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ABSTRACT

OBJECTIVE: To evaluate locomotor activity in four field populations of Ae. aegypti with different 
insecticide resistance profiles from the state of São Paulo for two years.

METHODS: This study comprised the susceptible Rockefeller strain and four populations from 
São Paulo, Brazil: two considered populations with “reduced susceptibility” to pyrethroids 
(Campinas and Marília), and two “resistant populations” (Santos and Ribeirão Preto). First, 
2016 and 2017 eggs from these five populations were hatched in laboratory. Virgin females 
underwent experiments under laboratory conditions at 25°C, with 12:12h light/dark (LD) 
photoperiod; 24-hour individual activity was recorded using a locomotor activity monitor (LAM).

RESULTS: In females from 2016 field populations, both resistant populations showed significant 
more locomotor activity than the two reduced susceptibility populations and the Rockefeller 
strain (p < 0.05). As for females from 2017 field populations, reduced susceptibility populations 
showed a significant increased locomotor activity than the Rockefeller strain, but no significant 
difference when compared to Santos resistant population (p > 0.05).

CONCLUSIONS: Our results indicate that insecticide-resistant Ae. aegypti populations show 
increased locomotor activity, which may affect the transmission dynamics of their arboviruses.
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INTRODUCTION

Aedes (Stegomyia) aegypti (Linnaeus, 1762) is a mosquito highly adapted to the urban 
environment, often found inside human dwellings and their surroundings1–3. This diurnal 
and anthropophilic species is the primary vector of several arboviruses, such as dengue, 
chikungunya, and Zika – all mainly transmitted to humans through the bite of an infected 
female Ae. aegypti3.

Among the measures adopted to control Ae. Aegypti, using chemical insecticides has been 
proposed as chemical control, eliminating or relocating breeding sites as mechanical 
control and applying Bacillus thuringiensis insraelensis (Bti) larvicide as biological control4. 
With dichloro-diphenyl trichloroethane (DDT) development in 1939 new prospects loomed 
regarding the species, including its eradication in Brazil and neighboring countries by 19585-7. 
In general, all chemical insecticide classes act on mosquito’s central nervous system (CNS), 
inducing the “knockdown effect”8.

Besides the organochlorine class (OC), which contains DDT, chemical organophosphate 
(OP), carbamate (CA), and pyrethroid (PY) insecticides are also used against Ae. aegypti 
and other mosquito vectors8,9. Whereas OC and PY act by destabilizing the balance and 
passage of sodium and potassium ions though the voltage-gated sodium channel (NaV)10, 
OP and CA act by phosphorylating acetylcholinesterase (AChE), preventing acetylcholine 
(Acetyl-COA) degradation and thus disrupting the following neuron action potential8.

The massive use of chemical insecticides may lead different Ae. aegypti populations to 
develop resistance. The first case of DDT-resistance in Ae. aegypti populations was reported 
in Cúcuta, Colombia, in 19577. Besides resistance, DDT also incur a long residual action in 
the environment, affecting agriculture and aquatic ecosystems, besides having a hazardous 
effect on human health, so that its use in the Americas declined in the early 1970s9,11.

In Brazilian Ae. Aegypti populations, insecticide resistance was first observed in 1994, with 
reduced susceptibility to organophosphates12. Due to Ae. aegypti decreased sensitivity to PY 
and OP, several populations of this mosquito have been monitored in São Paulo12, indicating 
high levels of PY resistance, especially in the cities of Santos and Ribeirão Preto13,14, highly 
urbanized areas. In turn, Ae. aegypti populations from Marília and Campinas showed low 
levels of PY-resistance and susceptibility to OP insecticides13,14.

The World Health Organization (WHO) classifies mosquitoes susceptibility profile according 
to mortality, as follows: > 98% mortality is deemed susceptible; < 98% as suspected 
resistance; 90–97% as suspected presence of resistant genes; and < 90% as confirmed 
presence of resistant genes15. Mosquito vectors acquire resistance to PY through the 
structural alteration of specific genes due to random and non-synonymous substitutions, 
encoding altered target proteins and reducing insecticides molecules binding16. Such 
mutations, known as “knockdown resistance” (Kdr), were first detected in Musca 
domestica as a leucine-to-phenylalanine substitution (L1014F) and are passed down to new 
generations16,17. Two mutations are widespread among Brazilian Ae. aegypti populations: 
phenylalanine-to-cysteine (F1534C) and valine-to-isoleucine (V1016I) substitution – both 
related to the phenotypic profile of pyrethroid resistance14,18,19.

The daily activities of mosquito vectors, such as mating, blood-feeding, f light, and 
oviposition, are controlled by a circadian clock20. Ae. aegypti often present a diurnal and 
bimodal locomotor activity, with morning and afternoon peaks2. However, insemination, 
blood-feeding21, and dengue infection22 may influence this species’ locomotor activity and 
consequently its arbovirus transmission dynamics23. Brito et al. (2013) found Ae. aegypti 
with Kdr mutations to show a significant increase in locomotor activity when compared 
to the Rockefeller strain24. Considering that, studies evaluating the locomotor activity of 
resistant populations are necessary for providing a better understanding of the effects of 
insecticide resistance on Ae. aegypti locomotor activity.

https://doi.org/10.11606/s1518-8787.2021055002809
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We assess the hypothesis that insecticide-resistant Ae. aegypti populations present an 
increased locomotor activity, potentially favoring arboviruses transmission dynamics. 
This study sought to assess locomotor activity of four Ae. aegypti populations with different 
insecticide resistance profiles from the state of São Paulo over two years.

METHODS

Population Profiles

Aedes aegypti populations from São Paulo, Brazil, were selected by the phenotype profile of 
insecticide resistance. Based on bioassays tests14 and following WHO criteria15, populations 
from the municipalities of Campinas (22°54’26’’S; 47°3’48’’W) and Marília (22°12’50’’S; 
49°56’45’’W) were considered as presenting “reduced susceptibility” to pyrethroid (PY), whereas 
populations from Santos (23°56’41’’S; 46°19’49’’W) and Ribeirão Preto (21°10’39’’S; 47°48’37’’W) 
were considered “resistant” (Figure 1). We also tested the Rockefeller strain (from the Centers 
for Disease Control and Prevention-CDC, San Juan, Puerto Rico), a laboratory reference strain 
susceptible to insecticides and frequently used for monitoring Ae. aegypti field populations 
biological responses13. For presenting a > 98% mortality to pyrethroids (susceptible), this strain 
enables the comparison with reduced-susceptibility and resistant populations. Ae. aegypti 
populations from 2016 and 2017 underwent experiments, except for Ribeirão Preto, which 
was only tested in 2016. Eggs were collected using ovitraps during Spring – the pre-epidemic 
season. The susceptibility/resistance status of non-blood-fed female Ae. aegypti (2–5 days old) 
was evaluated based on mortality rates obtained from bioassays using insecticide-impregnated 
papers, according to WHO methodology14,15. Insecticide dose was established as the double 
of 99% lethal dose obtained to a susceptible strain.

Mosquito Rearing

For hatching, eggs from each population were placed in 10 x 10 x 5 cm labeled trays 
containing 400 mL of tap water and 0.2 mg of fish food (Tetramin®). Larvae were kept in 
30 x 20 x 5 cm labeled trays with 1 L of tap water and 20 mg of fish food. Hatching trays 
were kept in an incubator at 25° Celsius and 70% relative humidity with 12 hours of light 
and 12 hours of dark (LD 12:12). All pupae were placed in individual small containers 

Figure 1. Ae. aegypti population profile according to insecticide resistance. (A) Brazil Map highlighting the state of São Paulo. (B) São Paulo 
municipalities with the Ae. aegypti populations tested. Reduced susceptibility to pyrethroids (grey – Campinas and Marília) and resistant 
(black – Santos and Ribeirão Preto).
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with 5 mL of tap water until emergence, ensuring virgin females. Then, females from each 
population were transferred to labeled cages and kept in the same incubator under the 
same photoperiod, temperature, and humidity as the rearing phase.

Analysis of Locomotor Activity

Three-to-four-days-old females from all tested populations (Campinas, Marília, Santos, 
Ribeirão Preto and Rockefeller) were anesthetized in ice and then placed in individual glass 
tubes (1 cm x 10 cm). Adults were fed by a 10% sucrose-soaked cotton plug. Glass tubes 
were sealed with Parafilm and placed in the locomotor activity monitor (TriKinects Inc, 
Waltham, MA, USA), which was equipped with infrared beam and detectors, counting 
every time mosquitoes broke the beam and measuring their activity-rest pattern25,26. 
All monitors were placed within a Precision Scientific Incubator Model 818, under LD 
12:12 and constant temperature of 25ºC. In our experiments, light functioned as the 
Zeitgeber (ZT) – a Germanic term that means “time giver” or synchronizer21. In a LD 
12:12 cycle, for example, ZT02 corresponds to 2 hours after lights are on and ZT14 to 
2 hours after lights are off.

Each female’s total activity was individually recorded for seven consecutive days, at 
30-minute intervals, using the DAMSystem data acquisition software. At least two replicate 
experiments were conducted for all populations in 2016 and 2017 (except for Ribeirão Preto, 
which only comprised populations from 2016). Only females that survived until the sixth day 
of the experiment were analyzed (Table 1), and data from the second to the fifth day of the 
experiment were used for analysis.

William’s mean (Wm) was calculated as an estimate of the central tendency activity during 
each 30 minute-interval21,16. William’s mean is a modification of geometric mean related 
to data log-transformation to accommodate zero values by adding 1 to all data values and 
then subtracting 1 from the mean27,28.

Statistical Analysis

The means of total activity (24 hours), diurnal activity without lights-on (excluding the 
first 30 minutes of the diurnal phase lights-on due to the “startle response effect” resulting 
from the dark-light transition)21, and half-day activity (HDA; ZT06 to ZT12 interval) 
were calculated for each mosquito. Each mosquito mean HDA, calculated using all log 
(N+1) values related to every ZT06-ZT12 30-min interval, was employed in statistical 
analyses. We chose half-day activity for statistical analyses because Ae. aegypti shows 

Table 1. Means of female Ae. aegypti locomotor activity according to insecticide resistance profile.

Year Profile Population n

Mean (SD)

Total activity 
(24h)

Diurnal activity without 
lights-on (11.5h)

HDA
(ZT06 to ZT12)

2016 Reduced Campinas 95b 0.43 (0.16) 0.68 (0.26) 0.83 (0.28)

  susceptibility Marília 104b 0.43 (0.19) 0.62 (0.25) 0.79 (0.26)

 
Resistant

Santos 68a 0.48 (0.17) 0.73 (0.25) 0.91 (0.28)

  Ribeirão Preto 73a 0.57 (0.21) 0.83 (0.30) 0.97 (0.29)

  Susceptible Rockefeller 75a 0.45 (0.16) 0.62 (0.21) 0.78 (0.23)

2017 Reduced Campinas 96b 0.58 (0.20) 0.83 (0.31) 0.96 (0.33)

  susceptibility Marília 43a 0.46 (0.18) 0.74 (0.29) 0.91 (0.31)

  Resistant Santos 63a 0.56 (0.20) 0.86 (0.32) 1.00 (0.35)

  Susceptible Rockefeller 72a 0.45 (0.16) 0.58 (0.22) 0.73 (0.24)

n: total number of individuals tested; SD: standard deviation; HDA: half-day activity.
a Two replicates.
b Three replicates.

https://doi.org/10.11606/s1518-8787.2021055002809
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greater activity during this time of the day2,29. Previous studies have also used this method 
to calculate the total, diurnal, and nocturnal Ae. aegypti locomotor activity means for 
statistical analysis21,27.

After calculating mean HDA, the Kolmogorov-Smirnov test was use to assess data normality. 
Once normality assumptions were satisfied, the parametric independent samples T-test 
was used to verify differences between replicas of each population in each year (when three 
replicas were present, one-way ANOVA was used). Independent samples T-test was also 
used to compare possible differences within the same population between years (temporal 
variation). One-way ANOVA and Fisher’s LSD post-hoc test compared locomotor activity 
between populations for the two years evaluated and among all five tested populations. 
Populations with reduced susceptibility or with resistant profile were not grouped for 
statistical analyses. All statistical analyses were performed in the software Statistical 
Package for the Social Science (SPSS), version 17, with α < 0.05.

RESULTS

We assessed 542 virgin females from four Ae. aegypti field populations (resistant and 
susceptible) and 147 the Rockefeller strain (Table 1). Table 1 shows the number of females 
within each tested population for 2016 and 2017 and the means of total activity, diurnal 
activity without lights-on, and half-day activity (HDA – ZT06 to ZT12 interval). All 
populations presented higher means in the ZT06-ZT12 interval, when Ae. aegypti showed 
more locomotor activity.

Figure 2 shows locomotor activity of populations with reduced susceptibility, from Campinas 
(A) and Marília (B), resistant populations, from Santos (C) and Ribeirão Preto (only 2016) (D), 
and for the Rockefeller strain (E), all for 2016 and 2017, during the four days of experiment 
(days 2-5). All populations showed a diurnal and bimodal locomotor activity pattern, peaking 
at lights-on and near lights-off (Figure 2 A-E).

The 2017 populations from Campinas and Marília showed significantly increased locomotor 
activity during light phase when compared to 2016 populations (T-test, ZT06 to ZT12 interval; 
t = -2.991, p = 0.003 and t = -2.479, p = 0.014 respectively), suggesting a temporal variation 
(Figures 2A and B). However, we found no significant differences in the locomotor activity 
of Santos and Rockefeller populations between 2016 and 2017 (T-test, ZT06 to ZT12 interval; 
t = -1.555, p = 0.122 and t = 1.305, p = 0.194 respectively) (Figures 2C and E). As for Riberião 
Preto, no temporal comparison was possible as we only had data regarding 2016 (Figure 
2D). The replicates of each population in 2016 and 2017 presented no significant difference 
(ANOVA, p > 0.05 and t-test, p > 0.05).

Table 2 shows Fisher’s LSD post-hoc results for Ae. aegypti populations with reduced 
susceptibility, resistant populations, and Rockefeller strain. In 2016, the Rockefeller strain 
showed a higher second peak compared to Marilia and Campinas (Figure 3A). However, both 
reduced susceptibility populations showed no significant difference in ZT06-ZT12 interval 
means when compared to the Rockefeller strain (p = 0.234 and p = 0.815, respectively) 
(Table 2). We also verified no significant differences between the populations of Marilia 
and Campinas (p = 0.296) (Table 2).

Populations from Santos and Ribeirão Preto presented significantly increased locomotor 
activity when compared to the Rockefeller strain, especially during the anticipation period 
(from ZT06 to ZT12) (Figure 3B). ZT06-ZT12 interval means were significantly higher 
in resistant populations than in the reduced susceptibility populations from Campinas 
(p = 0.044 and p < 0.001, respectively) and Marília (p = 0.003 and p < 0.0001, respectively), 
and in the Rockefeller strain (p = 0.003 and p < 0.0001, respectively) (Table 2). However, we 
found no significant difference between the 2016 populations from Santos and Ribeirão 
Preto (p = 0.175) (Table 2).

https://doi.org/10.11606/s1518-8787.2021055002809
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Although 2017 populations from Campinas and Marília showed no significant differences 
in locomotor activity between them (p = 0.379) (Table 2), when compared to the Rockefeller 
strain locomotor activity was significantly increased (p < 0.0001 and p = 0.003, respectively), 
especially during the photophase (Figure 3C).

Contrary to 2016, Campinas and Marília populations did not differ significantly from Santos 
resistant population (p = 0.446 and p = 0.150, respectively) (Figure 3D; Table 2). Santos 
population differed significantly from the Rockefeller strain (p < 0.0001).

Figure 2. Locomotor activity of Ae. aegypti populations in 2016 and 2017. Locomotor activity of Ae. 
aegypti populations with reduced susceptibility (A – Campinas and B – Marília), resistant (C – Santos 
and D – Ribeirão Preto), and Rockefeller strain (E) in 2016 (grey area) and 2017 (line with triangles), 
under LD 12:12, at 25°C. Error bars are represented by solid (2016) and dashed (2017) lines. White 
bar represents the photophase and black bar the scothophase. ZT: Zeitgeber time; ZT0: time the light 
turns on; ZT12: time the light turns off.
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DISCUSSION

Ae. aegypti resistant populations presented increased locomotor activity when 
compared to two populations with reduced susceptibility and to the susceptible 
Rockefeller laboratory strain. We also verified a temporal variation in the locomotor 
activity of both reduced susceptibility populations (Campinas and Marília): these 
populations showed lower locomotor activity than Santos and Ribeirão Preto resistant 
populations in 2016, but not in 2017. Chemical insecticides are still widely used to 
control Ae. aegypti mosquitoes, acting on their central nervous system, especially in 
axonal regions and at the voltage-gated sodium channel (NaV). Yet, the indiscriminate 
use of different insecticides classes has spurred random mutations, responsible for the 
development of insecticide resistance phenotype in different Ae. aegypti populations 
around the world18,30.

Table 2. Comparison between each population half-day activity (ZT06-ZT12) mean in relation to different 
insecticide resistance profiles.

Profile
Populations
(I versus J)

2016
Populations
(I versus J)

2017

Mean 
Difference (I-J)

p
Mean 

Difference (I-J)
pa

Reduced
susceptibility/
Susceptible

Camp versus Mar  0.040 0.296 Camp versus Mar  0.050 0.379

Camp versus Rock  0.049 0.234 Camp versus Rock  0.232 < 0.001

Mar versus Rock  0.009 0.815 Mar versus Rock  0.182 0.003

Reduced
susceptibility/
Resistant

Camp versus San  -0.085 0.044 Camp versus San  -0.038 0.446

Camp versus Rib  -0.147 < 0.001 Mar versus San  -0.088 0.150

Mar versus San  -0.125 0.003

Mar versus Rib  -0.186 < 0.001

Susceptible/ 
Resistant

San versus Rock  0.135 0.003 San versus Rock  0.270 < 0.001

Rib versus Rock  0.196 < 0.001      

Resistant San versus Rib  -0.061 0.175      

Camp: Campinas; Mar: Marilia; San: Santos; Rib: Ribeirao Preto; Rock: Rockefeller.
a Results with ANOVA One-way and Fisher’s LSD post hoc test.

Figure 3. Locomotor activity of Ae. aegypti populations. 2016: (A) Populations with reduced susceptibility from Campinas (line with squares; 
error bars, solid line) and Marília (triangles; error bars, dark dashed line); (B) Resistant populations from Santos (circles; error bars, solid line) 
and Ribeirão Preto (crosses; error bars, dark dashed line). 2017: (C) Populations with reduced susceptibility from Campinas and Marília. (D) 
Resistant population from Santos and susceptible populations from Campinas and Marília. Locomotor activity of susceptible Rockefeller 
strain in 2016 and 2017 is represented in A, B, and C by a shaded grey area with dashed error bar. White bar represents the photophase 
and black bar the scothophase. ZT: Zeitgeber time; ZT0: time the light turns on; ZT12: time the light turns off.
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Brito et al. (2013) evaluated several life-cycle aspects in a resistant Ae. aegypti strain with 
Kdr mutations, using the Rockefeller strain as control group. According to the authors, when 
compared to the susceptible allele, the mutation probably has a deleterious maintenance 
cost or a higher fitness cost. In their study, the Kdr strain showed a significantly increased 
locomotor activity during the light phase when compared to the control group. Our results 
corroborate those reported by Brito et al. (2013), as Ae. aegypti populations from Ribeirão 
Preto and Santos, classified as resistant, showed more locomotor activity than populations 
with reduced susceptibility and the Rockefeller strain, especially in 201624.

The 2016 populations from Campinas, Marília, and Rockefeller showed similar locomotor 
activity – significantly lower than that presented by the resistant populations from Santos 
and Ribeirão Preto. However, locomotor activity increased in Campinas and Marília in 2017, 
presenting significantly different values than the Rockefeller strain but not than Santos 
populations. This suggests a temporal variation that may be explained by changes in the 
pyrethroid mortality phenotype of these populations. In 2016, the mortality rate was 67% for 
the Campinas population and 96% for the Marília population; as for 2017, these values were 
53% and 52%, respectively [Macoris MLG unpublished data]. Santos resistant population 
showed a lower mortality rate (28% in 2016 and 40% in 2017) than Campinas and Marília 
populations [Macoris MLG unpublished data]. This data could justify this population greater 
locomotor activity in relation to the Rockefeller strain in the two evaluated years, and in 
relation to populations with reduced susceptibility in 2016.

Previous studies have described temporal variation in resistance alleles frequency for all 
tested populations. In 2001, Santos showed a 0.24 frequency for the resistant allele 1016Ile19. 
Ten years later, resistant allele frequencies were 0.77 for Campinas, 0.53 for Marília, and 
0.86, for Santos 19. In 2013, Ribeirão Preto presented a 0.68 frequency for the resistant allele 
1016Ile, and 0.80 for 1534Cys [Nakazato BM and Bracco JE unpublished data]. In 2014, the 
last follow-up data, Campinas and Marília populations presented a 0.63 frequency for both 
1016Ile and 1534Cys mutations. In the same year, both Santos and Ribeirão Preto populations 
also presented two fixed mutations (frequency 1.00)15. This finding may explain the similar 
locomotor activity results presented by Santos and Ribeirão Preto populations in 2016.

Few studies investigated the impact of insecticide resistance on Ae. aegypti locomotor 
activity, either in populations from São Paulo or elsewhere. Thus, our findings may help 
shedding light on several aspects directly involved in this mosquito’s activity, such as 
blood-feeding, flight, and oviposition. We observed an increased locomotor activity of 
female Ae. aegypti, possibly contributing biologically to their broader dispersion, greater 
number of blood meals, or any other aspect affecting arboviruses transmission dynamics. 
A mosquito vectorial capacity is calculated considering several variables. Host-feeding, 
for examples, exert greater influence on a pathogen’s basic reproductive rate (R0) than the 
abundance of mosquitoes31. Studies have suggested that the vector-biting rate is the most 
influential parameter for Zika virus transmission dynamics, causing the virus to invade 
a susceptible population32. DENV-2-infected female Ae. aegypti have been reported to 
present more locomotor activity than uninfected controls22. Such increased activity could 
raise infected mosquitoes biting rate, which, according to a mathematical model, could 
unfold into dengue outbreaks with greater numbers of primary and secondary infections 
and more severe biennial epidemics23. Thus, control measures should target reducing the 
vector-biting rate32. Mosquitoes circadian rhythms are mainly regulated by circadian 
clock neurons in the brain33, and mutations at sites in the mosquito central nervous system 
targeted by molecular pyrethroid are the major causes of resistance to this insecticide 
class24. Considering that, further studies should investigate whether these mutations are 
also associated with changes in locomotor activity.

Insecticide resistance in Anopheles mosquitoes, the main vectors of Plasmodium species, is 
a genuine concern throughout Africa, especially regarding Anopheles gambiae34. Different 
species of Anopheles mosquitoes resistant to insecticide also pose a concern for malaria 
control in other continents, including the Americas35. Few laboratory studies have compared 
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the daily activities of resistant and susceptible Anopheles females36–38. Resistant Anopheles 
gambiae mosquitoes, for example, the main malaria vector in Africa, showed a shift in peak 
biting periods from 21:00-22:00hrs to 03:00-04:00hrs36. A study evaluated the flight activity 
of resistant and susceptible Anopheles stephensi females under laboratory conditions37, 
finding resistant females to show lower flight activity in the first two days than susceptible 
females37, differently than that found in our study. Anopheles aquasalis females fed with 
blood containing Ivermectin also showed a decrease in locomotor activity38. Further studies 
should be conducted on this important subject.

As insecticide-resistant populations pose a growing obstacle to vector control programs, our 
results may contribute to other studies aimed at elucidating aspects involving insecticide 
resistance, arbovirus infection, and locomotor activity in this mosquito vector.

CONCLUSIONS

Ae. aegypti populations with insecticide resistance profile showed increased locomotor 
activity. In 2017, populations with reduced susceptibility presented an increase in the 
locomotor activity pattern, indicating a temporal change in relation to the previous year. 
The locomotor activity pattern in the populations from Campinas and Marília did not differ 
significantly from that found for Santos resistant population.

Our results indicate that insecticide-resistant Ae. aegypti populations show increased 
locomotor activity, which may affect their arboviruses transmission dynamics by increasing 
dispersion, number of blood meals, and other ecological parameters. Such results can shed 
light on these mechanisms action and effect in the context of an arbovirus epidemic, while 
helping to improve vector control strategies, innovations, and the epidemiology of this and 
other viral infections transmitted by Ae. aegypti.
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