Understanding the role of physical trial for good shopping decisions

Authors

DOI:

https://doi.org/10.1108/rausp-12-2023-0245

Keywords:

Product trial, Decision quality, Perceived fit, Experience goods, Mixed methods

Abstract

Purpose

In the context of omnichannel distribution development, this study aims to understand how and why trying products out helps people make good purchase decisions (i.e. decisions that they do not regret later).

Design/methodology/approach

The paper uses mixed methods consisting of an experiment (n = 162), a series of interviews with consumers (n = 16) and in-store observations (n = 202).

Findings

Results show that trying products out allows us to evaluate how they will fit, which increases purchase intention. They also indicate that trying leads to better decision-making.

Research limitations/implications

This paper enriches product trial literature and sheds new light on how sales channels combine in omnichannel distribution.

Practical implications

The conclusions of this research will be useful to retailers who want to help consumers make better purchasing decisions.

Social implications

Helping consumers make better decisions minimizes the societal impact of consumption by reducing the frequency of re-purchases and product returns.

Originality/value

The originality of this research lies in using mixed methods, providing a complete understanding of why consumers try products out and how they do so.

Downloads

Download data is not yet available.

References

Abdulla, H., Ketzenberg, M., & Abbey, J. D. (2019). Taking stock of consumer returns: a review and classification of the literature. Journal of Operations Management, 65(6), 560–605, doi: 10.1002/joom.1047.

Ackermann, L., Mugge, R., & Schoormans, J. (2018). Consumers’ perspective on product care: an exploratory study of motivators, ability factors, and triggers. Journal of Cleaner Production, 183, 380–391, doi: 10.1016/j.jclepro.2018.02.099.

Boote, J., & Mathews, A. (1999). “Saying is one thing; doing is another”: the role of observation in marketing research. Qualitative Market Research: An International Journal, 2(1), 15–21, doi: 10.1108/13522759910251909.

Bui, M., Krishen, A. S., & Bates, K. (2011). Modeling regret effects on consumer post‐purchase decisions. European Journal of Marketing, 45(7/8), 1068–1090, doi: 10.1108/03090561111137615.

Davis, D. F., Golicic, S. L., & Boerstler, C. N. (2011). Benefits and challenges of conducting multiple methods research in marketing. Journal of the Academy of Marketing Science, 39(3), 467–479, doi: 10.1007/s11747-010-0204-7.

Davis, D. F., Golicic, S. L., Boerstler, C. N., Choi, S., & Oh, H. (2013). Does marketing research suffer from methods myopia? Journal of Business Research, 66(9), 1245–1250, doi: 10.1016/j.jbusres.2012.02.020.

Derbaix, C. (1983). Perceived risk and risk relievers: an empirical investigation. Journal of Economic Psychology, 3(1), 19–38. doi: 10.1016/0167-4870(83)90056-9.

Engel, J. F., Kollat, D. T., & Blackwell, R. D. (1968). Consumer behavior, New York, NY: Holt, Rinehart, and Winston.

Fernández, N. V., Pérez, M. J. S., & Vázquez-Casielles, R. (2018). Webroomers versus showroomers: Are they the same? Journal of Business Research, 92, 300–320, doi: 10.1016/j.jbusres.2018.08.004.

Field, A. (2012). Discovering statistics using SPSS: and sex and drugs and rock’n’roll, 3. ed., repr)., Sage:

Flavián, C., Gurrea, R., & Orús, C. (2019). Feeling confident and smart with webrooming: Understanding the consumer’s path to satisfaction. Journal of Interactive Marketing, 47, 1–15, doi: 10.1016/j.intmar.2019.02.002.

Flavián, C., Gurrea, R., & Orús, C. (2020). Combining channels to make smart purchases: the role of webrooming and showrooming. Journal of Retailing and Consumer Services, 52, 101923, doi: 10.1016/j.jretconser.2019.101923.

Gensler, S., Neslin, S. A., & Verhoef, P. C. (2017). The showrooming phenomenon: It’s more than just about price. Journal of Interactive Marketing, 38, 29–43, doi: 10.1016/j.intmar.2017.01.003.

Goering, P. A. (1985). Effects of product trial on consumer, demand, and prices. Journal of Consumer Research, 12(1), 74–82. doi: 10.1086/209036.

Gomes, L. A. V., Vasconcellos, L., & Hamza, K. M. (2023). Editorial: a roadmap for data analysis in qualitative research. RAUSP Management Journal, 58(3), 190–196, doi: 10.1108/RAUSP-07-2023-274.

Hair, J. F. (2019). Multivariate data analysis, Eighth edition., Cengage.

Haridasan, A. C., Fernando, A. G., & Saju, B. (2021). A systematic review of consumer information search in online and offline environments. RAUSP Management Journal, 56(2), 234–253, doi: 10.1108/RAUSP-08-2019-0174.

Hauser, J. R. (2014). Consideration-set heuristics. Journal of Business Research, 67(8), 1688–1699, doi: 10.1016/j.jbusres.2014.02.015.

Jacoby, J., & Kaplan, L. B. (1972). The components of perceived risk. SV - Proceedings of the Third Annual Conference of the Association for Consumer Research, SV-02, 382–393. http://acrwebsite.org/volumes/12016/volumes/sv02/SV-02

Kempf, D. S., & Smith, R. E. (1998). Consumer processing of product trial and the influence of prior advertising: a structural modeling approach. Journal of Marketing Research, 35(3), 325–338. doi: 10.1177/002224379803500304.

Mahardika, H., Thomas, D., Ewing, M. T., & Japutra, A. (2020). Comparing the temporal stability of behavioral expectation and behavioral intention in the prediction of consumers pro-environmental behavior. Journal of Retailing and Consumer Services, 54, 101943, doi: 10.1016/j.jretconser.2019.101943.

Mandal, P., Basu, P., & Saha, K. (2021). Forays into omnichannel: an online retailer’s strategies for managing product returns. European Journal of Operational Research, 292(2), 633–651, doi: 10.1016/j.ejor.2020.10.042.

Marks, L. J., & Kamins, M. A. (1988). The use of product sampling and advertising: Effects of sequence of exposure and degree of advertising claim exaggeration on consumer’s belief strength, belief confidence, and attitudes. Journal of Marketing Research, 25(3), 166–281. doi: 10.2307/3172529.

Nelson, P. (1970). Information and consumer behavior. Journal of Political Economy, 78(2), 311–329, doi: 10.1086/259630.

Nelson, P. (1974). Advertising as information. Journal of Political Economy, 82(4), 729–754, doi: 10.1086/260231.

Olson, J. C., & Dover, P. A. (1979). Disconfirmation of consumer expectations through product trial. Journal of Applied Psychology, 64(2), 179–189. doi: 10.1037/0021-9010.64.2.179.

Peck, J., & Childers, T. L. (2003a). Individual differences in haptic information processing: the “need for touch” scale. Journal of Consumer Research, 30(3), 430–442, doi: 10.1086/378619.

Peck, J., & Childers, T. L. (2003b). To have and to hold: the influence of haptic information on product judgments. Journal of Marketing, 67(2), 35–48, doi: 10.1509/jmkg.67.2.35.18612.

Peterson, R. A. (1994). A Meta-Analysis of Cronbach’s coefficient alpha. Journal of Consumer Research, 21(2), 381, doi: 10.1086/209405.

Pozzebon, M., & De Souza Bido, D. (2019). Research methods in management: Advances and applications. RAUSP Management Journal, 54(4), 366–370, doi: 10.1108/RAUSP-10-2019-148.

Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40(3), 879–891, doi: 10.3758/BRM.40.3.879.

Pyo, T.-H., Lee, J. Y., & Park, H. M. (2022). The effects of consumer preference and peer influence on trial of an experience good. Journal of Marketing Research, 59(6), 1161–1178, doi: 10.1177/00222437221093603.

Rejeb, A., Rejeb, K., & Treiblmaier, H. (2021). How augmented reality impacts retail marketing: a state-of-the-art review from a consumer perspective. Journal of Strategic Marketing, 31(3), 1–31, doi: 10.1080/0965254X.2021.1972439.

Rogers, E. M. (1995). Diffusion of innovations, 3rd ed., London: Free Press, Collier Macmillan.

Rogers, S. (2003). The effect of sponsor relevance on consumer reactions to internet sponsorships. Journal of Advertising, 32(4), 67–76, doi: 10.1080/00913367.2003.10639141.

Seeger, M. K., Kemper, J., & Brettel, M. (2019). How information processing and mobile channel choice influence product returns: an empirical analysis. Psychology & Marketing, 36(3), 198–213, doi: 10.1002/mar.21170.

Sharma, N., & Dutta, N. (2023). Omnichannel retailing: Exploring future research avenues in retail marketing and distribution management. International Journal of Retail & Distribution Management, 51(7), 894–919, doi: 10.1108/IJRDM-05-2022-0166.

Smith, R. E., & Swinyard, W. R. (1983). Attitude-Behaviour consistency: the impact of product trial versus advertising. Journal of Marketing Research, 20(3), 257–267. doi: 10.1177/002224378302000304.

Srivastava, P. R., Zhang, J. Z., Eachempati, P., Sharma, S. K., & Liu, Y. (2022). An intelligent omnichannel assortment model to manage webrooming: an optimization approach. Journal of Strategic Marketing, 1–25, doi: 10.1080/0965254X.2022.2067072.

Tashakkori, A., Teddlie, C., & Teddlie, C. B. (1998). Mixed methodology: Combining qualitative and quantitative approaches, SAGE.

Thøgersen, J. (2022). We need a sustainable consumption pattern. RAUSP Management Journal, 57(3), 347–353, doi: 10.1108/RAUSP-05-2022-267.

Verhoef, P. C. (2021). Omni-channel retailing: Some reflections. Journal of Strategic Marketing, 29(7), 608–616, doi: 10.1080/0965254X.2021.1892163.

Weathers, D., Sharma, S., & Wood, S. L. (2007). Effects of online communication practices on consumer perceptions of performance uncertainty for search and experience goods. Journal of Retailing, 83(4), 393–401, doi: 10.1016/j.jretai.2007.03.009.

Wright, M. J., & Stern, P. (2015). Forecasting new product trial with analogous series. Journal of Business Research, 68(8), 1732–1738, doi: 10.1016/j.jbusres.2015.03.032.

Downloads

Published

2024-11-25

Issue

Section

Research Paper