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ABSTRACT

Escherichia coli causes various ailments such as septicemia, enteritis, foodborne 

illnesses, and urinary tract infections which are of concern in the public health field due to 

antibiotic resistance. Silver nanoparticles (AgNP) are known for their biocompatibility and 

antibacterial activity, and may prove to be an alternative method of treatment, especially as 

wound dressings. In this study, we compared the antibacterial efficacy of two polymer-coated 

silver nanoparticles either containing 10% Ag (Ag 10% + Polymer), or 99% Ag (AgPVP) 

in relation to plain uncoated silver nanoparticles (AgNP). Atomic force microscopy was 

used to characterize the nanoparticles, and their antibacterial efficacy was compared by 

the minimum inhibitory concentration (MIC) and bacterial growth curve assays, followed 

by molecular studies using scanning electron microscopy (SEM) and (qRT- PCR). AgNP 

inhibited the growth of E. coli only at 0.621 mg/mL, which was double the concentration 

required for both coated nanoparticles (0.312 mg/mL). Similarly, bacterial growth was 

impeded as early as 8 h at 0.156 mg/mL of both coated nanoparticles as compared to 0.312 

mg/mL for plain AgNP. SEM data showed that nanoparticles damaged the cell membrane, 

resulting in bacterial cell lysis, expulsion of cellular contents, and complete disintegration 

of some cells. The expression of genes associated with the TCA cycle (aceF and frdB) and 

amino acid metabolism (gadB, metL, argC) were substantially downregulated in E. coli treated 

with nanoparticles. The reduction in the silver ion (Ag+) concentration of polymer-coated 

AgNP did not affect their antibacterial efficacy against E. coli. 

KEYWORDS: Escherichia coli. Polymer coated. Nanosilver

INTRODUCTION 

Microorganisms possess several mechanisms of resistance that interfere with 
the effectiveness of antibiotics. Indiscriminate use of antibiotics for the treatment of 
bacterial infections has caused resistant strains of broad spectrum gram negative (-) 
bacteria such as E. coli which are difficult to treat1

. 
Nanoparticles have been under 

scrutiny due to their anti-inflammatory, antibacterial, and antimicrobial properties. 
Nanoparticles range in size from 1-100 nm and function at a molecular and cellular 
level. Electronic and structural properties of nanoparticles significantly differ from 
the respective bulk particles2,3. There are important components in the utilization of 
nanoparticles that include cellular uptake, adsorption, and metal ion release. Once 
the nanoparticles are released into the cell, the nanoparticles are engulfed through 
a process called endocytosis. The release can sometimes cause a severe cellular 
side effect called oxidative stress4.
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Silver nanoparticles (AgNP) have been of interest 
because the agent possesses many of the properties that 
are common to nanoparticles1,4,5. Silver nanoparticles have 
shown to be promising in wound healing, implantations, 
wound disinfection, sensing, catalysis, the coating of other 
surfaces, etc.6-10. The small size of AgNP is representative 
of a massive surface area, which increases the interaction of 
nanoparticles and the microorganism1,4. The nanoparticles 
are able to enter the cell membrane in an easier way due to a 
greater surface area with respect to volume ratio of smaller 
nanoparticles. The mechanism by which silver nanoparticles 
act is not fully understood. Some studies indicate that the 
AgNP may cause antibacterial cell death due to silver 
ions that prevent DNA replication or inactivating cellular 
proteins. There are also interactions with the cell membrane 
in which the structure is damaged resulting in cell death3,11. 

Other theories suggest that silver nanoparticles cause cell 
death through cell lysis and thiol reactions that inactivate 
enzymes3,12. Another possible mechanism may be due to 
oxidative stress, inflammation, and DNA damage13.

 
Toxicity 

has been a subject of concern in regard to application 
of silver nanoparticles within the human body7,14. The 
smaller nanoparticles have the strongest antimicrobial 
activity; however, they are the most cytotoxic ones. Silver 
nanoparticles are typically coupled with other agents to 
improve efficacy and reduce cytotoxicity1.

Silver nanoparticles have been modified by coating with 
polymers such as polyvinylpyrrolidone (PVP), polyethylene 
glycol (PEG), polyvinyl alcohol (PVA), citrate and sodium 
dodecyl sulfate (SDS) acting as capping and stabilizing 
agents to improve antibacterial activity11,15-20. The coating 
of a particular surface and its effects are based on the 
size and surface area12. The protective coating created 
by polymers such as PVP, PEG, PVA, citrate, and SDS 
promotes the interaction of the AgNP with the bacterial 
cells12. Although polymer coating does not directly increase 
bactericidal activity, it stabilizes the silver particles so 
that they do not autoaggregate to a larger biomass which 
hinders biological activity21. There are several studies that 
show the antibacterial effectiveness of AgNP with capping 
agents where the MIC was lower. For example, a study was 
conducted that showed AgNP stabilized with PVP and PVA 
showed lower MIC values than the original AgNP22. In yet 
another study, the effectiveness of PVP capped AgNP was 
more obvious than citrate or SDS capped AgNP19,23. Many 
studies have shown the antibacterial effectiveness of AgNP 
capped with several stabilizing agents and a silver ion (Ag+) 
concentration of 99.99%. However, there are currently no 
studies that investigate the antibacterial activity of AgNP 
with a silver ion (Ag+) concentration of 10% and coated 
with a polymer.

In the current study, we used three different nanoparticles 
that included Ag 99% +PVP ( AgPVP), Ag 10% + Polymer, 
and plain uncoated AgNP in order to determine the 
antibacterial effectiveness of reduced silver ion (Ag+) 
concentrations in coated silver nanoparticles relative 
to plain AgNP against E. coli. We characterized the 
3  nanoparticles by Atomic Force microscopy. Then, we 
assessed the antibacterial activity of all 3 AgNPs by using 
the MIC and growth curve assays. In addition, in order to 
understand the probable mechanisms of action of AgPVP, 
Ag  10%  +  Polymer, and AgNP, we performed electron 
microscopy and molecular studies using quantitative reverse 
transcriptase polymerase chain reaction (qRT-PCR). 

MATERIAL AND METHODS

Description and sources of AgPVP, Ag 10% + Polymer, 
and AgNP

Ag 10% + Polymer were purchased from Nanostructured 
& Amorphous Materials, Inc. (Houston, TX 77084, USA). 
The Ag 10 % + Polymer contained (90% w) Nanopowder, 
25 Particle size: <= 15 nm, Composition: 10% Silver + 90% 
synthetic Polymer, Stock #7023Hz, Lot #7023-123109. 
AgPVP and AgNP were purchased from US Research 
Nanomaterials, Inc. (Houston, TX, USA). The AgPVP 
contained 99.99% Ag, (20 nm w/~ 0.2 PVP, Stock #US1037, 
CAS #7440-22-4=. The AgNP contained Ag 99.99%, (20 
nm, metal basis), Stock #US 1038, CAS #7440-22-4 

Atomic force microscopy

Nanoparticle colloidal solutions were deposited on 
freshly cleaved mica and left to air dry. AFM measurements 
were performed in air using a Nanosurf Flex-Axiom 
(Nanosurf AG, Liestal, Switzerland) in dynamic mode using 
a commercially available ACST-A cantilever (AppNano, 
Mountain View, CA). After acquisition, all AFM images 
were line-flattened. Nanoparticle sizes were measured using 
the software provided by the manufacturer.

Bactericidal experiments

Escherichia coli clinical isolate Serotype 6 (ATCC® 

25922) was purchased from American Type Culture 
Collection (ATCC, VA USA) and used for the bacterial 
experiments. The bacteria were grown at 37 °C in Luria-
Bertoni (LB) broth (Difco, Sparks, MD, USA) overnight in 
an orbital shaker and the optical density (OD) was measured 
at 600 nm. The antibacterial activity of AgPVP, Ag 10% + 
Polymer, and AgNP were determined using the minimum 
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inhibitory concentration (MIC) assay. An in-depth 
evaluation of the antibacterial activity of Escherichia coli 
was done utilizing the growth curve assay. Morphological 
changes in Escherichia coli treated with AgPVP, Ag 10% 
+ Polymer, and AgNP were assessed by scanning electron 
microscopy (SEM). The evaluation of genes expression 
was performed using the quantitative real time reverse 
transcriptase polymerase chain reaction (qRT-PCR).

Determination of MIC

The MIC values of AgPVP, Ag 10% + Polymer, and 
AgNP were examined in quadruple wells of 96-well 
microtiter plates using the broth microdilution assay24. 
Escherichia coli cultures were serially diluted to a log 
phase of 1 x 106 CFU/mL and then exposed to two-fold 
decreasing concentrations of AgPVP, Ag 10% + Polymer, 
and AgNP starting at 1.25 mg/mL until 0.039 mg/mL. The 
serial dilutions were made in LB broth used as a diluent. 
All the plates consisted of 6 dilutions of the AgPVP, 
Ag  10%  +  Polymer, and AgNP dispersion solutions, 
1 negative control, (no AgPVP, Ag 10% + Polymer, AgNP 
or bacterial culture), and 1 positive control (bacterial 
culture without AgPVP, Ag 10% + Polymer, and AgNP). 
The 96‑well plates were sealed with a parafilm cover that 
offered some ventilation and incubated at 37 °C for 24 h.

The MIC was determined after incubation by the 
turbidity of the culture media in the wells. The concentration 
of the first well without turbidity was considered as the 
minimum inhibitory concentration. The inhibition of 
bacterial growth was measured by reading the Optical 
Density (OD) of the cultures at an absorbance at 600 nm 
with a TECAN Sunrise™ enzyme-linked immunoabsorbent 
assay (ELISA) plate reader (Tecan US, Inc. Morrisville, 
NC, USA). All of the experiments were repeated at least 
three times.

Quantitative growth analysis of Escherichia coli

Escherichia coli were quantified in sequence at times 
point 0, 4, 8, 16, and 24 h after exposure to AgPVP, Ag 10% 
+ Polymer, and AgNP. Twenty milliliters of bacterial culture 
containing 1 x 105 CFU/mL were exposed to 1.25, 0.621, 
0.312, or 0.156 mg/mL of AgPVP, Ag 10% + Polymer, and 
AgNP which were based on the MIC values of AgPVP, Ag 
10% + Polymer, and AgNP. The bacterial cultures were 
incubated at 37 °C with shaking at 300 rpm and the optical 
densities at 600 nm (OD 600) were obtained at 0, 4, 8, 16, 
and 24 h. Growth curves were generated by plotting OD vs. 
time points in increasing time increments using a graphing 
software (Sigma Plot, Systat Software, San Jose, CA). 

Electron microscopy

Scanning electron microscopy (SEM, Zeiss EVO 50, 
Carl Zeiss Meditech, Oberkochen, Germany) was used 
to observe the changes of Escherichia coli treated with 
AgPVP, Ag 10% + Polymer, and AgNP. Non-treated cells 
were used as a control. Bacterial cells (1 x 105 CFU/mL) 
were treated with 0.312 mg/mL of AgNP or 0.156 mg/mL  
of AgPVP or Ag 10% + Polymer separately for 16 h in 
an orbital shaker (180 rpm) at 37  °C. After treatment, 
the bacterial cells were harvested by centrifugation 
(14,000  x  g for 15 min.), washed in PBS, fixed in a 
mixture of 2.5% glutaraldehyde plus 1% formaldehyde 
for 24  h, followed by further fixation in 1% aqueous 
osmium tetroxide for 1 h. The pellets were then subjected 
to dehydration in various grades of ethanol (30, 50, 70, 
80, 90, 95 and 100%). After treatment with 100% ethanol, 
5 µL of each sample were placed on an SEM stub, air dried, 
and sputter coated with a gold-palladium alloy for SEM 
analysis (Zeiss EVO 50, Carl Zeiss Meditec, Oberkochen, 
Germany). 

Molecular studies using qRT-PCR 

The mRNA expression levels of E. coli genes associated 
with the citric acid (TCA) Cycle, amino acid metabolism, 
virulence, DNA repair and transcription were evaluated 
using qRT-PCR25,26. The primers used to amplify each gene 
and their origins are indicated in Table 127-40. Escherichia 
coli (1 x 105 CFU/mL) were treated with AgPVP, AgNP, 
and Ag 10% + Polymer and incubated in an orbital shaker 
at 37  °C, followed by complete RNA extraction using 
Ambion® RNA extraction kits (Thermo Fischer Scientific 
Inc., USA). The RNA was quantified by the Nanovue 
Plus spectrophotometer (GE Healthcare Life Sciences, 
Pittsburg, PA) at 260 nm/280 nm and cDNA synthesis was 
performed in a 40 µL reaction volume using the Applied 
Biosystems High Capacity cDNA Reverse transcriptase Kit 
(Life Technologies, Grand Island, NY). The expression of 
various genes such as those associated with the TCA Cycle 
(acef, frdB), amino acid metabolism (argC, metL, gadB), 
virulence (fliC, msbB), and DNA repair and transcription 
(mfD) were quantified by qRT-PCR using the SYBR® 

Select Mastermix (Life Technologies, Grand Island, NY) 
according to the manufacturer’s instructions. DNA samples 
were quantified and amplified in the Applied Biosystems® 

ViiA™ 7 real‑time PCR system (Life Technologies). The 
PCR process consisted of an initial denaturation step at 
95 °C for 2 min, followed by 40 cycles of 95 °C for 5 s, 
56 °C for 25 s and 72 °C for 30 s. The amplification efficacy 
of each primer set in relation to the endogenous control 
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gene (16sRNA) was between 95-98% (data not shown). 
Data generated from three independent experiments were 
used to determine the relative gene expression compared to 
non-treated samples by the 2 – ΔΔCt method25,26.

Statistical analyses 

Analyzed data were expressed as the mean ± standard 
deviation (SD) performed using the GraphPad Prism 
Version 4 software (GraphPad Software, Inc., La Jolla, 
CA). The statistical differences for the growth curve assays 
were determined by using two-way ANOVA. The fold 
change expression of genes was analyzed by the Student’s 
t-test. The differences were considered to be statistically 
significant when the P-values were < 0.05 or highly 
significant at P < 0.01.

RESULTS

Atomic Force Microscopy

AFM analysis of AgPVP, Ag 10% + Polymer, and 
AgNP is shown in Figure 1. The average radius of the 
Ag10%  +  polymer particles ranged from 23 to 27 nm, 
whereas for the AgPVP, it ranged from 30 to 33 nm and, for 
the AgNP, it ranged from 30 to 42 nm. Overall, it appeared 
that the polymer-coated nanoparticles (Figure 1B and C) 
were more spherical and uniformly dispersed, whereas the 
AgNP were irregular in shape and varied more in their size 
(Figure 1A). The polymer coating was more apparent on 
the Ag10% + polymer samples (Figure 1C). 

Antibacterial activity of AgPVP, Ag 10% + Polymer 
and AgNP

We tested the antibacterial activity of AgPVP, Ag 10% + 
Polymer, and AgNP. The MIC values for AgPVP, Ag 10% + 
Polymer, and AgNP were between 0.312 mg/mL and 0.625 

Table 1 - Primers used

Gene Forward 5’-3’ Reverse 5’-3’ Function

aceF CAGATGCCTCGCTTCAATAGT CAGCTCGATGATGCCTTTCT TCA Cycle27-30

frdB CACGGTAAGAAGGAGCGTATG TCTACTTTGCCCTGCTGAATG TCA Cycle31-33

metL CGACAGCGGCGATACTATTT GATCCACCAGCTCGGTAAAC Amino Acid Metabolism30

gadB CACGGTAAGAAGGAGCGTATG TCTACTTTGCCCTGCTGAATG Amino Acid Metabolism30,34

argC CCTGGCAACCAGACATAAGA CATATGCGGATGGCGATTTAC Amino Acid Metabolism30,35

fliC ACAGCCTCTCGCTGATCACTCAA GCGCTGTTAATACGCAAGCCAGAA Virulence30,36,37

msbB ATCGCTTTAACGCCGCCAAAGTTC TACGTTCTGGAAAGCAGAGCGACA Virulence30,38

mfD TCAGGAAGCTGGAAGGTAATG GGACCATCAAGGCGGTAAT DNA Repair and Transcription30,39,40

Figure 1 - Atomic force spectroscopy analysis Ag NP (A), 
AgPVP (B), Ag 10% + polymer (C)
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Figure 2 - Bacterial growth curve assay and quantitative analysis 
of E. coli exposed to various concentrations of AgNP, AgPVP, Ag 
10% + Polymer. A) Bacterial growth curve of E. coli exposed to 
AgNP using optical density measurements; B) Bacterial growth 
curve exposed to AgPVP using optical density measurements; 
C) Bacterial growth curve exposed to Ag 10% + Polymer using 
optical density measurements. Bacteria were grown in LB broth 
containing various concentrations of AgNP, AgPVP, and Ag 10% 
+ Polymer and all the cultures were incubated at 37°C with 
shaking at 180 rpm and the optical density measurements at 
600 nm (OD600) and CFU/mL counts were done at 0, 4, 8, 16, 
24 h. The results are means of three experiments with p < 0.05 
indicating significant differences, or p = 0.01 indicating highly 
significant differences. Error bars represent standard deviations 
determined from at least 3 duplicates

mg/mL for E. coli (Table 2). The growth curve assay of E. 
coli exposed to varying concentrations of AgNP exhibited 
inhibition in a time and concentration dependent manner. 
The concentration in which the inhibition was noticeable 
was at 0.312 mg/mL (Figure 2A). In contrast, E. coli 
bacterial cells treated with Ag 10% + Polymer and AgPVP 
demonstrated significant inhibition at a lower concentration 
of .156 mg/mL (Figure 2B and 2C). The comparison is 
exhibited by the reduction of bacterial numbers and growth 
as time progressed. 

EM analysis of Escherichia coli exposed to AgPVP, 
Ag 10% + Polymer and AgNP

The SEM images of healthy and treated bacterial 
cells are shown in Figures 3, 4 and 5. The SEM 
evaluation indicated that treatment with AgPVP induced 
a morphological change of E. coli (Figure 3C and D). 
EM data revealed that there was a disruption of the outer 
cell membrane by AgNP, and cell lysis of E. coli seen 
with bacterial cells treated with AgPVP (Figure 3C and 
D), AgNP (Figure 4C and D) and Ag 10% + Polymer 
(Figure 5C and D). The bacterial cells treated with Ag 
10% + Polymer showed dramatic cell lysis with extensive 
cellular debris (Figure 5C and D). 

Molecular studies of Escherichia coli exposed to 
AgPVP, Ag 10% + Polymer and AgNP

Gene expression associated with amino acid metabolism, 
TCA Cycle, virulence, DNA replication and repair were 
investigated to explore the antibacterial activity of AgPVP, 
Ag 10% + Polymer, and AgNP. Bacterial cells treated with 
AgNP showed a significant downregulation of the genes 
associated with the TCA cycle (aceF, gadB) and amino 
acid metabolism (metL, frdB, and argC) (Figure 6). There 
was also substantial upregulation of a gene associated 
with virulence (fliC and msbB). AgPVP treated bacteria 
cells similarly showed significant downregulation of 
genes related to the TCA cycle (aceF and gadB) and 
amino acid metabolism (metL, frdB and argC) (Figure 5). 
AgPVP treated bacteria had substantial upregulation of 
the virulence gene (msbB), as well as a gene associated 
with DNA repair and transcription (mfD) (Figure 6). 
Similar changes were seen in cells treated with Ag 10% + 
Polymer with downregulation of the TCA cycle (aceF and 
gadB) and amino acid metabolism (metL, frdB, and argC) 
(Figure 6). However, the upregulation of virulence (msbB) 
and DNA repair and transcription (mfD) was considerable 
in comparison to bacterial cells treated with AgNP and 
AgPVP (Figure 6).
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DISCUSSION

The usage of AgNP has gained popularity, however, 
the known cytotoxicity to human cells has warranted 
some hesitation in the use of AgNP as an alternative 
therapy1,2,26,41,42. However, some studies have shown that 
several strains of E. coli isolated from environmental 
samples such as horse dung, were highly susceptible to 
AgNP43.

The results of our study showed that the polymer coating 
of AgNP does not reduce their antibacterial activity against 
E. coli. More importantly, the reduction in the concentration 
of silver ions (Ag+) in the polymer functionalized (Ag 
10% + polymer) did not reduce the antibacterial efficacy. 
The findings reported here are in alignment with previous 
studies regarding the antibacterial activity of functionalized 
and coated AgNP which indicated an enhanced level of 
antibacterial activity and reduction in cytotoxicity13,44-48. 

There have been very few findings that are contrary to 
our research regarding the lack of antibacterial activity of 
capped or functionalized AgNPs. Jain et al.48 have shown 
that the removal of protein capping from AgNPs improved 
their antibacterial activity. Membrane damage and ROS 
generation studies implicated that protein-capped and 
bare silver nanoparticles exhibit a distinct mode of action. 
Apparently, protein shells prevented silver ions from 
generating ROS since the protein shell did not allow the 
AgNP to interact directly with the membranes48. However, 
the present study results indicated that uncapped and bare 
nanoparticles were less effective as compared to polymer-
coated silver nanoparticles. Our study validated that AgPVP 
and Ag 10% + Polymer were just as destructive against E. 
coli as AgNP, but with a two-fold reduction in the MIC 
value. Thus, the Ag 10% + Polymer had only 10% of the 
concentration of the silver, but it was twice as effective 
as the AgNP and similar in efficacy to the AgPVP. This 

Table 2 - Minimum inhibitory concentration (MIC)

Bacterium Nanoparticle MIC (mg/mL) MBC (mg/mL)

E. coli

AgNP 0.62-0.31 0.62

AgPVP 0.31-0.15 0.31

Ag 10% +polymer 0.31-0.15 0.31

Figure 3 - Evaluation of morphological changes in bacteria upon their interaction with AgPVP. A) Untreated bacterial cells at 15 K 
magnification; B) Untreated bacterial cells at 25 K magnification; C) Bacterial cells treated with AgPVP at 15 K magnification; 
D) Bacterial cells treated with AgPVP at 25 K magnification. 
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Figure 4 - Evaluation of morphological changes in bacteria upon their interaction with AgNP. A) Untreated bacterial cells at 15 K 
magnification; B) Untreated bacterial cells at 25 K magnification; C) Bacterial cells treated with AgNP at 15 K magnification; 
D) Bacterial cells treated with AgNP at 25 K magnification. 

Figure 5 - Evaluation of morphological changes in bacteria upon their interaction with Ag 10 % + Polymer. A) Untreated bacterial 
cells at 15 K magnification; B) Untreated bacterial cells at 25 K magnification; C) Bacterial cells treated with Ag 10% + Polymer at 
15 K magnification; D) Bacterial cells treated with Ag 10% + Polymer at 25 K magnification.
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could result in potentially beneficial silver formulations 
with enhanced antibacterial activity but lower silver ion 
concentrations.

Nanoparticles may have different levels of activity based 
on structural or chemical factors45,47. Studies have suggested 
that the agglomeration of AgNP may turn them into less 
toxic substances due to the smaller surface area to volume 
ratio in contact with the nanoparticles48-51. The aggregation 
of the AgNP also lessens the antibacterial activity, however, 
capping or polymer functionalization enhances antibacterial 
activity45,48. The size and shape of nanoparticles can 
also play a significant role in their antibacterial activity. 
Smaller nanoparticles have the capacity to pass through 
the cell membrane while larger nanoparticles do not1,2,50,52. 
Typically, the most effective nanoparticles are those that 
have a size equal or less than 30 nm52,53. In our study, the 
Ag 10% + polymer-coated NP had dimensions less than 
30 nm, whereas the AgPVP and plain uncoated AgNP were 
more than 30 nm in size. Additionally, the plain AgNP 
was irregular in shape, and not uniformly distributed with 
a mixture of small and large particles greater than 40 nm. 
By comparison, AgPVP and Ag 10% + polymer NP were 
circular in morphology and uniformly dispersed. This could 
explain why these NP were more effective than the plain 
uncoated AgNP. Interestingly, a previous study has shown 

that AgNP coated with PVP are more stable when the PVP 
concentration is at least 1% or higher54.

In this study, we focused on the antibacterial activity 
of polymer-coated and plain Ag nanoparticles. The 
plain silver nanoparticles had 99% Ag, and PVP coated 
nanoparticles had 99% Ag plus 1% polymer, whereas the 
Ag 10% + polymer had only 10% of silver and 90% of 
polymer. Although polymer coating does not directly affect 
bactericidal activity, the effect of various concentrations 
of polymer coating could influence the outcome. Here we 
evaluated commercially available coated nanoparticles with 
the view to choose the one with the best antibacterial activity 
at the lowest concentration of silver. The effect of varying 
the polymer concentration remains to be determined. 
However, the present study provides insightful evidence 
that coating of the AgNP did not affect their antibacterial 
activity. Moreover, the results of the present study may 
suggest that the coating of AgNP indeed offers stabilization 
of the AgNP and thus may have a beneficiary effect on 
improving the antibacterial activity of AgNP.

The structural changes of E. coli were explored after 
exposure to AgPVP, Ag 10% + Polymer, and AgNP 
using electron microscopy. The SEM images showed that 
E.  coli exposed to AgPVP and Ag 10% + Polymer had 
more bacteria with damaged cell membranes and lysis. 

Figure 6 - Gene expression studies in E. coli exposed to AgNP, AgPVP, Ag 10% + Polymer. A) represents gene expression of aceF, 
gadB, metL, frdB, argC, fliC, msbB, and mfD upon exposure to AgNP; B) represents gene expression of aceF, gadB, metL, frdB, argC, 
fliC, msbB, and mfD upon exposure to AgPVP, and Ag 10% + Polymer; C) represents gene expression of aceF, gadB, metL, frdB, 
argC, fliC, msbB, and mfD upon exposure to Ag 10% + Polymer. All values were expressed as fold change expressions compared 
to non-treated bacteria. Error bars represent standard deviations of the results determined with at least 3 biological replicates.
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E. coli treated with AgNP on the other hand displayed an 
irregularly shaped appearance with nanoparticles attached 
to the cell membrane and fewer damaged or lysed cells. 
This suggests that AgPVP and polymer functionalized 
NP may be more effective in penetrating the cell through 
damaged membranes disrupting several functions such 
as DNA replication, cell metabolism, cell division, etc. 
and cause expulsion of cellular content55,56. Silver ions 
have also been implicated in the inhibition of uptake of 
phosphorous, causing the release of mannitol, phosphate, 
and amino acids such as proline and glutamine outside the 
cell membrane through the production of reactive oxygen 
species (ROS)53,55,56.

We investigated the expression of many genes of E. coli. 
associated with the TCA cycle (aceF, gadB), amino acid 
metabolism (argC, metL, and gadB), virulence (fliC, msbB), 
and DNA repair and transcription (mfD) (Table 1). The 
genes associated with the TCA cycle (aceF) and amino acid 
metabolism (gadB) were significantly downregulated with 
the treatment of AgPVP, Ag 10% + Polymer, and AgNP. 
However, there was the upregulation of genes responsible 
for virulence and DNA replication and repair. There was 
significant upregulation in flic with a 3-fold difference in 
bacterial cells treated with AgNP, but flic upregulation was 
not significantly higher with bacterial cells treated with 
AgPVP and Ag 10% + Polymer. 

The upregulation of the genes required for virulence 
(msbB and flic) and DNA replication and transcription (mfdD) 
may be due to a stress related response of the bacteria to the 
damaging effect of the various nanoparticles. It appears that 
the Ag 10% + polymer NP had the highest upregulation of 
some of these genes suggesting that they caused more stress 
and damage to the bacteria than AgNP or AgPVP. 

CONCLUSION

Our results indicate that capping of AgNP with PVP or 
functionalization with a polymer did not interfere with their 
antibacterial activity. The MIC and bacterial growth assay 
substantiated evidence that the concentration of the AgNP 
required to inhibit E. coli was reduced with polymer-coated 
AgNP when treating E. coli. The physical changes seen by 
SEM analysis of E. coli treated with various AgNP suggest 
that the proposed mechanisms of action include silver ions 
(Ag+) causing cell membrane damage or possible disruption. 
Finally, the molecular studies provided evidence that E. coli 
bacterial cells treated with AgNP, AgPVP and Ag 10% + 
Polymer had reduced expression of various metabolism 
associated genes, whereas there was upregulation of 
some virulence and DNA repair associated genes. The 
upregulation was more significant in bacterial cells exposed 

to Ag10% + polymer. Further research on the toxicity and 
molecular mechanism of action will be needed to determine 
the in vivo antibacterial efficacy of polymer-coated AgNP 
with a lower silver ion (Ag+) concentration.

ACKNOWLEDGMENTS

This research was supported by grants from the National 
Science Foundation-CREST (HRD-1241701), NSF-HBCU-
UP (HRD-1135863) and National Institutes of Health-
MBRS-RISE (1R25GM106995-01). The department of 
Biological Sciences at ASU is acknowledged for providing 
the physical laboratory space to conduct the experiments.

REFERENCES

	 1.	 Monzillo V, Dalla Valle C, Corbella M, Percivalle E, Sassera D, 

Scevola D, et al. Antibacterial activity and cytotoxic effect of 

SIAB-GV3. New Microbiol. 2014;37:535-41.

	 2.	 Kurek A, Grudniak AM, Kraczkiewicz-Dowjat A, Wolska KI. 

New antibacterial therapeutics and strategies. Pol J Microbiol. 

2011;60:3-12.

	 3.	 Horie M, Kato H, Endoh S, Fujita K, Komaba LK, Nishio K, 

et al. Cellular effects of industrial metal nanoparticles and 

hydrophilic carbon black dispersion. J Toxicol Sci. 2014; 

39:897-907.

	 4.	 Singh K, Panghal M, Kadyan S, Chaudhary U, Yadav JP. 

Green silver nanoparticles of Phyllanthus amarus: as an 

antibacterial agent against multi drug resistant clinical isolates 

of Pseudomonas aeruginosa. J Nanobiotechnol. 2014;12:40.

	 5.	 Fan W, Wu D, Tay FR, Ma T, Wu Y, Fan B. Effects of adsorbed 

and templated nanosilver in mesoporous calcium-silicate 

nanoparticles on inhibition of bacteria colonization of dentin. 

Int J Nanomed. 2014;9:5217-30.

	 6.	 Söderstjerna E, Bauer P, Cedervall T, Abdshill H, Johansson F, 

Johansson UE. Silver and gold nanoparticles exposure to in 

vitro cultured retina - studies on nanoparticle internalization, 

apoptosis, oxidative stress, glial- and microglial activity. PLoS 

One. 2014;9:e105359.

	 7.	 Han JW, Gurunathan S, Jeong JK, Choi YJ, Kwon DN, Park JK, 

et al. Oxidative stress mediated cytotoxicity of biologically 

synthesized silver nanoparticles in human lung epithelial 

adenocarcinoma cell line. Nanoscale Res Lett. 2014;9:459.

	 8.	 Prestes MA, Ribas CA, Ribas Filho JM, Moreira LB, Boldt AB, 

Brustolin EV, et al. Wound healing using ionic silver dressing 

and nanocrystalline silver dressing in rats. Acta Cir Bras. 

2012;27:761-7.

	 9.	 Kose N, Otuzbir A, Pekşen C, Kiremitçi A, Doğan A. A silver ion-

oped calcium phosphate-based ceramic nanopowder-coated 

prosthesis increased infection resistance. Clin Orthop Relat 

Res. 2013;471:2532-9.



Ashmore et al.

Rev Inst Med Trop São Paulo. 2018;60:e18Page 10 of 11

	10.	 Swathy JR, Sankar MU, Chaudhary A, Aigal S, Anshup, Pradeep 

T. Antimicrobial silver: an unprecedented anion effect. Sci Rep. 

2014;4:7161.

	11.	 Bryaskova R, Pencheva D, Nikolov S, Kantardjiev T. Synthesis 

and comparative study on the antimicrobial activity of hybrid 

materials based on silver nanoparticles (AgNps) stabilized by 

polyvinylpyrrolidone (PVP). J Chem Biol. 2011;4:185-91.

	12.	 Nymark P, Catalán J, Suhonen S, Järventaus H, Birkedal R, Clausen 

PA, et al. Genotoxicity of polyvinylpyrrolidone-coated silver 

nanoparticles in BEAS 2B cells. Toxicology. 2013;313:38-48.

	13.	 Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, 

et al. Silver nanoparticles as potential antibacterial agents. 

Molecules. 2015;20:8856-74.

	14.	 Castiglioni S, Caspani C, Cazzaniga A, Maier JA. Short- and long-

term effects of silver nanoparticles on human microvascular 

endothelial cells. World J Biol Chem. 2014;5:457-64.

	15.	 Hamilton RF, Buckingham S, Holian A. The effect of size on 

Ag nanosphere toxicity in macrophage cell models and lung 

epithelial cell lines is dependent on particle dissolution. Int J 

Mol Sci. 2014;15:6815-30.

	16.	 Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL. 

Size-dependent cytotoxicity of silver nanoparticles in human 

lung cells: the role of cellular uptake, agglomeration and Ag 

release. Part Fibre Toxicol. 2014;11:11.

	17.	 Ivask A, Kurvet I, Kasemets K, Blinova I, Aruoja V, Suppi S, et 

al. Size-dependent toxicity of silver nanoparticles to bacteria, 

yeast, algae, crustaceans and mammalian cells in vitro. PLoS 

One. 2014;9:e102108.

	18.	 Van Phu D, Quoc le A, Duy NN, Lan NT, Du BD, Luan le Q, 

et al. Study on antibacterial activity of silver nanoparticles 

synthesized by gamma irradiation method using different 

stabilizers. Nanoscale Res Lett. 2014;9:162.

	19.	 Kora AJ, Rastogi L. Enhancement of antibacterial activity of 

capped silver nanoparticles in combination with antibiotics, 

on model gram-negative and gram-positive bacteria. Bioinorg 

Chem Appl. 2013; 2013:871097.

	20.	 Gnanadhas DP, Ben Thomas M, Thomas R, Raichur AM, 

Chakravortty D. Interaction of silver nanoparticles with serum 

proteins affects their antimicrobial activity in vivo. Antimicrob 

Agents Chemother. 2013;57:4945-55.

	21.	 Lin S, Cheng Y, Liu J, Wiesner MR. Polymeric coatings on silver 

nanoparticles hinder autoaggregation but enhance attachment 

to uncoated surfaces. Langmuir. 2012;28:4178-86

	22.	 Santos CA, Jozala AF, Pessoa Jr A, Seckler MM. Antimicrobial 

effectiveness of silver nanoparticles co-stabilized by the 

bioactive copolymer pluronic F68. J Nanobiotechnol. 

2012;10:43.

	23.	 Chen N, Song ZM, Tang H, Xi WS, Cao A, Liu Y, et al. 

Toxicological effects of Caco-2 cells following short-term 

and long-term exposure to Ag nanoparticles. Int J Mol Sci. 

2016;17:974.

	24.	 Soehnlen MK, Kunze ME, Karunathilake KE, Henwood BM, 

Kariyawasam S, Wolfgang DR, et al. In vitro antimicrobial 

inhibition of Mycoplasma bovis isolates submitted to the 

Pennsylvania Animal Diagnostic Laboratory using flow 

cytometry and a broth microdilution method. J Vet Diagn 

Invest. 2011;23:547-51.

	25.	 Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the 

comparative C(T) method. Nat Protoc. 2008;3:1101-8.

	26.	 Chaudhari AA, Ashmore D, Nath SD, Kate K, Dennis V, Singh 

SR, et al. A novel covalent approach to bio-conjugate silver 

coated single walled carbon nanotubes with antimicrobial 

peptide. J. Nanobiotechnol. 2016;14:58

	27.	 Rodriguez A, Martinez JA, Flores N, Escalante, A, Gosset 

G, Bolivar F. Engineering Escherichia coli to overproduce 

aromatic amino acids and derived compounds. Microb Cell 

Fact. 2014;13:126.

	28.	 Schutte KM, Fisher DJ, Burdick MD, Mehrad B, Mathers AJ, 

Mann BJ, et al. Escherichia coli Pyruvate Dehydrogenase 

Complex is an important component of CXCL10-mediated 

antimicrobial activity. Infect Immun. 2015;84:320-8.

	29.	 Cronan JE. Biotin and lipoic acid: synthesis, attachment and 

regulation. EcoSal Plus. 2008;3.

	30.	 Berlyn MK. Linkage map of Escherichia coli K-12, edition 10: 

the traditional map. Microbiol Mol Biol Rev.1998;62:814-984.

	31.	 Fung DK, Lau WY, Chan WT, Yan A. Copper efflux is induced 

during anaerobic amino acid limitation in Escherichia coli to 

protect iron-sulfur cluster enzymes and biogenesis. J Bacteriol. 

2013;195:4556-68.

	32.	 Cole ST, Grundström T, Jaurin B, Robinson JJ, Weiner JH. 

Location and nucleotide sequence of frdB, the gene coding or 

the iron-sulphur protein subunit of the fumarate reductase of 

Escherichia coli. Eur J Biochem. 1982;126:211-6.

	33.	 Cheng VW, Tran QM, Boroumand N, Rothery RA, Maklashina 

E, Cecchini G, et al. A conserved lysine residue controls iron-

sulfur cluster redox chemistry in Escherichia coli fumarate 

reductase. Biochim Biophys Acta. 2013;1827:1141–7.

	34.	 Vejborg RM, de Evgrafov MR, Phan MD, Totsika M, Schembri 

MA, Hancock V. Identification of genes important for growth 

of asymptomatic bacteriuria Escherichia coli in urine. Infect 

Immun. 2012;80:3179-88.

	35.	 Tchaptchet S, Fan TJ, Goeser L, Schoenborn A, Gulati AS, Sartor 

RB, et al. Inflammation-induced acid tolerance genes gadAB 

in luminal commensal Escherichia coli attenuate experimental 

colitis. Infect Immun. 2013;81:3662-71.

	36.	 Beutin L, Delannoy S, Fach P. Genetic diversity of the fliC genes 

encoding the flagellar antigen H19 of Escherichia coli and 

application to the specific identification of enterohemorrhagic 

E. coli O121:H19. Appl Environ Microbiol. 2015;81:4224-30

	37.	 He Y, Xu T, Fossheim LE, Zhang XH. FliC, a flagellin protein, 

is essential for the growth and virulence of fish pathogen 

Edwardsiella tarda. PLoS One. 2012;7:e45070.



Rev Inst Med Trop São Paulo. 2018;60:e18

Evaluation of E. coli inhibition by plain and polymer-coated silver nanoparticles

Page 11 of 11

	38.	 Somerville JE Jr, Cassiano L, Darveau RP. Escherichia coli msbB 

gene as a virulence factor and a therapeutic target. Infect 

Immun. 1999;67:6583-90.

	39.	 Adebali O, Chiou YY, Hu J, Sancar A, Selby CP. Genome-wide 

transcription-coupled repair in Escherichia coli is mediated by 

the Mfd translocase. Proc Natl Acad Sci. 2017;114:E2116-25.

	40.	 Schalow BJ, Courcelle CT, Courcelle J. Mfd is required for rapid 

recovery of transcription following UV-induced DNA damage 

but not oxidative DNA damage in Escherichia coli. J Bacteriol. 

2012;194:2637-45

	41.	 Guzman M, Dille J, Godet S. Synthesis and antibacterial activity 

of silver nanoparticles against gram-positive and gram-negative 

bacteria. Nanomedicine. 2012;8:37-45.

	42.	 El-Zahry MR, Mahmoud A, Refaat IH, Mohamed HA, Bohlmann 

H, Lendl B. Antibacterial effect of various shapes of silver 

nanoparticles monitored by SERS. Talanta. 2015;138:183-9.

	43.	 Wolny-Koladka KA, Malina D. Toxicity assessment of silver 

nanoparticles against Escherichia coli strains isolated from 

horse dung. IET Micro Nano Lett. 2017;12:772-6

	44.	 Tartanson MA, Soussan L, Rivallin M, Pecastaings S, Chis CV, 

Penaranda D, et al. Dynamic mechanisms of the bactericidal 

action of an Al2O3-TiO2-Ag granular material on an 

Escherichia coli strain. Appl Environ Microbiol. 2015;81:7135-

42.

	45.	 Singh P, Kim YJ, Singh H, Wang C, Hwang KH, Farh Mel-A, et al. 

Biosynthesis, characterization, and antimicrobial applications 

of silver nanoparticles. Int J Nanomed. 2015;10:2567-77.

	46.	 Ortego L, Gonzalo-Asensio J, Laguna A, Villacampa MD, Gimeno 

MC. (Aminophosphane)gold(I) and silver(I) complexes as 

antibacterial agents. J Inorg Biochem. 2015;146:19-27.

	47.	 Upadhyay J, Kumar A, Gogoi B, Buragohain AK. Antibacterial 

and hemolysis activity of polypyrrole nanotubes decorated with 

silver nanoparticles by an in-situ reduction process. Mater Sci 

Eng C Mater Biol Appl. 2015;54:8-13.

	48.	 Jain N, Bhargava A, Rathi M, Dilip RV, Panwar J. Removal of protein 

capping enhances the antibacterial efficiency of biosynthesized 

silver nanoparticles. PLoS One. 2015;10:e0134337.

	49.	 Vardanyan Z, Gevorkyan V, Ananyan M, Vardapetyan H, 

Trchounian A. Effects of various heavy metal nanoparticles on 

Enterococcus hirae and Escherichia coli growth and proton-

coupled membrane transport. J Nanobiotechnol. 2015;13:69.

	50.	 Hajipour MJ, Fromm KM, Ashkarran AA, Jimenez de Aberasturi 

D, de Larramendi IR, Rojo T, et al. Antibacterial properties of 

nanoparticles. Trends Biotechnol. 2012;30:499-511.

	51.	 Seil JT, Webster TJ. Antimicrobial applications of nanotechnology: 

methods and literature. Int J Nanomed. 2012;7:2767-81.

	52.	 Pal S, Tak YK, Song JM. Does the antibacterial activity of silver 

nanoparticles depend on the shape of the nanoparticle? A study 

of the gram-negative bacterium Escherichia coli. Appl Environ 

Microbiol. 2007;73:1712-20.

	53.	 Rai MK , Deshmukh SD , Ingle AP , Gade AK. Silver 

nanoparticles: the powerful nanoweapon against multidrug-

resistant bacteria. J Appl Microbiol. 2012;112:841-52.

	54. 	Malina D, Sobczak-Kupiec A, Wzorek Z, Kowalski Z. Silver 

nanoparticles synthesis with different concentrations 

of polyvinylpyrrolidone. Dig J Nanomater Biostruct. 

2012;7:1527-34

	55.	 Mijnendonckx K, Leys N, Mahillon J, Silver S, Van Houdt R. 

Antimicrobial silver: uses, toxicity and potential for resistance. 

Biometals. 2013;26:609-21.

	56.	 Graves JL Jr, Tajkarimi M, Cunningham Q, Campbell A, Nonga 

H, Harrison SH, et al. Rapid evolution of silver nanoparticle 

resistance in Escherichia coli. Front Genet. 2015;6:42. 


	ABSTRACT
	INTRODUCTION
	MATERIAL AND METHODS
	Description and sources of AgPVP, Ag 10% + Polymer, and AgNP
	Atomic force microscopy
	Bactericidal experiments
	Determination of MIC
	Quantitative growth analysis of Escherichia coli
	Electron microscopy
	Molecular studies using qRT-PCR 
	Statistical analyses 

	RESULTS
	Atomic Force Microscopy
	Antibacterial activity of AgPVP, Ag 10% + Polymer and AgNP
	EM analysis of Escherichia coli exposed to AgPVP, Ag 10% + Polymerand AgNP
	Molecular studies of Escherichia coli exposed to AgPVP, Ag 10% + Polymer and AgNP

	DISCUSSION
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

