1965.
- 25 SMITH, H. W. The kidney, struture and funcion in health and disease. New York, Oxford University Press., 1951.
- 26 STACY, B. D. & THORBURN, G. D. Chromium-51 ethylenediaminetetraacetate for estimation of glomerular filtration rate. Science, 152: 1076-77, 1966.
- 27 STERN, H. S.; GOODWIN, D. A.; SCHEF-FEL, U.; WAGNER, H.N. (Jr); KRA-MER, H. H. In^{113m} for blood-pool and brain scanning. Nucleonics, 25: 62-65, 1967.
- 28 STEVENS, C. E.; SELLERS, A. F.; CLARK, J. J. Studies on experimental canine intersticial nephritis. II. An attempt at functional-morphological correlation in damaged kidneys. Amer. J. vet. Res., 17: 710-19, 1956.
- 29 WAGNER, H. N. (Jr); HOSAIN, F.; RHO-DES, B. A. Recently developed radiopharmaceuticals: Yb-169 DTPA and Tc-99m microspheres. Rad. Clin. Nth. Am., 7: 233, 1969.
- 30 WATKIN, D. M; BARROW:, C. H. (Jr); CHOW, B. F.; SHOCK, N. W. Renal clearance of intravenously administered vitamin B12. Exp. Biol. Med., 3: 273-281, 1961.
- 31 WINTER, C. C. & MYERS, W. G. Three new test agents for radioisotope renogram: DISA-I¹³¹, EDTA-Cr⁵¹ and Hippuran-I¹²⁵. J. nucl. Med., 3: 273-81, 1962.

Recebido para publicação em 7-7-77 Aprovado para publicação em 30-7-77