Determinants of agricultural insurance adoption: evidence from farmers in the state of São Paulo, Brazil

Authors

  • Universidade Federal de São Carlos - Departamento de Engenharia de Produção
  • Universidade Estadual de Campinas, Instituto de Economia
  • Embrapa Pecuária Sudeste
  • Universidade Federal de São Carlos - Departamento de Engenharia de Produção

DOI:

https://doi.org/10.1108/RAUSP-09-2019-0201

Keywords:

Risk management, Agricultural insurance, Production risk

Abstract

Purpose – The purpose of this study is to investigate the determinants of agricultural insurance adoption by farmers of the state of São Paulo, Brazil.
Design/methodology/approach – Primary data from the 2015/2016 crop season was collected from a sample of 175 farmers. Logit econometric models were applied to identify the variables that affect the probability of agricultural insurance adoption.
Findings – The empirical results show that the education level, access to technical assistance, use of management tools and farm size positively affect the probability of adopting agricultural insurance. In addition, farmers who produce soybean and/or corn are more likely to use insurance. On the other hand, the higher the farmers’ propensity to take risk the lower the likelihood of using insurance.
Research limitations/implications – The empirical analysis is based on cross-sectional data of a sample of 175 farmers of the state of São Paulo. The use of panel data with a larger sample of farmers, considering a period of years, could provide additional information.
Originality/value – To the best of the knowledge, this is the first empirical analysis about determinants of agricultural insurance adoption by Brazilian farmers, considering behavioral factors. The findings provide useful insights for policymakers in formulating risk management programs in the Brazilian agricultural markets. A better understanding about the determinants of insurance adoption is also relevant for private companies that sell insurance to farmers. Therefore, the paper may contribute with the diffusion of rural insurance as risk management tool in Brazilian agriculture.

Downloads

Download data is not yet available.

References

Buainain, A. M., & Vieira, P. A. (2011). Seguro Agrícola no Brasil: Desafios e potencialidades. Revista Brasileira Risco e Seguro, 7, 39–68.

Buainain, A.M., & Silveira, R. L. F. (2017). Manual de avaliação de riscos na agropecuária, Rio de Janeiro: Escola Nacional de Seguros, CPES, Grupo Banco Mundial, NEA.

Buainain, A. M., Silveira, R. L. F., & Navarro, Z. (2019). Agricultural development in Brazil: The rise of a global agro-food power, London: Routledge.

Burney, J., Cesano, D., Russell, J., La Rovere, E. L., Corral, T., Coelho, N. S., & Santos, L. (2014). Climate change adaptation strategies for smallholder farmers in the Brazilian Sertão. Climatic Change, 126, 45–59. 10.1007/s10584-014-1186-0

Carrer, M. J., Souza Filho, H. M., & Batalha, M. O. (2017). Factors influencing the adoption of farm management information systems (FMIS) by Brazilian citrus farmers. Computers and Electronics in Agriculture, 138, 11–19. 10.1016/j.compag.2017.04.004

Carrer, M. J., Silveira, R. L. F., & Souza Filho, H. M. (2019). Factors influencing hedging decision: Evidence from Brazilian citrus growers. Australian Journal of Agricultural and Resource Economics, 63, 1–19. 10.1111/1467-8489.12282

Carrer, M. J., Silveira, R. L. F., Souza Filho, H. M., & Vinholis, M. M. B. (2013). Factors influencing beef cattle farmers use of risk management instruments in the state of São Paulo, Brazil. Ciência Rural, 43, 370–376. 10.1590/0103-8478cr20160759

Costa, C. H. G., Castro, L. G., Jr, Callegario, C. L. L., Andrade, F. T., & Oliveira, D. H. (2015). Fatores condicionantes da gestão de riscos de cafeicultores do sul de Minas Gerais. Organizações Rurais & Agroindustriais, 17, 40–55.

Cruz, J. C., Jr, Irwin, S. H., Marques, P. V., Martines Filho, J. G., & Bacchi, M. R. P. (2011). O excesso de confiança dos produtores de milho no Brasil e o uso de contratos futuros. Revista de Economia e Sociologia Rural, 49, 369–390.

Fahad, S., Wang, J., Hu, G., Wang, H., Yang, X., Shah, A. A., … Bilal, A. (2018). Empirical analysis of factors influencing farmers crop insurance decisions in Pakistan: Evidence from khyber pakhtunkhwa province. Land Use Policy, 75, 459–467. 10.1016/j.landusepol.2018.04.016

Fornazier, A., Souza, P. M., & Ponciano, N. J. A. (2012). A importância do seguro rural na redução de riscos da agropecuária. Revista de Estudos Sociais, 14, 39–52.

Greene, W. H. (2003). Econometric Analysis, Pearson Education.

Gujarati, D. N. (2009). Basic econometrics, New York, NY: Tata McGraw-Hill Education.

Hill, R. V., Hoddinott, J., & Kumar, N. (2013). Adoption of weather-index insurance: Learning from willingness to pay among a panel of households in rural Ethiopia. Agricultural Economics, 44, 385–398. 10.1111/agec.12023

Herwehe, L., & Scott, C. A. (2018). Drought adaptation and development: Small-scale irrigated agriculture in northeast Brazil. Climate and Development, 10, 337–346. 10.1080/17565529.2017.1301862

Instituto Brasileiro de Geografia e Estatística – IBGE. (2017). Censo Agropecuário 2017: Resultados Preliminares. Disponível em: www.sidra.ibge.gov.br

Li, C.-S., Liu, C.-C., & Zhang, Y. (2017). Determinants of agricultural household demand for insurance in China from 2004 to 2007. China Agricultural Economic Review, 9, 660–667. 10.1108/CAER-08-2017-0154

Macedo, L. O. B., Pacheco, A. B., & Santo, E. S. E. A. (2013). A evolução do programa de subvenção do prêmio do seguro rural: Uma avaliação do período de 2006-10. Revista de Estudos Sociais, 15, 99–112. 10.19093/res.v15i29.1860

Marr, A., Winkel, A., van Asseldonk, M., Lensink, R., & Bulte, E. (2016). Adoption and impact of index-insurance and credit for smallholder farmers in developing countries: A systematic review. Agricultural Finance Review, 76, 94–118. 10.1108/AFR-11-2015-0050

Medeiros, E. A. (2013). Avaliação da implementação do programa de subvenção do prêmio do seguro rural. Revista de Economia e Sociologia Rural, 51, 295–308. 10.1590/S0103-20032013000200005

Ministério da Agricultura, Pecuária e Abastecimento – MAPA. (2015). Seguro rural: Programa de subvenção ao prêmio do seguro Rural – PSR. Relatório estatístico 2015, Brasília, DF: Secretaria de Política Agrícola Departamento de Gestão de Riscos.

Ministério da Agricultura, Pecuária e Abastecimento – MAPA. (2016). Seguro rural: Programa de subvenção ao prêmio do seguro Rural - PSR. Relatório estatístico 2016, Brasília, DF: Secretaria de Política Agrícola Departamento de Gestão de Riscos.

Ministério da Agricultura, Pecuária e Abastecimento – MAPA. (2018). Plano agrícola e pecuário 2018/19.

Ministério da Agricultura, Pecuária e Abastecimento – MAPA. (2019). Atlas do seguro rural. Brasília, DF: Mapa, Disponível em:Retrieved from http://indicadores.agricultura.gov.br/atlasdoseguro/index.htm (acesso em 01/04/2019).

Mukhopadhyay, P., Sinha, M., & Sengupta, P. P. (2019). Determinants of farmers’ decision-making to accept crop insurance: A multinomial logit model approach. In J. Nayak, A. Abraham, B. Krishna, G. Chandra Sekhar, & A. Das, (Eds.), Soft computing in data analytics. Advances in intelligent systems and computing, Vol. 758, Singapore: Springer.

OECD – Organization for Economic Co-Operation and Development. (2009). Managing risk in agriculture: A holistic approach, Paris: OECD Publishing.

Ozaki, V. (2007). O papel do seguro na gestão de risco agrícola e os empecilhos para o seu desenvolvimento. Revista Brasileira de Risco e Seguro, 2, 75–92.

Ozaki, V. (2008). Em busca de um novo paradigma para o seguro rural no Brasil. Revista de Economia e Sociologia Rural, 46, 97–119. 10.1590/S0103-20032008000100005

Ozaki, V. (2010). Uma digressão sobre o programa de subvenção ao prêmio do seguro rural e as implicações para o futuro deste mercado. Revista de Economia e Sociologia Rural, 48, 495–514. 10.1590/S0103-20032010000400001

Pennings, J. M. E., & Leuthold, R. M. (2000). The role of farmer’s behavioral attitudes and heterogeneity in futures contracts usage. American Journal of Agricultural Economics, 82, 908–919. 10.1111/0002-9092.00090

Pires, G. F., Abrahão, G. M., Brumatti, L. M., Oliveira, L. J. C., Costa, M. H., Liddicoat, S., Ladle, R. J. (2016). Increased climate risk in Brazilian double cropping agriculture systems: Implications for land use in Northern Brazil. Agricultural and Forest Meteorology, 228-229, 286–298. 10.1016/j.agrformet.2016.07.005

Quiggin, J., Karagiannis, G., & Stanton, J. (1993). Crop insurance and crop production: An empirical study of moral hazard and adverse selection. Australian Journal of Agricultural Economics, 37, 95–113. 10.1111/j.1467-8489.1993.tb00531.x

Ramos, R. C., Franca, T. J. F., & Angelo, J. A. (2010). Uma lupa sobre o seguro rural no estado de São Paulo. Informações Econômicas, 40.

Raucci, G. L., Silveira, R. L. F., & Capitani, D. H. D. (2019). Development of weather derivatives: Evidence from Brazilian soybean market. Italian Review of Agricultural Economics, 74, 17–29.

Salazar, C., Jaime, M., Pinto, C., & Acuña, A. (2019). Interaction between crop insurance and technology adoption decisions: The case of wheat farmers in Chile. Australian Journal of Agricultural and Resource Economics, 63, 593–619. 10.1111/1467-8489.12307

Santeramo, F. G. (2018). Imperfect information and participation in insurance markets: Evidence from Italy. Agricultural Finance Review, 78, 183–194. 10.1108/AFR-06-2017-0053

Santos, G. R., Sousa, A. G., & Alvarenga, G. (2013). Seguro agrícola no Brasil e o desenvolvimento do programa de subvenção ao prêmio. Texto para Discussão, No. 1910, Instituto de Pesquisa Econômica Aplicada (IPEA), Brasília.

Silveira, R. L. F., Cruz, J. C., Jr,., & Saes, M. S. M. (2012). Uma análise da gestão de risco de preço por parte dos produtores de café arábica no Brasil. Revista de Economia e Sociologia Rural, 50, 397–410. 10.1590/S0103-20032012000300001

Silveira, R. L. F., Maia, A. G., Saes, M. S. M., & Cruz, J. C. Jr, (2013). Excesso de confiança em relação aos preços de venda: Um estudo entre cafeicultores. Revista de Administração, 48, 399–408. 10.5700/rausp1095

Silveira, R. L. F., Maia, A. G., Cruz, J. C., Jr,., & Saes, M. S. M. (2014). Influence of farmers’ behavioral attitudes on hedging decisions. Academia Revista Latinoamericana de Administración, 27, 355–365. 10.1108/ARLA-04-2013-0015

Smith, V. H., & Goodwin, B. K. (1996). Crop insurance, moral hazard, and agricultural chemical use. American Journal of Agricultural Economics, 78, 428–438. 10.2307/1243714

Ullah, R., Jourdain, D., Shivakoti, G. P., & Dhakal, S. (2015). Managing catastrophic risks in agriculture: Simultaneous adoption of diversification and precautionary savings. International Journal of Disaster Risk Reduction, 12, 268–277. 10.1016/j.ijdrr.2015.02.001

Velandia, M., Rejesus, R. M., Knight, T. O., & Sherrick, B. J. (2009). Factors affecting farmers’ utilization of agricultural risk management tools: The case of crop insurance, forward contracting, and spreading sales. Journal of Agricultural and Applied Economics, 41, 107–123. 10.1017/S1074070800002583

Vergara, A., Coble, K., Knight, T., Patrick, G., & Baquet, A. (2004). Cotton producers’ choice of marketing techniques. Agribusiness, 20, 465–479.

Vinholis, M. D. M. B., Souza Filho, H. M. D., Carrer, M. J., & Chaddad, F. R. (2016). Determinants of recognition of TRACES certification as valuable opportunity at the farm level in São Paulo. Production, 26, 78–90. 10.1590/0103-6513.146513

Von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior, Princeton, NJ: Princeton University Press.

Ward, P. S., & Singh, V. (2015). Using field experiments to elicit risk and ambiguity preferences: Behavioural factors and the adoption of new agricultural technologies in rural India. The Journal of Development Studies, 51, 707–724. 10.1080/00220388.2014.989996

Was, A., & Kobus, P. (2018). Factors differentiating the level of crop insurance at Polish farms. Agricultural Finance Review, 78, 209–222.

Zubor-Nemes, A., Fogarasi, J., Molnár, A., & Kemény, G. (2018). Farmers’ responses to the changes in Hungarian agricultural insurance system. Agricultural Finance Review, 78, 275–288. 10.1108/AFR-06-2017-0048

Downloads

Published

2021-02-17

Issue

Section

Research Paper

Funding data