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ABSTRACT 

This study evaluated the antifungal activity and cytotoxicity profile of the ellagitannin 

punicalagin, a compound extracted from the L. pacari A.St.-Hil (Lythraceae) leaf, against 

Cryptococcus neoformans species complex. Minimum inhibitory concentrations (MIC) were 

checked using the broth microdilution method. Minimum fungicidal concentrations (MFC) 

and time of death were used to confirm the antifungal activity of the compound. The in vitro 

cytotoxicity of punicalagin was tested in BALB/c3T3 fibroblasts and A549 human lung cancer 

cell line, while the hemolytic potential was tested on sheep erythrocytes. The morphological 

changes induced in yeast strains by the presence of punicalagin were also analyzed. Tested 

on eight isolates of the C. neoformans complex punicalagin showed MIC of 0.5 to 4.0 μg/mL 

and MFC> 256 μg/mL. Punicalagin also demonstrated a good growth inhibitory activity in 

time-kill curves, but it was not able to achieve a statistically significant reduction of fungal 

growth suggesting a fungistatic effect of the compound. In vitro cytotoxicity studies using the 

two cell lines showed that punicalagin has low activity on these cells and no activity on sheep 

erythrocytes. Morphological changes were seen in the yeasts strains studied when treated 

with punicalagin. Therefore, punicalagin is a potential antifungal for important pathogenic 

yeasts and presents a low cytotoxicity profile associated with no hemolytic effects. 
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Cryptococcus neoformans species Complex 

INTRODUCTION

Punicalagin extracted from Lafoensia pacari A. St.-Hil (Lythraceae) is a 
compound that has medicinal properties1. Lafoensia pacari is a plant known in Brazil 
as dedaleiro ou pacari. In folk medicine, it is used as wound healing, antipyretic, 
antidiarrheal, and in the treatment of gastritis, ulcers and cancer2,3. The ellagitannin 
punicalagin has shown activity against Cryptococcus neoformans species complex, 
dermatophytes and some species of Candida4-7. 

Cryptococcosis is a severe systemic mycosis, with worldwide distribution8, and 
its prevalence is estimated to be more than one million cases with about 650,000 
deaths annually9. Infections caused by Cryptococcus gattii have a protracted 
course of illness10, and it is well known that C. gattii isolates are significantly less 
susceptible to azoles than the isolates of C. neoformans11,12. This fungal infection 
is mainly associated with resistance to available antifungal drugs13. Therefore, the 
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development of new products showing broad spectrum of 
action against cryptococcal species with low toxicity are 
extremely necessary.

Thus, the present study aims to evaluate the antifungal 
activity andthe cytotoxicity of punicalagin, a phenolic 
compound extracted from L. pacari leaf against 
C.  neoformans species complex, as well morphological 
change analyses induced in yeast strains by the presence 
of punicalagin.

MATERIALS AND METHODS

Leaves from L. pacari A. St.-Hil (Lythraceae) were 
submitted to ultrasound extraction with acetone:water 
(70:30) and punicalagin was characterized by HPLC/UV  
and ESI-TOF MS, 1D and 2D NMR spectroscopic 
evaluations as described by Carneiro et al.1. 

The yeast strains used in this study were: C. neoformans 
ATCC 28957, C. gattii ATCC 24065, six clinical isolates 
of C. neoformans species complex obtained from patients 
with meningitis in a tertiary hospital of Goiania, Goias 
State, Brazil (three C. gattii - L1, L9, and L20 and three 
Cryptococcus neoformans - L3, L29, and L30). These 
isolates were collected in a previous study approved by the 
Bioethics Committee of Hospital de Doenças Tropicais de 
Goias (protocol 027/07). 

Microdilution broth assay

The in vitro activity of punicalagin was measured by 
means of the microdilution broth method, according to the 
Clinical and Laboratory Standards Institute (CLSI) guidelines 
M27-A3 (CLSI 201214) and M27- S4 (CLSI 201215) for 
yeasts. Serial twofold dilutions of the pure compound were 
prepared in 96-well microplates. The minimal inhibitory 
concentration (MIC) was defined as the lowest concentration 
that resulted in the total inhibition growth analyzed by visual 
inspection, giving a numerical score in comparison with the 
growth present in the control (drug-free) sample. 

The minimal fungicidal concentration (MFC) was 
determined by an inoculum of 10 µL from each well 
containing the MIC and up to 4 × MIC seeded in petri 
plates containing Sabouraud dextrose agar (SDA), incubated 
for 72 h at 35 °C. The MFC was defined as the lowest 
concentration of the compound that resulted in growth of 
less than two colonies representing the death of > 99% of 
the original inoculum. Fluconazole was used as the control. 

Time kill assay 

Cell growth and death rates of the yeast strains studied 

were analyzed according to the modified protocols of 
Klepser  et  al.16 and Silva  et  al.17. Dilutions of 1/10 
in RPMI‑1640 (Sigma Chemical Co., St. Louis, MO, 
USA) of broth suspension containing approximately 
1 to 5 × 106 CFU/mL were prepared in order to obtain the 
initial concentration of 1 to 5 × 105 CFU/mL. Punicalagin 
was added to this suspension solutions to obtain a final 
concentration of ½ MIC (2 µg/mL), MIC (4 µg/mL), and 
2 × MIC (8 µg/mL) of this compound. Test solutions were 
placed on a shaker and incubated at 35 °C. At predetermined 
time points (0, 6, 12, 24, 48 and 72 h), following the 
introduction of the test isolate, 100 μL of samples were 
removed from each test solution. Tenfold serial dilutions 
(10-2 to 10-5 on RPMI-1640 broth) were performed using 
samples and aliquots of 10 μL of each dilution, plated in 
SDA and the number of CFU on each plate was determined. 
Kill curve assays were run in duplicate.

Cytotoxicity assays

Cell cultures
The BALB/c 3T3 A31 fibroblasts and A549 human 

lung cells were cultured in DMEM and Ham’s F12 
nutrient mixture, respectively, supplemented with heat-
inactivated FBS (10%, v/v), HEPES (4.5 mM), sodium 
bicarbonate (0.17 M), L-glutamine (2 mM), in a humidified 
atmosphere of 5% CO

2
 in air at 37 °C. When cells reached 

approximately 70% confluence, they were harvested with a 
trypsin (0.025%)/EDTA (0.02%) solution. Cell viability was 
tested using the TC20TM automated cell counter (Hercules, 
CA, USA), according to manufacturer’s instructions, and 
a value > 90% was considered satisfactory to conduct the 
assays.

3T3 neutral red uptake (NRU) assay
The 3T3 NRU assay was performed according to the 

standard protocol of Borenfreund and Puerner18, modified 
by ICCVAM19. In brief, 3T3 fibroblasts cells containing 
3 × 104 cells/well were treated with nine different 
concentrations of punicalagin ranging of 0.78-200 µg/mL  
in complete medium for 48 h. Amphotericin B in 
concentrations ranging from 78 to 200 µg/mL) was used 
as reference drug. After incubation, the supernatant was 
removed and the cells were washed with PBS followed 
by addition of neutral red (0.25 mg/mL) and incubated for 
3 h. After that, 100 µL of a developing solution (50 ethanol: 
1 acetic acid: 49 ultrapure water) were added to all wells, 
and shaken for 20 min at 45 g. Absorbance was measured 
at 550 nm in a spectrophotometer (Thermo Scientific 
Multiskans Spectrum, Boston, MA, USA). A concentration-
response curve was obtained to determine the concentration 
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of punicalagin or amphotericin B that inhibited cell growth 
by 50% compared to the untreated group (IC

50
). 

MTT assay of A549 human lung cells
Cytotoxicity analysis in A549 cells was performed using 

the MTT reduction test, adapted from Mosmann20. Briefly, 
A549 cells (1 x 105 cells/mL) were seeded in 96-well plates 
overnight and then treated with nine different concentrations 
of punicalagin (0.78-200 µg/mL) in complete medium 
for 45 h. Amphotericin B (0.78-200 µg/mL) was used as 
reference drug. Subsequently 10 μL of MTT (5 mg/mL) 
were added to each well, incubated for 3 h, the supernatant 
was removed and 100 μL of DMSO was added to each well. 
Absorbance was measured at 560 nm. Cell viability was 
expressed as a percentage of the control IC

50
 and selectivity 

index (SI ) values were determined.

Hemolytic assay
Hemolytic assays were performed according to 

He et al.21. Briefly, 100 µL aliquots of sheep erythrocytes/
PBS 10% were added to 100 µL of a two-fold dilution 
series of punicalagin in concentrations ranging from 256 to  
1 μg/mL or of amphotericin B ranging from 8 to 0.031 μg/mL  
in the same buffer and placed in Eppendorf tubes. The tubes 
were incubated for 30 min at 37 °C, and centrifuged for 
5 min at 4500 g. From the supernatant fluid, 150 μLwere 
transferred to a flat bottom microtiter plate and absorbance 
was measured using a spectrophotometer. Total hemolysis 
was achieved with a 1% Triton X-100 solution. 

Scanning electron microscopy 

Scanning electron microscopy (SEM) analysis 
was performed according to Faganello  et  al.22 with 
some modifications. The isolates were cultured in 
SDA containing a corresponding concentration to MIC  
(4 µg/mL) of punicalagin and incubated at 30 °C. Small 
blocks of each fungal sample were withdrawn and fixed 
in 2% glutaraldehyde and 2% paraformaldehyde, in 0.1 M 
sodium cacodylate buffer with 3% sucrose at pH 7.2 and 
kept overnight at 4 °C.

Samples were washed in the same buffer four times, 
dehydrated in ethyl alcohol and dried in a critical CO

2
 point 

(Autosamdri®, 815, Series A) covered with gold (Denton 
Vacuum, Desk V) and analyzed in Jeol, JSM-6610 Scanning 
electron microscopy. 

Statistical analysis

Data were expressed as mean or mean ± standard 
deviation (SD) in cytotoxicity assays. The intergroup 

variation was measured by one-way analysis of variance 
(ANOVA) followed by Bonferroni’s test using the 
GraphPad Prism 5.01 software (GraphPad Inc., San 
Diego, CA, USA). Statistical significance was established 
as p<0.05. All experiments were performed in three 
independent assays.

RESULTS

Broth microdilution assay

Punicalagin showed antifungal activity on species of 
the C. neoformans complex with a MIC range of 0.5 to 
4.0 μg/mL and MFC> 256 μg/mL for all isolates. At the 
concentration of 0.5 μg/mL the compound inhibited 37% 
of the C. neoformans species complex isolates. Fluconazole 
showed a MIC range of 0.5 to 8.0 and a MFC range of 
1 to 64 μg/mL.

Time kill curve

The time-kill curve (Figures 1A and 1B) showed 
reduction in the number of CFU/mL of the C. neoformans 
complex cells treated with punicalagin at concentrations 
corresponding to the MIC of 4 µg/mL and 2 × MIC  
(8 µg/mL). The major reduction was observed with 
C. neoformans ATCC 28957 at a concentration corresponding 
to 2 × MIC at 12 h. The difference was not statistically 
significant between treated and non-treated cells. 
Amphotericin B had maximum fungicidal activity after 
12 h of incubation at concentrations equivalent to 1 μg/mL 
for C. gattii ATCC 24065 and C. neoformans ATCC 28957. 

Citotoxicity using BALB/C 3T3 cells and A 549 cells 

NRU analysis showed IC50 of 58.7 μg/mL for 
punicalagin and < 0.78 μg/mL for amphotericin B. Increased 
inhibition of 3T3 cell growth was observed with enhanced 
concentration of punicalagin as shown in Figure 2A.

MTT analysis on alveolar epithelial cells showed that the 
concentration of punicalagin that caused the death of 50% of 
these cells was > 200 μg/mL, while for amphotericin B, used 
as a cytotoxicity control, the IC was 59.6 μg/mL. Effects of 
different punicalagin concentrations after 48 hours exposure 
are shown in Figure 2B.

Hemolysis of sheep erythrocytes

The hemolytic effect of punicalagin was tested on sheep 
erythrocytes and the concentration of 256 μg/mL produced 
hemolysis in 2.46% of cells, while for amphotericin B, 
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hemolysis of 0.87% of erythrocyte cells was found at 
concentration of 8 μg/mL. 

Scanning electron microscopy

This analysis demonstrated that the untreated cells of 
C. neoformans ATCC 28957 (Figure 3A) and C. gattii 24065 
(Figure 3C) showed normal cell morphology with intact 
smooth wall and spherical bodies present in large amounts. 
After exposure to punicalagin, the yeasts had rough walls 
and were shrivel as shown in Figures 3B and 3D.

DISCUSSION

Several antifungal agents have been used for the 
prophylaxis and treatment of Cryptococcus neoformans 

species complex infections23. Current pharmacological 
treatments are effective, but intrinsically resistant species 
are emerging rapidly. In addition, the high cost of treatment 
and host-associated cytotoxicity makes it necessary to 
search for new microbial compounds. The activity of 
punicalagin has been studied against some Candida species 
and against C. neoformans4,6,7,24 but there are no reports 
described for C. gattii. Interestingly, the isolate C. gattii 
L20 showed high MIC value to fluconazole, with low MIC 
value for punicalagin. Fluconazole is the drug of choice for 
the maintenance therapy of cryptococcal disease25.

Moreover, our findings have shown that punicalagin 
promotes fungistatic effects. CFM was >256 for all isolates 
and although the kill curve showed reduction in the numbers 
of CFU of yeast cells, this difference was not statistically 
significant in treated and untreated cells for all yeasts 

Figure 1 - Growth curve of C. gattii ATCC 24065 (A) and C. neoformans ATCC 28957 (B) without treatment and treated with 
punicalagin at the values corresponding to ½ of the minimum inhibitory concentration - MIC (0.25), MIC (0.5 μg/mL), and 2 × MIC 
(1 μg/mL), and amphotericin B in MIC (0.5 μg/mL) after 6, 12, 24, 48, and 72 h of incubation (A and B). For C. gattii ATCC 24065, 
(ANOVA p=0.481) and for C. neoformans ATCC 28957, (ANOVA p=0.461)

Figure 2 - A) Viability of BALB/c3T3 cells exposed with different concentrations of punicalagin and amphotericin B (both at 
0.78‑200 μg/mL) for 48 h using 3T3 neutral red uptake (NRU) assay; B) Cell viability curve of human alveolar epithelium A549 at 
different concentrations of punicalagin and amphotericin B (both at 0.78-200 μg/mL) for 48 h using the MTT assay
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studied (ANOVA). Our results are similar to those found 
by Endo et al.6, who found a small reduction of CFU in 
the presence of punicalagin. Fungistatic effects of naturally 
occurring tannins against yeasts were reported by Baba-
Moussa et al.26 and Morey et al.27. The extract of Terminalia 
avicennioides stem bark was fungicidal on Epidermophyton 
floccosum, Microsporum gypseum and Trichophyton 
mentagrophytes, but only fungistatic on Trichophyton rubrum 
and Candida albicans (Baba-Moussa et al.26). Fraction of 
Stryphnodendron adstringens exhibited a fungistatic effect 
with the minimum inhibitory concentration ranging from 0.5 
to 8.0 μg/mL in Candida tropicalis (Morey et al.27). 

In this study, we found that punicalagin has low toxic 
activity on human lung carcinoma A549 cells, 3T3 fibroblast 
cells, and no hemolytic potential to animal cells. The 
concentration of punicalagin with 50% cytotoxicity (IC50) 
on BALB/c 3T3 cells was 58.7 µg/mL, showing that this 
compound was 14.6 times greater than their MIC (4 µg/mL) 
against yeasts. Similar results were found with carcinoma 
cells, where IC50 was 200 µg/mL, therefore, 50-fold larger 
than the MIC. Similar data to this study confirm the results 
of low in vitro toxicity observed for punicalagin. The low 
cytotoxic activity of punicalagin was verified by Endo et al.6  

on Vero and macrophages J774G8 cell monolayers and 
Foss et al.5 on Vero cells.

We have also demonstrated that punicalagin exhibited 
low toxicity on sheep erythrocytes cells. Lysis of sheep 
erythrocytes cells is easily obtained by measuring the 
release of hemoglobin, constituting a good tool for toxicity 
studies. Determination of hemolysis activity is quick, 
reproducible, and inexpensive28.

The reduced number of cells with rough and shrivel 

yeasts in the presence of punicalagin indicated that the 
compound caused damage to the cell structure. These 
alterations could represent the first step towards the 
discovery of new drugs. Compounds that inhibit microbial 
growth and cause morphological changes can be proposed 
as potential antifungal agents. 

Based on the data obtained, we believed that punicalagin 
has antifungal potential on important pathogenic yeasts 
and presents a low cytotoxicity profile associated with 
no hemolytic potential to animal cells. The excellence of 
punicalagin suggests that it may be a promising drug against 
yeasts and invites further research.
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