

## Virtual simulation in nursing education in Latin America and the Caribbean: A bibliometric study\*

Agostinho A. C. Araújo<sup>1,2</sup>

 <https://orcid.org/0000-0003-0996-0385>

Lucas Gardim<sup>1,3</sup>

 <https://orcid.org/0000-0002-5949-1663>

Sara Soares dos Santos<sup>1</sup>

 <https://orcid.org/0000-0003-0712-0200>

Ítalo Rodolfo Silva<sup>4</sup>

 <https://orcid.org/0000-0002-2882-1877>

Manoel Carlos Neri da Silva<sup>5</sup>

 <https://orcid.org/0000-0002-3923-7473>

Simone de Godoy<sup>1</sup>

 <https://orcid.org/0000-0003-0020-7645>

Isabel Amélia Costa Mendes<sup>1,2</sup>

 <https://orcid.org/0000-0002-0704-4319>

**Highlights:** (1) Virtual simulation connects theory and practice in nursing education. (2) Only Brazil, Chile, Colombia, and Cuba conducted research on the subject. (3) Brazilian journals lead scientific production on virtual simulation. (4) Scientific production on the subject has increased.

**Objective:** to examine the characteristics of scientific production in Latin America and the Caribbean regarding virtual simulation in nursing education. **Methods:** a bibliometric study conducted in five stages: research design, compiling the bibliometric data, analysis, visualization, and interpretation; and based on the recommendations of the Preferred Reporting Items for Bibliometric Analysis (PRIBA). The search was conducted in the Latin American and Caribbean Health Sciences Literature (LILACS). VOSviewer version 1.6.20 was used for bibliometric analysis. Bradford's and Zipf's Laws were applied to interpret the data, considering the temporal dynamics of publications, an analytical approach to the structure of the selected studies and their repercussions in virtual simulation in nursing education in Latin America and the Caribbean. **Results:** 579 studies were identified, of which 46 were included in the final sample. The studies included were published between 1994 and 2022, and only Brazil, Chile, Colombia, and Cuba conducted research related to virtual simulation. The semantic map resulted in five clusters, highlighting "simulation training" as the most important term. **Conclusion:** our findings suggest a projected increase in Scholarly publications on virtual simulation in nursing education in Latin America and the Caribbean in the coming years.

**Descriptors:** Nursing Education; Nursing; Teaching; Nursing Students; Virtual Reality; Simulation Training.

### How to cite this article

Araújo AAC, Gardim L, Santos SS, Silva IR, Silva MCN, Godoy S, et al. Virtual simulation in nursing education in Latin America and the Caribbean: A bibliometric study. Rev. Latino-Am. Enfermagem. 2025;33:e4422

[cited  [year month day]. Available from:  URL  <https://doi.org/10.1590/1518-8345.7261.4422>

## Introduction

From their undergraduate education, students need to develop the competencies required to deliver quality and safe healthcare<sup>(1-2)</sup>. With the rapid advancements in health technologies, there is an increased expectation for investment in nursing education, particularly in the pedagogy that supports practice<sup>(3-4)</sup>. As a result, virtual simulation has become essential in addressing educational plans.

Virtual simulation is an educational strategy that allows the approximate reproduction of real situations in a controlled environment, enhancing the development of essential skills in clinical practice<sup>(5-6)</sup>. From a historical perspective, with the first teaching methods adopted in nursing education, students developed their clinical skills by performing procedures directly on their peers or patients. However, this practice poses risks for both students and patients<sup>(7)</sup>. As nursing advances as a profession and a science, intrinsic technological development enhances the progress of education, and, as a result, rudimentary teaching practices are no longer adopted in different contexts<sup>(7-8)</sup>.

Among different modalities of virtual simulation, clinical simulation emerge as a successful teaching and learning strategy that gives students the opportunity to practice their clinical skills without harming or risking patients, enhancing the qualification of nursing education<sup>(9-10)</sup>. When applied to nursing education, clinical simulation fosters self-confidence and satisfaction in nursing students from their earliest days of education, during their undergraduate studies and throughout the evolution of their education<sup>(8,11-12)</sup>, which reveals the indispensability of clinical simulation environments in the educational process<sup>(13)</sup>.

Although scientific evidence demonstrates that clinical simulation in nursing education to achieve positive outcomes related to clinical practice (especially as an educational strategy that provides a transition from theory to practice)<sup>(14-15)</sup>, many Higher Education Institutions (HEIs) still do not use clinical simulation in their educational process<sup>(16)</sup>. This reality becomes even more alarming when considering the incorporation of virtual simulation in Latin America and the Caribbean. While it enhances the quality of clinical education, its high cost presents significant challenges for both implementation and long-term sustainability in nursing education.

According to the Economic Commission for Latin America and the Caribbean (ECLAC), 2023 has been predicted as a challenging year for the countries in the region, given the low economic growth caused by high

inequality and poor administration<sup>(17)</sup>. In these countries, low economic growth directly reduces the investment in education and, consequently, access to technologies. Therefore, the incorporation of virtual reality in nursing education becomes a major challenge for the region.

Virtual simulation is an important strategy in nursing education to improve nursing students' knowledge, skills, and attitudes. Therefore, considering the importance of understanding the panorama and trends of virtual simulation for advancing nursing education in the digital era, this study aimed to examine the characteristics of scientific production in Latin America and the Caribbean regarding virtual simulation in nursing education.

## Method

### Study type

This bibliometric study was conducted in five stages, namely: research design, compiling the bibliometric data, analysis, visualization, and interpretation<sup>(18)</sup>; and was reported following the recommendations of the Preferred Reporting Items for Bibliometric Analysis (PRIBA)<sup>(19)</sup>.

We used the bibliographic coupling and co-word analysis methods<sup>(18)</sup>. Thus, considering the scenario in Latin America and the Caribbean, the following research questions were outlined:

How has scientific production on virtual simulation in nursing education evolved?

Which scientific journals have published research on virtual simulation in nursing education?

What are the modalities of virtual simulation in nursing education?

How did the keywords co-occur in studies related to virtual simulation in nursing education?

### Data sources

Our study was conducted in the Latin American and Caribbean Literature in Health Sciences (LILACS) database as it is the most important and comprehensive specialized database related to healthcare in the region, with scientific and technical literature from 26 Latin American and Caribbean countries with free and open access. This database contains around 1 million records in 910 journals over a 38-year history<sup>(20)</sup>. In comparison with other databases, such as the Medical Literature Analysis and Retrieval System Online via the National Library of Medicine (MEDLINE), Cumulative Index to Nursing and Allied Health (CINAHL), Web of Science, Embase, and Scopus, although not mutually exclusive, only LILACS is

sensitive to the context of the study, given its specificity in encompassing the most extensive scientific collection limited to the region.

### Eligibility criteria

Studies that met the following criteria were included: 1) primary studies on virtual simulation in nursing education; 2) studies from Latin American and Caribbean countries; and 3) studies published in Portuguese, Spanish, or English (languages the authors speak). Studies conducted from the perspective of nursing educators regarding virtual simulation were excluded. This bibliometric study did not adopt a timeframe. However, a selection of studies published up to the year 2022 was established, considering this to be the last full year during the development of the study, which makes bibliometric analysis with a focus on dynamics feasible; in addition, gray literature was not considered.

### Search strategy

A pilot search was carried out in April 2023 in order to identify the terms registered in the Health Sciences Descriptors (DeCS) that were most suitable for developing the search strategy. The search was conducted on May 5th of the same year, applying the following search strategy: ((mh:("Realidade Virtual")) OR (mh:("Realidad Virtual")) OR (mh:("Virtual Reality")) OR ("Realidade Virtual") OR ("Realidad Virtual") OR ("Virtual Reality") OR (mh:("Treinamento por Simulação")) OR (mh:("Computer Simulation")) OR (mh:("Entrenamiento Simulado")) OR ("Treinamento por Simulação") OR ("Computer Simulation") OR ("Entrenamiento Simulado") OR (mh:("Simulação por Computador")) OR (mh:("Computer Simulation")) OR (mh:("Simulación por Computador")) OR ("Simulação por Computador") OR ("Computer Simulation") OR ("Simulación por Computador") OR ("Simulação Virtual") OR ("Simulación Virtual") OR ("Virtual Simulation")) AND ((mh:("Educação em Enfermagem")) OR (mh:("Educación en Enfermería")) OR (mh:("Education, Nursing")) OR (mh:("Nursing Education")) OR ("Educação em Enfermagem") OR ("Educación en Enfermería") OR ("Education, Nursing") OR ("Nursing Education") OR (mh:("Educação")) OR (mh:("Education")) OR (Educa\*) OR ("Educación") OR ("Education") OR (mh:("Enfermagem")) OR (mh:("Enfermería")) OR (mh:("Nursing")) OR ("Enfermagem") OR ("Enfermería") OR ("Nursing") OR (Enfermeir\*) OR (Nurse\*) OR

(Enfermer\*)). The search strategy was developed with the support of an experienced librarian.

In order to reduce the inclusion of studies that diverged from the proposed method (especially concerning outliers - studies that differ significantly from the others in that their presence can reduce the validity of the results), the studies found were exported to the Rayyan platform for independent screening by two reviewers<sup>(21)</sup>, following the methodological framework<sup>(18)</sup>. The screening, eligibility, and inclusion of the studies were based on reading the titles and abstracts, with the objective and research questions as guiding principles. Any discrepancies during the analysis were resolved by a third reviewer, an expert in the field, who assisted in making the final selection of studies.

### Bibliometric indicators

The final sample was exported to Microsoft Excel® for descriptive analysis of the selected studies. Bibliometric analysis was then carried out using VOSviewer, version 1.6.20. This software was chosen since it allows the construction of bibliometric networks that can include journals, groups of researchers, citation networks, authorship networks, co-authorship, and groups of the most prevalent words<sup>(22)</sup>. The keywords and their variations were presented in only one format, i.e., the root word was replaced by its most complete version, considering its entry in the DeCS. This strategy was applied to avoid duplicate data in the final sample, according to the methodological framework<sup>(18)</sup>.

Two bibliometric laws were used to analyze the data: Bradford's and Zipf's. Bradford's Law examines the productivity of journals, classifying their relevance based on the number of articles published on a specific topic. On the other hand, Zipf's Law measures the frequency of words in texts, enabling them to be ordered and analyzed according to the research focus<sup>(23)</sup>. In addition, the annual evolution of publications and the type of simulation used in articles published in Latin America and the Caribbean on virtual simulation in nursing education were considered.

Over time, a descriptive analysis of scientific production on virtual simulation in nursing education was presented. The number of publications was detailed according to year of publication, scientific journals, and simulation modalities. In addition, for the bibliometric analysis of the co-occurrence of keywords, the data was presented in semantic maps in order to detail the cognitive structure of the field proposed for the scope of this study.

The purpose of the bibliometric study is to describe a field<sup>(18)</sup>, defined in this study as virtual simulation in

nursing education in Latin America and the Caribbean. Thus, the analysis focused on dynamics in order to interpret the years in which the studies were published, based on a timeline that considered events that justify the increase or decrease in the production of virtual simulation in nursing education. In addition, the journals with the highest number of publications on the subject were analyzed, which may be relevant for researchers interested in virtual simulation issues in nursing education.

An analytical approach was used to interpret the structure of the selected studies, enabling a clear understanding of the relationships between key structural elements (such as scientific journals and simulation

modalities) and their influence on the field within the proposed scope. Next, the semantic map was defined according to the clusters of the co-occurrence collaboration of the keywords. For the keyword co-occurrence analysis, VOSviewer was configured to consider at least two occurrences of the same keyword.

## Results

A total of 579 studies were identified, of which 57 were selected for full reading. After applying the eligibility criteria, 46 studies composed the final sample<sup>(24-69)</sup>, as shown in Figure 1.

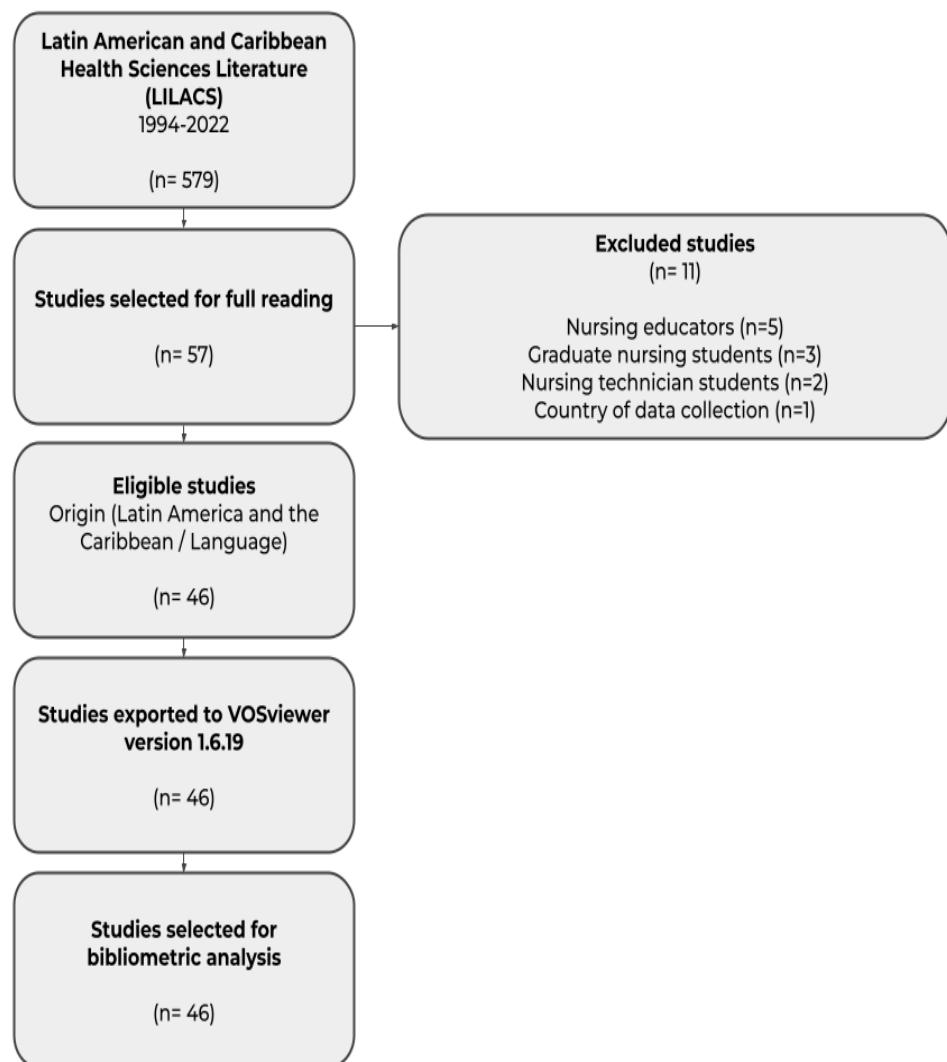



Figure 1 - Preferred Reporting Items for Bibliometric Analysis (PRIBA)

This bibliometric study analyzed 46 scientific articles on virtual simulation in nursing education in Latin America and the Caribbean. The sample has an average of six authors per publication, and there has been a notable

increase in scientific production in this area, from an average of 0.17 articles per year between 1994 and 2016 to 4.33 between 2017 and 2019 and 9.6 between 2020 and 2022, as shown in Figure 2.

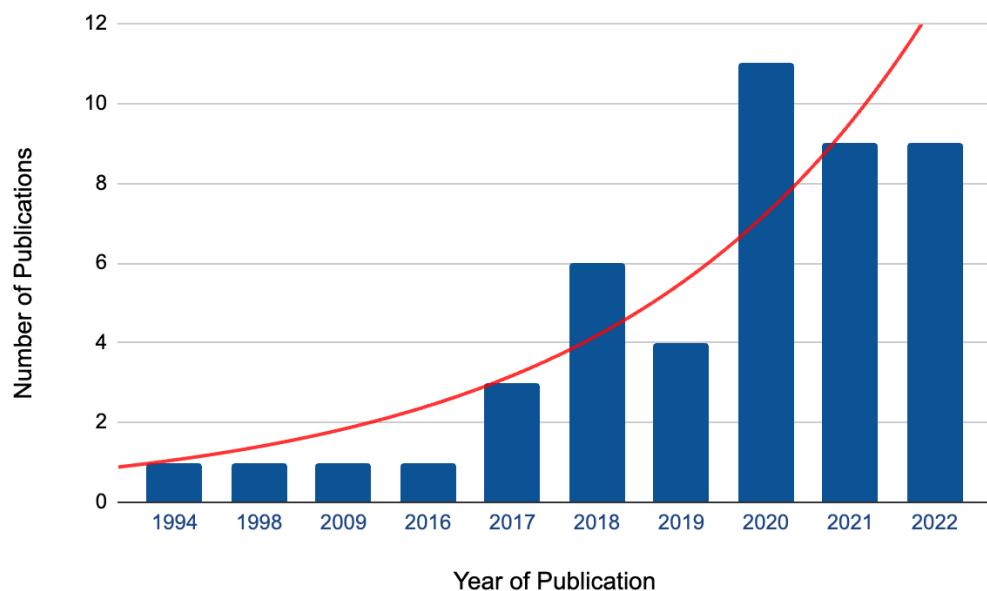



Figure 2 - Number of articles published annually in Latin America and the Caribbean on virtual simulation in nursing education. Ribeirão Preto, SP, Brazil, 2023

Only four countries in Latin America and the Caribbean have conducted research on virtual simulation in nursing education. Brazil led with approximately 84.78% (n=39) of the total studies<sup>(24-39,41-51,53-62,64-65)</sup>. Chile followed with about 6.52% (n=3)<sup>(63,66-67)</sup>, while Colombia and Cuba each contributed 4.35% (n=2)<sup>(40,52,68-69)</sup>.

Figure 3 shows the journals that published the most studies related to the subject, predominantly from

Brazil, with an emphasis on *Revista Latino-Americana de Enfermagem*, with 17.39% (n=8)<sup>(27,36,38,45,49,60,62,64)</sup>, *Revista Brasileira de Enfermagem*, with 15.29% (n=7)<sup>(24,30-31,35,47,54,57)</sup>, and *Escola Anna Nery*, with 13.04% (n=6)<sup>(25,29,33,41,43,53)</sup>.

Based on a conceptual framework<sup>(70)</sup>, the scenarios identified in the sample were classified according to simulation modalities (Figure 4).

| Journals                                                                                     | N | %      |
|----------------------------------------------------------------------------------------------|---|--------|
| <i>Revista Latino-Americana de Enfermagem</i> <sup>(27,36,38,45,49,60,62,64)</sup>           | 8 | ~17.39 |
| <i>Revista Brasileira de Enfermagem</i> <sup>(24,30-31,35,47,54,57)</sup>                    | 7 | ~15.22 |
| <i>Escola Anna Nery</i> <sup>(25,29,33,41,43,53)</sup>                                       | 6 | ~13.04 |
| <i>Revista Mineira de Enfermagem</i> <sup>(26,32,42)</sup>                                   | 3 | ~6.52  |
| <i>Revista Cubana de Enfermería</i> <sup>(68-69)</sup>                                       | 2 | ~4.35  |
| <i>Ciencia y Enfermería</i> <sup>(63,67)</sup>                                               | 2 | ~4.35  |
| <i>Acta Paulista de Enfermagem</i> <sup>(48,51)</sup>                                        | 2 | ~4.35  |
| <i>Scientia Medica</i> <sup>(28,65)</sup>                                                    | 2 | ~4.35  |
| <i>Revista de Enfermagem do Centro-Oeste Mineiro</i> <sup>(50,58)</sup>                      | 2 | ~4.35  |
| <i>Revista Enfermagem em Foco</i> <sup>(34)</sup>                                            | 1 | ~2.17  |
| <i>Revista Eletrônica de Enfermagem</i> <sup>(37)</sup>                                      | 1 | ~2.17  |
| <i>Online Brazilian Journal of Nursing</i> <sup>(39)</sup>                                   | 1 | ~2.17  |
| <i>Revista Cultura del Cuidado Enfermería</i> <sup>(40)</sup>                                | 1 | ~2.17  |
| <i>Revista de Enfermagem da UFSM</i> <sup>(44)</sup>                                         | 1 | ~2.17  |
| <i>Revista Eletrônica de Comunicação, Informação &amp; Inovação em Saúde</i> <sup>(46)</sup> | 1 | ~2.17  |
| <i>Revista Cuidarte</i> <sup>(52)</sup>                                                      | 1 | ~2.17  |
| <i>Revista de Enfermagem da UERJ</i> <sup>(55)</sup>                                         | 1 | ~2.17  |
| <i>ARS Medica</i> <sup>(66)</sup>                                                            | 1 | ~2.17  |

(continues on the next page...)

(continuation...)

| Journals                                                       | N | %     |
|----------------------------------------------------------------|---|-------|
| <i>Revista da Escola de Enfermagem da USP</i> <sup>(59)</sup>  | 1 | ~2,17 |
| <i>Journal of Human Growth and Development</i> <sup>(61)</sup> | 1 | ~2,17 |
| <i>Revista Baiana de Enfermagem</i> <sup>(56)</sup>            | 1 | ~2,17 |

Figure 3 - Journals in which articles from Latin America and the Caribbean on virtual simulation in nursing education were published. Ribeirão Preto, SP, Brazil, 2023

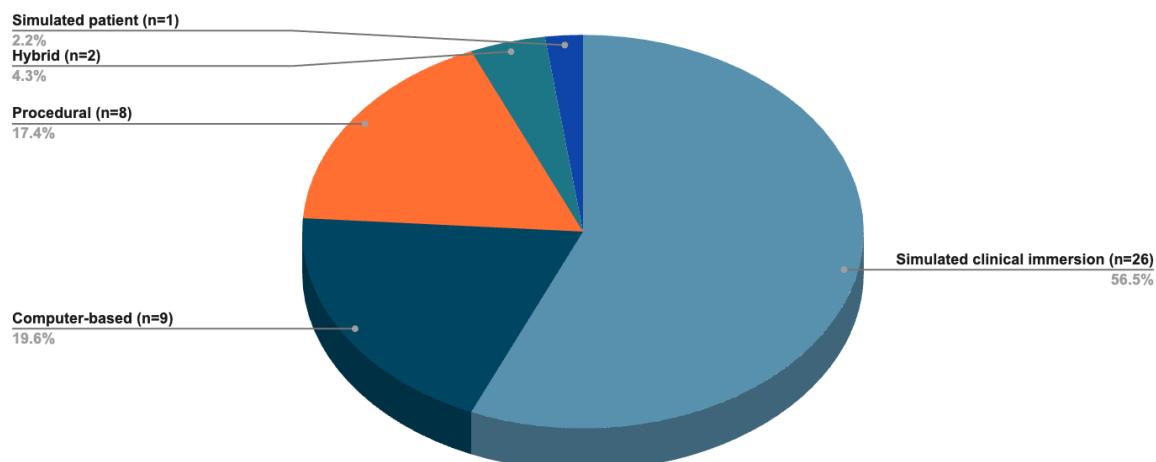



Figure 4 - Simulation modality used in articles published in Latin America and the Caribbean on virtual simulation in nursing education. Ribeirão Preto, SP, Brazil, 2023

The authors defined the cognitive structure using keywords that summarized the focus of their studies. Thus, 272 keywords were found, grouped according to co-occurrence, with at least two mentions. As illustrated in Figure 5, the bibliometric network represents the co-

occurrence of keywords, showing the number of terms in common using circles and lines. The size of the circles and the thickness of the lines are proportional to the number of terms cited so that the connections between the terms indicate their relationships.

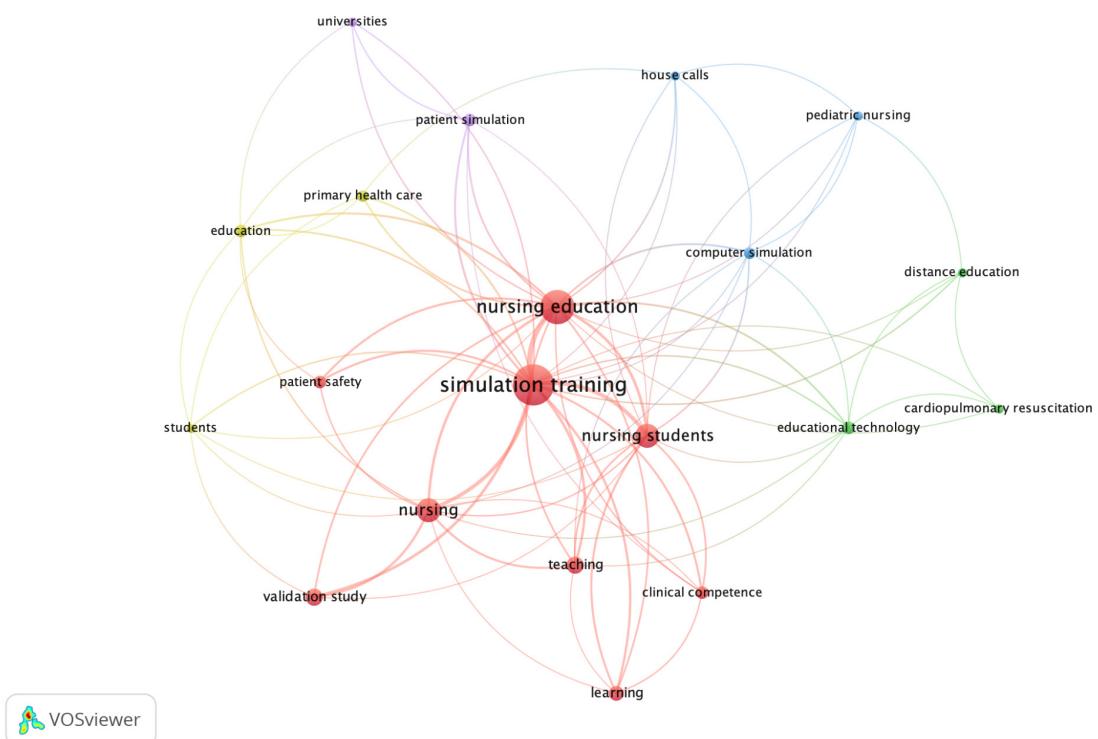



Figure 5 - Analysis of co-occurrence of keywords by authors of studies published in Latin America and the Caribbean on virtual simulation in nursing education. Ribeirão Preto, SP, Brazil, 2023

The term "simulation training" (n=38) had the highest frequency and link strength, connected to other terms such as "nursing education" (n=27), "nursing students" (n=14), and "nursing" (n=14). Other highlighted areas include: "clinical competence" (n=4), "patient simulation" (n=4), "education" (n=4), and "patient safety" (n=4). Figure 5 underscores the significance of practical and simulated training in developing essential clinical skills in nursing, highlighting its intersection with innovative teaching methods and patient safety.

## Discussion

In the face of a significant context, Latin America and the Caribbean, the progressive increase in publications on virtual simulation in nursing education may be a consequence of global phenomena, either of a procedural or emergency nature. The first relates to the collective maturing of a profession or area of knowledge toward objects of interest that are dear to them. The second relates to emerging and detailed issues that can affect the apparent natural order of social processes, which includes the pattern of scientific publication.

At the operational level, scientific results reveal the need for greater and better connections between practical reality and the theoretical approach in the teaching-learning process. Thus, scientific production is expected to advance towards the development of better evidence on mechanisms and strategies to facilitate training that is coherent with the social demands already perceived and problematized in the course of the student's training, which does not exclude the reality of health and, consequently, of nursing<sup>(71-72)</sup>.

In nursing education, when associated with active methodologies, virtual simulation is a valuable strategy for connecting the real and virtual worlds during the student's teaching-learning process, enhancing student performance and the achievement of objectives by professors and HEIs. Virtual simulation allows students to be transported to totally parallel and virtual realities generated by computer intelligence, where they can safely explore and live experiences outside of the objective reality. These experiences stimulate senses such as sight, hearing, and sometimes even touch and smell. It is from this reality, therefore, that nursing and other areas of knowledge have been interested in researching clinical simulation<sup>(4)</sup>.

Teaching simulations can vary in context (basic life support, nursing care for women, and home visits) and level of immersion. This study analyzed virtual simulations such as telesimulation, serious games, and immersive virtual reality. Another modality was simulated clinical immersion, a model adopted more frequently and which

recreates clinical scenarios with a high level of realism, involving patient care, complex equipment, actors, and a significant flow of data<sup>(70)</sup>.

Another form of simulation is procedural, which allows specific technical skills to be practiced in certain procedures, such as peripheral venous catheterization and the safe administration of drugs and vaccines. Finally, there is the simulated patient, in which an actor plays the role of an actual patient to train and manage clinical and emotional needs and conditions. These strategies are effective for developing attitudinal aspects in the quality of cognitive, behavioral, and psychomotor skills, as well as affective aspects of students in a simulated environment<sup>(73)</sup>. In this sense, with the need to develop a culture of innovation throughout the academic infrastructure, the teaching environment has the potential to inspire the development of leadership, a key competence for nursing<sup>(74)</sup>.

Regarding the emerging and detailed issues that affect social dynamics, the data from this research was sensitive to the significant increase in studies published during the COVID-19 pandemic. This situation has highlighted the need for better technological adaptations to maintain the training process. As a consequence, better responses based on science and speed in scientific production are needed. This reiterates the dynamics of scientific publishing as a constantly evolving process shaped by the interaction between technological advances, the demands of society, and the practices established in the community<sup>(75)</sup>.

As a leader in the production of virtual simulation in Latin America and the Caribbean, Brazil saw a 32.2% increase in the number of scientific articles in 2020 compared to 2015, according to data consolidated by the Observatory of Science, Technology, and Innovation (OCTI) and the Center for Management and Strategic Studies (CGEE)<sup>(76)</sup>. As highlighted in the results, this study showed that Brazilian productions are the majority, amounting to more than 80%. This may be due to the demands of a continental country and its graduate training structure, since it has 39 doctoral courses in nursing, whereas Chile (the country in second place in terms of production on virtual simulation) has two doctoral courses. This scenario is attested to by the understanding that scientific production is mainly developed in the context of universities and their graduate courses<sup>(77)</sup>.

The apparent plurality of scientific journals that have published on virtual simulation (identified in our study in a total of 21 journals) is not, however, in line with the reality in Latin America and the Caribbean, as it does not represent or even come close to the totality of journals in this region. As a numerical illustration, the

Ibero-American Network of Scientific Editing in Nursing (RedEDIT) has 72 journals published in Latin America. This number of journals does not represent all the journals in this region, since not all of them are associated with the aforementioned network<sup>(78)</sup>. Furthermore, the concentration of publications in only three journals demonstrates the indispensability of investments in scientific research as an incentive to develop evidence related to virtual simulation in nursing.

The bibliometric network is an important imaging mechanism for the reality under investigation. Thus, the terms "simulation training", "nursing education" and "nursing students", although prospected in the theme intended in this study, reveal the problematized nature of the object, as they demonstrate the importance of strategies that associate technologies and principles of active methodology towards the teaching-learning process capable of provoking new experiences for students, based on the reality of patient care which is permeated by uncertainties and risks. In peripheral fields of the bibliometric network, it is possible to see terms related to specific knowledge concerning advanced practices, for example. These include the terms "cardiopulmonary resuscitation", "clinical competence", "pediatric nursing", and "patient safety". Thus, the semantic map highlights the importance of simulation training and addressing related issues, pointing to other emerging concepts that can potentially shape nursing education in the future.

Although the leading Latin American and Caribbean database, LILACS, was used in this study, it is important to note that some scientific journals in the region are not indexed in this database. This limitation may have affected the identification of potential studies. Additionally, this study did not include research published in French. While French is relevant to the region, the authors were unable to access studies in this language due to their lack of proficiency. Studies in French could provide information on the scientific production of virtual simulation in nursing education within Latin America and the Caribbean.

Although the study is related to undergraduate nursing education and, therefore, towards the process of generalist training, virtual simulation can provide better possibilities for theoretical and technical-scientific in-depth study of knowledge specific to nurses' professional practice. Thus, despite the disparities in scientific production, this practice should be recommended in the context of nursing education for the advancement of the profession.

## Conclusion

The panorama of scientific production on virtual simulation in nursing education in Latin American and

Caribbean countries was shown, with a predominance of Brazilian scientific production, in which the *Revista Latino-Americana de Enfermagem* (RLAE) takes the lead. The results reinforce the understanding of "simulation training" as a valuable strategy for connecting theory and practice during the teaching-learning process, corroborating the development of competencies in nursing students. The study underscores the importance of virtual simulation research for nursing education, highlighting a trend towards increased development of studies related to virtual simulation with a focus on simulated clinical immersion. Furthermore, it emphasizes the significant opportunities for international collaboration and resource sharing between researchers, promoting a comprehensive and collaborative approach to advances in this field. However, economic factors are the main barrier to implementing and sustaining virtual simulation in nursing education, as well as developing new scientific evidence to address various scenarios and contexts.

## Acknowledgments

The authors acknowledge the Federal Nursing Council (COFEn), Brazil, for stimulating the development of the study and Adriana Sayuri Ota, Librarian at the University of São Paulo (USP), Brazil, for her support in developing the search strategy.

## References

1. Lee BO, Liang HF, Chu TP, Hung CC. Effects of simulation-based learning on nursing student competences and clinical performance. *Nurse Educ Pract.* 2019;41:102646. <https://doi.org/10.1016/j.nepr.2019.102646>
2. Guinea S, Andersen P, Reid-Searl K, Levett-Jones T, Dwyer T, Heaton L, et al. Simulation-based learning for patient safety: The development of the Tag Team Patient Safety Simulation methodology for nursing education. *Collegian.* 2019;26(3):392-8. <https://doi.org/10.1016/j.colegn.2018.09.008>
3. Araújo AAC, Gardim L, Salma J, Stephen T, Santos SS, Silva IR, et al. Advancing nursing education through wearable electronic devices: A scoping review. *Nurse Educ Pract.* 2024;79:104032. <https://doi.org/10.1016/j.nepr.2024.104032>
4. Costa RRO, Medeiros SM, Coutinho VRD, Almeida RGS, Araújo MS. Nursing students' perceptions about adult immunization educational practices using Clinical Simulation. *Sci Med.* 2019;29(3):e34267. <https://doi.org/10.15448/1980-6108.2019.3.34267>
5. Aebersold M. The History of Simulation and Its Impact on the Future. *AACN Adv Crit Care.* 2016;27(1):56-61. <https://doi.org/10.4037/aacnacc2016436>

6. Cant R, Cooper S, Sussex R, Bogossian F. What's in a Name? Clarifying the Nomenclature of Virtual Simulation. *Clin Simul Nurs.* 2019;27:26-30. <https://doi.org/10.1016/j.ecns.2018.11.003>

7. Martins JCA, Mazzo A, Baptista RCN, Coutinho VRD, Godoy S, Mendes IAC, et al. The simulated clinical experience in nursing education: a historical review. *Acta Paul Enferm.* 2012;25(4):619-25. <https://doi.org/10.1590/S0103-21002012000400022>

8. Quirós SM, Vargas MAO. Clinical Simulation: a strategy that articulates teaching and research practices in nursing. *Texto Contexto Enferm.* 2014;23(4):813-4. <https://doi.org/10.1590/0104-07072014001200edt>

9. Gore T, Hunt CW, Parker F, Raines KH. The Effects of Simulated Clinical Experiences on Anxiety: Nursing Students' Perspectives. *Clin Simul Nurs.* 2011;7(5):e175-80. <https://doi.org/10.1016/j.ecns.2010.02.001>

10. Herrera CAN, Molina NGV, Becerra JAB. Strengthening clinical simulation as a teaching tool in nursing: internship experience. *Rev Cuidarte.* 2015;6(1):970-5. <https://doi.org/10.15649/cuidarte.v6i1.161>

11. Smith SJ, Roehrs CJ. High-fidelity simulation: factors correlated with nursing student satisfaction and self-confidence. *Nurs Educ Perspect* [Internet] 2009 [cited 2024 Jan 11];30(2):74-8. Available from: [https://journals.lww.com/neponline/abstract/2009/03000/high\\_fidelity\\_simulation\\_factors\\_correlated\\_with.5.aspx](https://journals.lww.com/neponline/abstract/2009/03000/high_fidelity_simulation_factors_correlated_with.5.aspx)

12. Kavanagh JM, Szweda C. A Crisis in Competency: The Strategic and Ethical Imperative to Assessing New Graduate Nurses' Clinical Reasoning. *Nurs Educ Perspect.* 2017;38(2):57-62. <https://doi.org/10.1097/01.nep.0000000000000112>

13. Labrague LJ, McEnroe-Petitte DM, Bowling AM, Nwafor CE, Tsaras K. High-fidelity simulation and nursing students' anxiety and self-confidence: A systematic review. *Nurs Forum.* 2019;54(3):358-68. <https://doi.org/10.1111/nuf.12337>

14. Newton RH, Krebs A. Bridging the Theory-Practice Gap Using Simulation to Teach Care of Patients With Disabilities. *Teach Learn Nurs.* 2020;15(4):233-6. <https://doi.org/10.1016/j.teln.2020.04.003>

15. Nelson R. Replicating Real Life Simulation in Nursing Education and Practice. *Am J Nurs.* 2016;116(5):20-1. <https://doi.org/10.1097/01.naj.0000482956.85929.d8>

16. Cassiani SHDB, Wilson LL, Mikael SSE, Peña LM, Grajales RAZ, McCreary LL, et al. The situation of nursing education in Latin America and the Caribbean towards universal health. *Rev. Latino-Am. Enfermagem.* 2017;25:e2913. <https://doi.org/10.1590/1518-8345.2232.2913>

17. Salazar-Xirinachs JM. How Latin American and Caribbean Countries Can Mitigate Slow Growth in 2023 [Internet]. 2023 [cited 2024 Jan 01]. Available from: <https://www.cepal.org/en/articles/2023-how-latin-american-and-caribbean-countries-can-mitigate-slow-growth-2023>

18. Zupic I, Čater T. Bibliometric methods in management and organization. *Organ Res Methods.* 2015;18(3):429-72. <https://doi.org/10.1177/1094428114562629>

19. Koo M, Shih-Chun L. An analysis of reporting practices in the top 100 cited health and medicine-related bibliometric studies from 2019 to 2021 based on a proposed guidelines. *Helijon.* 2023;9(6):e16780. <https://doi.org/10.1016/j.heliyon.2023.e16780>

20. Literatura Latino-Americana e do Caribe em Ciências da Saúde [Homepage]. São Paulo: BIREME; c2023 [cited 2024 Jan 11]. Available from: <https://lilacs.bvsalud.org/>

21. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. *Syst Rev.* 2016;5:210. <https://doi.org/10.1186/s13643-016-0384-4>

22. van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. *Scientometrics.* 2010;84(2):523-38. <https://doi.org/10.1007/s11192-009-0146-3>

23. Machado C Junior, Souza MTS, Parisotto IRS, Palmisano A. As leis da bibliometria em diferentes bases de dados científicos. *Rev Cien Admin.* 2016;18(44):111-23. <https://doi.org/10.5007/2175-8077.2016v18n44p111>

24. Andrade PON, Oliveira SC, Morais SCRV, Guedes TG, Melo GP, Linhares FMP. Validation of a clinical simulation setting in the management of postpartum haemorrhage. *Rev Bras Enferm.* 2019;72(3):624-31. <https://doi.org/10.1590/0034-7167-2018-0065>

25. Aredes NDA, Dias DMV, Fonseca LMM, Campbell SH, Martins JCA, Rodrigues MA. E-baby skin integrity: evidence-based technology innovation for teaching in neonatal nursing. *Esc Anna Nery.* 2018;22(3):e20170424. <https://doi.org/10.1590/2177-9465-EAN-2017-0424>

26. Barbosa NG, Martin IS, Nievas AF, Viana AL, Zanetti ACG, Souza J. Simulated setting in home visit teaching in the scope of primary health care. *REME.* 2022;26:e-145. <https://doi.org/10.35699/2316-9389.2022.40273>

27. Barbosa SFF, Marin HF. Web-based simulation: a tool for teaching critical care nursing. *Rev. Latino-Am. Enfermagem.* 2009;17(1):7-13. <https://doi.org/10.1590/s0104-11692009000100002>

28. Bergamasco EC, Murakami BM, Cruz DALM. Use of the Student Satisfaction and Self-Confidence in Learning (SSSCL) and the Simulation Design Scale (SDS) in nursing teaching: experience report. *Sci Med.* 2018;28(3):ID31036. <https://doi.org/10.15448/1980-6108.2018.3.31036>

29. Boostel R, Bortolato-Major C, Silva NO, Vilarinho JOV, Fontoura ACOB, Felix JVC. Contributions of clinical

simulation versus conventional practice in a nursing laboratory in the first clinical experience. *Esc Anna Nery.* 2021;25(3):e20200301. <https://doi.org/10.1590/2177-9465-EAN-2020-0301>

30. Boostel R, Felix JVC, Bortolato-Major C, Pedrolo E, Vayego SA, Mantovani MF. Stress of nursing students in clinical simulation: a randomized clinical trial. *Rev Bras Enferm.* 2018;71(3):967-74. <https://doi.org/10.1590/0034-7167-2017-0187>

31. Bortolato-Major C, Mantovani MF, Felix JVC, Boostel R, Silva TM, Caravaca-Morera JA. Debriefing evaluation in nursing clinical simulation: a cross-sectional study. *Rev Bras Enferm.* 2019;72(3):788-94. <https://doi.org/10.1590/0034-7167-2018-0103>

32. Canever BP, Costa DG, Magalhães ALP, Gonçalves N, Bellaguarda MLR, Prado ML. Skills training by skills development techniques for nursing students. *REME.* 2022;26:e-145. <https://doi.org/10.35699/2316-9389.2022.38545>

33. Canever BP, Sanez MS, Oliveira SN, Magalhães ALP, Prado ML, Costa DG. Active methodologies in peripheral venous catheterization: Skills development with a low-cost simulator. *Esc Anna Nery.* 2021;25(1):e20200131. <https://doi.org/10.1590/2177-9465-EAN-2020-0131>

34. Rosa MEC, Pereira-Ávila FMV, Goés FGB, Salvo GM, Silva RCL, Coutinho VRD. Nursing education: evaluating the effectiveness of debriefing in clinical simulation. *Enferm Foco.* 2020;11(4):152-60. <https://doi.org/10.21675/2357-707X.2020.v11.n3.2854>

35. Costa LCS, Avelino CCV, Freitas LA, Agostinho AAM, Andrade MBT, Goyatá SLT. Undergraduates performance on vaccine administration in simulated scenario. *Rev Bras Enferm.* 2019;72(2):345-53. <https://doi.org/10.1590/0034-7167-2018-0486>

36. Costa RRO, Medeiros SM, Martins JCA, Coutinho VRD, Araújo MS. Effectiveness of simulation in teaching immunization in nursing: a randomized clinical trial. *Rev. Latino-Am. Enfermagem.* 2020;28:e3305. <https://doi.org/10.1590/1518-8345.3147.3305>

37. Dias AAL, Souza RS, Eduardo AHA, Felix AMS, Figueiredo RM. Validation of two clinical scenarios for simulation-based learning for the prevention and control of healthcare-associated infections. *Rev Eletr Enferm.* 2022;24:70072. <https://doi.org/10.5216/ree.v24.70072>

38. Domingues AN, Hilário JSM, Mello DF, Moreno AIP, Fonseca LMM. Telesimulation about home visits and child care: facilitators, barriers and perception of Nursing students. *Rev. Latino-Am. Enfermagem.* 2022;30:e3672. <https://doi.org/10.1590/1518-8345.6037.3672>

39. Eduardo AHA, Mendes AA, Binotto CCS, Tognoli SH, Tucci AMGB. Cenário para simulação de Resíduos de Serviços de Saúde: estudo metodológico. *Online Braz J Nurs [Internet].* 2016 [cited 2023 Jun 12];5(4):611-6. Available from: [https://www.objnursing.uff.br/index.php/nursing/article/view/5672/html\\_2](https://www.objnursing.uff.br/index.php/nursing/article/view/5672/html_2)

40. Santos ECG, Almeida YS, Santos MLSC, Vasconcelos SDD, Assis WB, Medeiros MF, et al. Nursing students' conception of the teaching-learning process through realistic simulation: preview note. *Rev Cultura Cuid Enferm [Internet].* 2021 [cited 2023 Jun 12];18(1):8-18. Available from: <https://revistas.unilibre.edu.co/index.php/cultura/article/view/8365>

41. Flausino DA, Oliveira AR, Misko MD, Eduardo AHA. Scenario for simulation training on the communication of hard news: A validation study. *Esc Anna Nery.* 2022;26:e20210037. <https://doi.org/10.1590/2177-9465-EAN-2021-0037>

42. Girão ALA, Sampaio RL, Aires SF, Oliveira ICL, Oliveira SKP, Carvalho REFL. MedSafe: prototype of a virtual game on the preparation and administration of medications. *REME.* 2019;23:e-1239. <https://doi.org/10.5935/1415-2762.20190087>

43. Gomes RG, Fava SMCL, Lima RS, Sanches RS, Gonçalves MFC, Resck ZMR. Development of clinical evaluation competence of critically ill patients by Nursing students: contribution of Simulation. *Esc Anna Nery.* 2020;24(4):e20190384. <https://doi.org/10.1590/2177-9465-EAN-2019-0384>

44. Magnago TSBS, Silva JS, Lanes TC, Ongaro JD, Luz EMF, Tuchtenhagen P, et al. Realistic simulation in patient safety education: experience report. *Rev Enferm UFSM.* 2019;10(e13):1-15. <https://doi.org/10.5902/2179769236616>

45. Meska MHG, Mano LY, Silva JP, Pereira GA Junior, Mazzo A. Emotional recognition for simulated clinical environment using unpleasant odors: quasi-experimental study. *Rev. Latino-Am. Enfermagem.* 2020;28:e3248. <https://doi.org/10.1590/1518-8345.2883.3248>

46. Millão LF, Vieira TW, Santos ND, Silva APSS, Flores CD. Integration of digital technologies in nursing teaching: simulation of a clinical case about pressure ulcers with the SIACC software. *Rev Eletron Comun Inform Inov Saude.* 2017;11(1). <https://doi.org/10.29397/reciis.v11i1.1189>

47. Oliveira SN, Massaroli A, Martini JG, Rodrigues J. From theory to practice, operating the clinical simulation in Nursing teaching. *Rev Bras Enferm.* 2018;71:1791-8. <https://doi.org/10.1590/0034-7167-2017-0180>

48. Olímpio CG, Fulquini FL, Garbuio DC, Carvalho EC. Learning style and level of satisfaction in nursing clinical simulation. *Acta Paul Enferm.* 2021;34:eAPE001675. <https://doi.org/10.37689/acta-ape/2021AO001675>

49. Fulquini FL, Zamarioli CM, Gadioli B, Kusumota L, Gimenes FRE, Carvalho EC. Contribution of an instructional module for lymph node evaluation: An experiment.

Rev Lat Am Enfermagem. 2021;29:e3408. <https://doi.org/10.1590/1518-8345.4166.3408>

50. Portela RG, Viduedo AFS, Ribeiro LM, Leon CGRMP, Schardosim JM. Clinical simulation of nursing care to women in the third trimester of pregnancy: validation of a scenario. Rev Enferm Centro-Oeste Min. 2021;11:4123. <https://doi.org/10.19175/recom.v11i0.4123>

51. Ramos DF, Matos MP, Viduedo AFS, Ribeiro LM, Leon CGRMP, Schardosim JM. Nursing consultation in reproductive planning: scenario validation and checklist for debriefing. Acta Paul Enferm [Internet]. 2022 [cited 2024 Jan 11];35:eAPE0296345. Available from: <https://www.scielo.br/j/ape/a/FPKT3HTPXnVkcX9YszWt5Rs/?lang=en>

52. Costa CRB, Melo ES, Reis RK. Simulation of Emergency Training for Nursing Students. Rev Cuidarte. 2020;11(2):e853. <https://doi.org/10.15649/cuidarte.853>

53. Rosa MEC, Pereira-Ávila FMV, Goés FGB, Pereira-Caldeira NMV, Sousa LRM, Goulart MCL. Positive and negative aspects of clinical simulation in nursing teaching. Esc Anna Nery. 2020;24(3):e20190353. <https://doi.org/10.1590/2177-9465-EAN-2019-0353>

54. Silva JLG, Oliveira-Kumakura ARS. Clinical simulation to teach nursing care for wounded patients. Rev Bras Enferm. 2018;71(Suppl 4):1785-90. <https://doi.org/10.1590/0034-7167-2017-0170>

55. Silva PN, Kamada I. Students' perceptions of telesimulation in teaching care for children with intestinal ostomy. Rev Enferm UERJ. 2022;30:e64529. <https://doi.org/10.12957/reuerj.2022.64529>

56. Silva RP, Santos VS, Moraes JS, Andrade IRC, Abreu RNDC, Freitas JG. Applicability of realistic simulation in nursing graduation: experience in incidents involving multiple victims. Rev Baiana Enferm. 2020;34:e34648. <https://doi.org/10.18471/rbe.v34.34648>

57. Silva SCN, Alencar BR, Viduedo AFS, Ribeiro LM, Leon CGRMP, Schardosim JM. Management of severe preeclampsia in the puerperium: development and scenario validation for clinical simulation. Rev Bras Enferm. 2021;74(6):e20200445. <https://doi.org/10.1590/0034-7167-2020-0445>

58. Soares FMM, Magalhães DS, Duarte MPC, Almeida RGS, Santos ECN, Miranda FAN. Cardiorespiratory and cerebral arrest: construction and validation of simulated scenario for nursing. Rev Enferm Centro-Oeste Min. 2022;12:4617. <https://doi.org/10.19175/recom.v12i0.4617>

59. Souza CC, Santos WG, Salgado PO, Prado PP Junior, Toledo LV, Paiva LC. Evaluating the "satisfaction" and "self-confidence" in nursing students in undergoing simulated clinical experiences. Rev Esc Enferm USP. 2020;54:e03583. <https://doi.org/10.1590/s1980-220x2018038303583>

60. Souza-Junior VD, Mendes IAC, Tori R, Marques LP, Mashuda FKK, Hirano LAF, et al. VIDA-Nursing v1.0: immersive virtual reality in vacuum blood collection among adults. Rev. Latino-Am. Enfermagem. 2020;28:e3263. <https://doi.org/10.1590/1518-8345.3685.3263>

61. Targino AN, Silva AP, Leitão FNC, Zangirolami-Raimundo J, Echeimberg JO, Raimundo RD. Low cost simulator for cardiopulmonary unobstructed and reunion procedures in infants. J Hum Growth Dev. 2021;31(1):93-100. <https://doi.org/10.36311/jhgd.v31.11339>

62. Tobase L, Peres HHC, Tomazini EAS, Teodoro SV, Ramos MB, Polastri TF. Basic life support: evaluation of learning using simulation and immediate feedback devices. Rev. Latino-Am. Enfermagem. 2017;25:e2942. <https://doi.org/10.1590%2F1518-8345.1957.2942>

63. Araya AA, Espinoza MAL, Medina VC, Palma JF, Lara AF, Parra NV. Validation of quality and satisfaction survey of clinical simulation in nursing students. Cien Enferm. 2017;23(2):133-45. <https://doi.org/10.4067/S0717-95532017000200133>

64. Cancino KD, Arias M, Caballero E, Escudero E. Development of a safe drug administration assessment instrument for nursing students. Rev. Latino-Am. Enfermagem. 2020;28:e3246. <https://doi.org/10.1590%2F1518-8345.2989.3246>

65. Escudero E, Ben-Azul MA, Cancino KD. Clinical simulation and patient safety: integration into the nursing curriculum. Sci Med. 2018;28(1):ID28853 <https://doi.org/10.15448/1980-6108.2018.1.28853>

66. Troncoso PS, Serrano MM, Montero DG, Arias KV. Challenges of nursing education in a pandemic: perception and experience of nursing students on the incorporation of virtual simulation. Ars Medica Rev Cien Med. 2022;47(2). <https://doi.org/10.11565/arsmed.v47i2.1841>

67. Contreras VAY, Ríos GAS, Palma FAS. Importance of clinical simulation in the personal development and performance of the nursing student. Cien Enferm. 2021;27:39. <https://doi.org/10.29393/ce27-39isvf30039>

68. Berdayes Martínez JD, Morfa Coro T, Domínguez NG, Páez Armenteros J, Gómez Castro S. Aplicación de simulaciones computarizadas en la asignatura atención de enfermería a la familia. Rev Cuba Enferm [Internet]. 1994 [cited 2023 Jun 12];10(2). Available from: <https://pesquisa.bvsalud.org/portal/resource/pt/lil-158517>

69. Madera EP, Miranda LA, Suárez AR, Lezcano, MA. Las simulaciones computarizadas en la enseñanza de enfermería. Facultad de Ciencias Médicas de Pinar del Río. 1992-1995. Rev Cuba Enferm [Internet]. 1998 [cited 2023 Jun 12];15(2):112-6. Available from: [https://scielo.sld.cu/scielo.php?script=sci\\_arttext&pid=S0864-03191998000200006](https://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03191998000200006)

70. Chiniara G, Cole G, Brisbin K, Huffman D, Cragg B, Lamacchia M, et al. Simulation in healthcare: a taxonomy and a conceptual framework for instructional design and media selection. *Med Teach.* 2013;35(8):e1380-95. <https://doi.org/10.3109/0142159x.2012.733451>

71. Amanak K. Comparing low fidelity simulation/model and hybrid simulation techniques for teaching how to perform intramuscular injections: a case control study. *J Pak Med Assoc.* 2020;70(10):1698-705. <https://doi.org/10.5455/jpma.27454>

72. Campanati FLS, Ribeiro LM, Silva ICR, Hermann PRS, Brasil GC, Carneiro KKG, et al. Clinical simulation as a Nursing Fundamentals teaching method: a quasi-experimental study. *Rev Bras Enferm.* 2022;75(2):e20201155. <https://doi.org/10.1590/0034-7167-2020-1155>

73. Green G, Ofri L, Tesler R. The Role of Fundamental Nursing Practices Simulation on Students' Competencies and Learning Satisfaction: Repeated Measured Design. *Healthcare.* 2022;10(5):841. <https://doi.org/10.3390/2Fhealthcare10050841>

74. Leary M, Villarruel AM, Richmond TS. Creating an innovation infrastructure in academic nursing. *J Prof Nurs.* 2022;38:83-8. <https://doi.org/10.1016/j.profnurs.2021.12.005>

75. Araújo AAC, Silva IR, Mendes IAC. Editorial Policy, DOI and (in)visibility of scientific publications. *Rev. Latino-Am. Enfermagem.* 2022;30:e3732. <https://doi.org/10.1590/1518-8345.0000.3733>

76. Sociedade Brasileira para o Progresso da Ciência. Produção brasileira de artigos cresce 32% em 2020 em relação a 2015 [Internet]. São Paulo: SBPC; 2021 [cited 2023 Nov 14]. Available from: <http://portal.sbpccnet.org.br/noticias/producao-brasileira-de-artigos-cresce-32-em-2020-em-relacao-a-2015/>

77. Mendes IAC, Ventura CAA, Silva IR, Gir E, Almeida EWS, Queiroz AAFLN, et al. Alignment and contribution of nursing doctoral programs to achieve the sustainable development goals. *Hum Resour Health.* 2020;18:86. <https://doi.org/10.1186/s12960-020-00530-7>

78. Mendes IAC, Silva IR, Araújo AAC, Ventura CAA, Godoy S. Perenniality of Brazilian nursing journals: recovery and reaffirmation of the journals' social commitment to science. *Texto Contexto Enferm.* 2023;32:e20220336. <https://doi.org/10.1590/1980-265X-TCE-2022-0336en>

## Authors' contribution

### Mandatory criteria

**Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; drafting the work or reviewing it critically for important intellectual content; final approval of the version to be published and agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved:** Agostinho Antônio Cruz Araújo, Lucas Gardim, Sara Soares dos Santos, Ítalo Rodolfo Silva, Manoel Carlos Neri da Silva, Simone de Godoy, Isabel Amélia Costa Mendes.

### Specific contributions

**Data curation:** Agostinho Antônio Cruz Araújo, Lucas Gardim, Sara Soares dos Santos, Simone de Godoy.

**Project supervision and management:** Simone de Godoy, Isabel Amélia Costa Mendes.

**Conflict of interest:** the authors have declared that there is no conflict of interest.

Received: Jan 11th 2024  
Accepted: Aug 4th 2024

Associate Editor:  
Karina Dal Sasso Mendes

### Copyright © 2025 Revista Latino-Americana de Enfermagem

This is an Open Access article distributed under the terms of the Creative Commons (CC BY).

This license lets others distribute, remix, tweak, and build upon your work, even commercially, as long as they credit you for the original creation. This is the most accommodating of licenses offered. Recommended for maximum dissemination and use of licensed materials.