ESTUDO DA EVENTUAL CORRELAÇÃO ENTRE GLICEMIA E CALCEMIA DURANTE A PRENHEZ DA JUMENTA, Equus asinus, L. 1758 (Perissodactyla, Equidae).

Maria Ely Miserochi de OLIVEIRA*
José de Fatis TABARELLI NETO**
José Carlos Machado NOGUEIRA FILHO***

RFMV-A/23

OLIVEIRA, M.E.M.; TABARELLI NETO, J.F.; NOGUEIRA FILHO, J.C.M. Estudo da eventual correlação entre glicemia e calcemia durante prenhez da jumenta, Equus asinus, L. 1758 (Perissodactyla, Equidae). Rev. Fac. Med. Vet. Zootec. Univ. S. Paulo. 15 (2):-, 165-70, 1978.

RESUMO: Estudando, em jumentas prenhez, o comportamento comparativo das curvas glicêmica e calcêmica, nossos dados não revelaram correlação significativa entre essas duas variáveis.

UNITERMOS: Prenhez, jumentas *, glicose *, cálcio* Sangue níveis*.

1. INTRODUÇÃO

Em trabalho anterior OLIVEIRA e cols.6, verificaram que na jumenta prenhe, diferentemente do assinalado na égua puro sangue inglês de corrida, a calcemia tende a se elevar com o progredir da gestação, atingindo teores maiores no pré-parto e assim se mantendo até o 3° dia do puerpério (limite da observação). Procurando esclarecer o mecanismo da hipocalcemia que ocorre em outros animais, em períodos semelhantes da prenhez.VAN SOEST e BLOSSER*, citados por JEAN-BLAIN, lembram que a hipocalcemia, bem como a hipofosfatemia, presentes no momento do parto, estão ligadas à hiperglicemia. Esta última, por sua vez, estaria na dependência de maior produção de glucágon, ao qual

se tem atribuído, a par de seu efeito hiperglicemiante, um outro hipocalcemiante. Semelhante efeito, indireto, estaria condicionado à capacidade do glucágon em ativar a síntese do 3'5' mono fosfato de adenosina (AMP cíclico), a partir do ATP no interior das células parafoliculares da tireóide, o qual, por sua vez, estimularia a liberação da Tirocalciotonina, isto é, do hormônio hipocalcemiante.

Ocorrendo na jumenta prenhe, como já se salientou, uma hipercalcemia, procuramos, investigar, variações na curva glicêmica e sua possível correlação com a calcemia, durante a gestação, no animal referido.

2. MATERIAL E MÉTODOS

2.1 - Animais utilizados

^{*} Professor Assistente Doutor

Departamento de Parasitologia, do Instituto de Ciências Biomédicas da USP.

^{**} Professor Catedrático.

Faculdade de Medicina Veterinária e Zootecnia da USP.

^{***} Auxiliar de Ensino

Departamento de Produção Animal, Faculdade de Medicina Veterinária e Zootecnia da USP.

As jumentas utilizadas eram em número de nove, das raças Italiana e Brasileira, com idade variando entre 5 e 12 anos e pertencentes à Estação Experimental de Zootecnia de Colina, localizada no município de Colina, Estado de São Paulo. Recebiam assistência veterinária permanente e foram consideradas clinicamente sadias. A todas era dado o mesmo tratamento quanto ao manejo, principalmente na parte de alimentação, confundindo-se, assim, com o restante do rebanho.

2.2 - Colheita do material e tratamento subsequente

Por ocasião da colheita do sangue, material utilizado no presente trabalho para a realização das diferentes técnicas abaixo descritas, os animais eram trazidos do pasto para os boxes, lugar onde eram sangrados imediatamente.

A colheita realizou-se sempre no período da manhã, por punção da veia jugular, com agulha 40 x 20.

O sangue recolhido era deixado em repouso à temperatura ambiente (25° - 35°C) até a coagulação e retração do coágulo. Em seguida, o soro era cuidadosamente retirado com auxílio de pipeta, colocado em frasco apropriado e imediatamente congelado a -10°C, para ser transportado ao laboratório e estocado à temperatura de - 15° a - 20°C.

As jumentas foram sangradas pela primeira vez antes da cobertura, a fim de se obterem valores normais. Comprovada a gestação por palpação retal, sucediam-se novas colheitas a intervalos que variavam entre 10 e 40 dias, até aproximadamente 15 dias antes da data provável do parto. A partir de então, as colheitas foram feitas mais amiúde, a cada 2 - 4 dias, até o parto.

Ocorrido este, fizeram-se mais duas colheitas, uma no dia seguinte e a última no 3º dia após o parto. Este proceder, controlando-se ca-

da animal individualmente e processando-se a análise do teor sanguíneo de glicose antes da gestação, fez com que cada animal se tornasse testemunho de si próprio, afastando-se, assim, as possíveis modificações oriundas de diferenças de raça e de idade.

Saliente-se que amostras deste mesmo material foram empregadas por OLIVEIRA e cols. 6, em investigação relativa aos teores de cálcio, fósforo e magnésio.

2.3. - Dosagem de glicose Foi utilizado o método de NELSON⁵.

2.4 - ANÁLISE ESTATÍSTICA

Antes de se proceder ao tratamento estatístico, foi necessário promover-se a uniformização dos resultados, mediante a divisão do tempo de gestação em períodos, já que a duração da prenhez dos animais utilizados na presente investigação apresentou notável variação, oscilando entre um mínimo de 350 e um máximo de 417 dias. Assim, o tempo total da gestação de cada fêmea foi dividido em 9 períodos aproximadamente iguais. Cada período compreendeu, em média, 42 dias, variando de 39 a 46, conforme a menor ou maior duração da prenhez. Os valores assinalados neste trabalho referem-se sempre ao final de cada período, tendo sido consideradas, para cada animal, apenas as amostras colhidas até o limite de 7 dias antes do término de cada período. O último período da gestação foi dividido por sua vez em 2 partes, a primeira correspondendo a 7 - 12 dias antes do parto e a segunda de 0-6 dias.

Para a avaliação estatística dos resultados obtidos procedeu-se à análise da variância conforme GO-MES²

MES².
As parcelas perdidas foram preenchidas segundo e SNEDE-COR e COCHRAN⁷. Cada parcela perdida correspondeu à perda de 1 grau de liberdade na análise da variância.

No estudo da correlação entre os níveis de calcemia e de glicemia, aplicou-se o coeficiente de correlação de Pearson, conforme recomendam KENDALL e BUC-KLAND⁴, tendo-se utilizado, para cálculo, os valores transcritos nas tabelas I e III respectivamente.

3. RESULTADOS

3.1 - Variações nos níveis de glicose sérica

Os resultados referentes às variações de glicose sérica durante a prenhez encontram-se na tabela I e na figura 1.

Os dados estatísticos relativos

à análise da variância apresentamse na tabela II.

A tabela III registra as análises de cálcio sérico.

As oscilações nos teores séricos sangüíneos de glicose, no decurso da prenhez, não revelaram significância estatística, pela análise da variância.

3.2 - Correlação entre os níveis da calcemia e da glicemia

A análise estatística dos resultados obtidos não revelam correlação significativa entre os teores de cálcio e de glicose no sangue, ao nível de probabilidade de 5%, (r=0,0138 com 115 graus de liberdade) ao longo da gestação da jumenta.

TABELA I - Glicose no soro de jumentas antes da cobertura, durante a gestação, e no pós-parto. Os valores indicados representam mg/100 ml de soro

Animal	Antes da Co-	Períodos da gestação								IX Pré-parto		Pós-parto	
	bertura	- 1	Ш	III	IV	V	VI	VII	VIII	(a)	(b)	(c)	(d)
7	45,99	38,87	40,65	33,82	44,21	24,03	51,63	33,82	38,87	22,25	39,88§	74,77	67,95
8	25,51	27,29	72,40	44,21	59,64	33,82	51,63	33,82	44,21	44,21	35,31	49,85	47,77
9	47,71	49,85	67,95	22,55	44,21	25,51	61,72	53,70	32,04	24,03	49,85	44,77§	43,37§
10	40,65	38,87	21,06	33,82	25,51	53,70	38,87	47,77	22,55	28,78	63,79	46,73§	72,40
11	59,64	49,85	19,58	28,78	45,99	59,64	47,77	42,43	55,48	24,03	33,82	40,65	49,85
12	84,27	62,75	34,56	61,72	37,09	64,83	48,81	28,03	30,26	21,06	41,54	38,87	72,40
13	51,63	25,51	38,87	32,04	40,65	67,95	69,13	49,85	51,63	63,70	70,32	59,64	37,09
14	45,99	49,85	44,21	45,99	47,77	63,79	59,64	47,77	79,52	53,70	53,70	51,63	47,77
15	37,09	70,32	38,87	53,70	65,87	91,98	61,72	67,95	24,03	47,77	56,27§	55,48	24,03
x	48,72	45,91	42,02	39,63	45,66	53,92	54,55	45,02	42,07	35,50	49,39	51,38	51,40

^{§ =} parcela recuperada estatisticamente

TABELA II — Análise de variância da concentração de glicose no soro sanguíneo de jumentas.

Variação	g_1	S.Q.	Q.M.	Р
Períodos	12	3.528,1819	294,0152	1,26
Animais	8	2.314,8509	289,3564	1,24
Interação	91	21.202,4388	232,9938	
Total	111	27.045,4716		

⁽a) = 7-12 dias antes do parto

⁽b) = 0-6 dias antes do parto

⁽c) = 1 dia após o parto

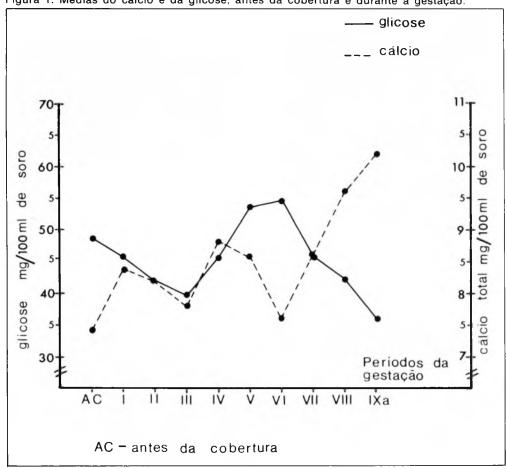

⁽d) = 3 dias após o parto

TABELA III* - Cálcio total no soro de jumentas antes da cobertura, durante a gestação e no pós-parto. Os valores indicados representam mg/100 ml de soro.

Animal	Antes da Co bertura	Períodos da gestação											Pós-parto	
		l II	П	III	IV	V	VI	VII	VIII	IX pré-parto		(c)	(d)	
									(a)	(b)				
7	8,90	10,23	12,14	6,85	6,64	6,80	6,99	6,90	8,30	7,10	9,62§	9,49	11,45	
8	6,53	9,54	6,18	9,93	5,47	7,68	7,52	5,45	8,97	10,30	6,44	9,55	9,29	
9	6,39	8,60	8,85	5,06	5,22	5,86	8,51	8,44	11,52	10,87	11,40	9,76§	10,048	
10	7,24	6,85	9,40	6,04	11,73	9,63	6,94	11,15	9,72	12,21	9,98	10,65§	10,62	
11	8,99	10,21	11,73	9,70	12,05	12,12	8,51	8,46	8,44	11,66	12,78	11,70	11,17	
12	6,87	7,75	8,48	8,62	11,89	6,14	6,37	9,38	9,24	8,61	9,24	8,82	8,25	
13	7,52	6,07	5,10	6,96	11,36	10,99	9,82	10,41	11,13	8,62	10,87	12,12	11,86	
14	7,03	8,90	7,03	5.72	8,39	8,865	5,45	10,78	8.09	12,05	12,65	12,25	12.09	
15	6,94	7,26	5,63	11,38	6,53	8,69	9,13	6,48	11,54	10,99	10,12§	11,52	11,91	
X	7,38	8,38	8,28	7,81	8,81	8,53	7,69	8,61	9,66	10,27	10,34	10,65	10,74	

- § = parcela recuperada estatisticamente
 (a) = 7-12 dias antes do parto
 (b) = 0-6 dias antes do parto
 (c) = 1 dia após o parto
 (d) = 3 dias após o parto
 (*) Os dados desta tabela, adicionados a outros da mesma natureza, fizeram parte de trabalho publicado por OLIVEIRA et ali (6).

Figura 1. Médias do cálcio e da glicose, antes da cobertura e durante a gestação.

4. DISCUSSÃO

Muito embora reduzido o número de animais investigados, os resultados demostram que, tanto as oscilações na curva glicêmica, como sua correlação com a correspondente calcêmica, não revelaram significância estatística.

Assim, como já foi sugerido em trabalho anterior (OLIVEIRA e cols. 6,

se válido for o mecanismo aventado por JEAN-BLAIN³, fundamentado nas observações de VAN SOEST e BLOSSER® e CARE e GITELMAN¹, na tentativa de explicar, em bovinos e outros animais, o mecanismo da hipocalcemia pré-natal, na jumenta, a ocorrência de hipercalcemia, na mesma ocasião, seria motivada por mecanismo homeostático diferente e ainda por elucidar.

RFMV-A/23

OLIVEIRA, M.E.M.; TABARELLI NETO, J.F.; NOGUEIRA FILHO, J.C.M. A study on the possible correlation between glycemia and calcemia during the period of pregnancy of the she ass, Equus asinus. L. 1758. (Perissodactila, Equidae). Rev.Fac.Med.Vet.Zootec.Univ.S. Paulo, 15 (2): 165-70, 1978.

SUMMARY: In an analytical study of blood levels of calcium and glucose along the pregnancy of female asses no significant correlation was found between the involved variables.

UNITERMS: She ass, pregnancy*; Calcium*; Glicose*; Serum *.

REFERENCIAS BIBLIOGRÁFICAS

- CARE, A.D. & GITELMAN, H.J. The possible role of adenyl cyclase in thyrocalcitonin release. J. Endocr., 41: XXI-XXII, 1968.
- 2 GOMES, F.P. Curso de estatística experimental. Piracicaba, Escola Superior de Agricultura "Luiz de Queiroz", 1963.
- 3 JEAN-BLAIN, M. État actual des connaissances sur les metabolismes du calcium et du phosphore chez les animaux doméstiques. Cah. Med. Vet., 40: 100-29, 1974.
- 4 KENDAL, M.G. & BUCKLAND, W.R. A dictionary of statistical terms. Edimburg, Oliver and Boyd, 1957.
- 5 NELSON, N. apud VILLELA, G.G.;

- BACILA, M.; TASTALDI, H. Técnicas e experimentos de bioquímica. Rio de Janeiro, Guanabara Koogan, 1973. 282-84.
- 6 OLIVEIRA, M.E.M.; TABARELLI NE-TO, J.F.; BIZUTTI, O. Contribuição ao estudo dos teores séricos sangüíneos do cálcio, fósforo e magnésio durante a prenhez da jumenta, Equus asinus, L., 1758. (Perissodactyla, Equidae). Rev. Fac. Med. Vet. Zootec. Univ. S. Paulo, 12:169-84, 1975.
- Univ.S.Paulo, 12:169-84, 1975.

 NEDECOR, G.W. & COCHRAN, W.G. Statistical methods. 6. ed. Ames, Iowa State College Press, 1967.
- 8 VAN SOEST & BLOSSER apud JEAN-BLAIN, M 3 p. 128.