Population-based seroprevalence of SARS-CoV-2 and the herd immunity threshold in Maranhão

Autores

  • Antônio Augusto Moura da Silva Universidade Federal do Maranhão
  • Lídio Gonçalves Lima-Neto Secretaria de Saúde do Estado do Maranhão
  • Conceição de Maria Pedrozo e Silva de Azevedo Universidade Federal do Maranhão
  • Léa Márcia Melo da Costa Secretaria de Saúde do Estado do Maranhão
  • Maylla Luanna Barbosa Martins Bragança Universidade Federal do Maranhão
  • Allan Kardec Duailibe Barros Filho Universidade Federal do Maranhão
  • Bernardo Bastos Wittlin Secretaria de Saúde do Estado do Maranhão
  • Bruno Feres de Souza Universidade Federal do Maranhão
  • Bruno Luciano Carneiro Alves de Oliveira Universidade Federal do Maranhão
  • Carolina Abreu de Carvalho Universidade Federal do Maranhão
  • Erika Barbara Abreu Fonseca Thomaz Universidade Federal do Maranhão
  • Eudes Alves Simões-Neto Universidade Federal do Maranhão
  • Jamesson Ferreira Leite Júnior Secretaria de Saúde do Estado do Maranhão
  • Lécia Maria Sousa Santos Cosme Universidade CEUMA
  • Marcos Adriano Garcia Campos Universidade Federal do Maranhão
  • Rejane Christine de Sousa Queiroz Universidade Federal do Maranhão
  • Sérgio Souza Costa Universidade Federal do Maranhão
  • Vitória Abreu de Carvalho Universidade Federal do Maranhão
  • Vanda Maria Ferreira Simões Universidade Federal do Maranhão
  • Maria Teresa Seabra Soares de Brito e Alves Universidade Federal do Maranhão
  • Alcione Miranda dos Santos Universidade Federal do Maranhão

DOI:

https://doi.org/10.11606/s1518-8787.2020054003278

Palavras-chave:

Seroepidemiologic Studies, Coronavirus Infections, Immunity, Herd, Mortality

Resumo

OBJECTIVE: To estimate the seroprevalence of SARS-CoV-2 in the state of Maranhão, Brazil. METHODS: A population-based household survey was performed, from July 27, 2020 to August 8, 2020. The estimates considered clustering, stratification and non-response. Qualitative detection of IgM and IgG antibodies was performed in a fully-automated Elecsys® Anti-SARS-CoV-2 electrochemiluminescence immunoassay on the Cobas® e601 analyzer (Roche Diagnostics). RESULTS: In total, 3,156 individuals were interviewed. Seroprevalence of total antibodies against SARS-CoV-2 was 40.4% (95%CI 35.6-45.3). Population adherence to non-pharmaceutical interventions was higher at the beginning of the pandemic than in the last month. SARS-CoV-2 infection rates were significantly lower among mask wearers and among those who maintained social and physical distancing in the last month compared to their counterparts. Among the infected, 26.0% were asymptomatic. The infection fatality rate (IFR) was 0.14%, higher for men and older adults. The IFR based on excess deaths was 0.28%. The ratio of estimated infections to reported cases was 22.2. CONCLUSIONS: To the best of our knowledge, the seroprevalence of SARS-CoV-2 estimated in this population-based survey is one of the highest reported. The local herd immunity threshold may have been reached or might be reached soon.

Biografia do Autor

  • Antônio Augusto Moura da Silva, Universidade Federal do Maranhão

    Universidade Federal do Maranhão. Departamento de Saúde Pública. São Luís, MA, Brasil

  • Lídio Gonçalves Lima-Neto, Secretaria de Saúde do Estado do Maranhão

    Secretaria de Saúde do Estado do Maranhão. Laboratório Central do Maranhão. São Luís, MA, Brasil
    Universidade CEUMA. São Luís, MA, Brasil

  • Conceição de Maria Pedrozo e Silva de Azevedo, Universidade Federal do Maranhão

    Universidade Federal do Maranhão. Departamento de Medicina I. São Luís, MA, Brasil
    Secretaria de Saúde do Estado do Maranhão. Hospital Presidente Vargas. São Luís, MA, Brasil

  • Léa Márcia Melo da Costa, Secretaria de Saúde do Estado do Maranhão

    Secretaria de Saúde do Estado do Maranhão. Assessoria. São Luís, MA, Brasil

  • Maylla Luanna Barbosa Martins Bragança, Universidade Federal do Maranhão

    Universidade Federal do Maranhão. Departamento de Ciências Fisiológicas. São Luís, MA, Brasil

  • Allan Kardec Duailibe Barros Filho, Universidade Federal do Maranhão

    Universidade Federal do Maranhão. Departamento de Engenharia Elétrica. São Luís, MA, Brasil

  • Bernardo Bastos Wittlin, Secretaria de Saúde do Estado do Maranhão

    Secretaria de Saúde do Estado do Maranhão. Hospital Presidente Vargas. São Luís, MA, Brasil

  • Bruno Feres de Souza, Universidade Federal do Maranhão

    Universidade Federal do Maranhão. Departamento de Engenharia da Computação. São Luís, MA, Brasil

  • Bruno Luciano Carneiro Alves de Oliveira, Universidade Federal do Maranhão

    Universidade Federal do Maranhão. Departamento de Medicina I. São Luís, MA, Brasil

  • Carolina Abreu de Carvalho, Universidade Federal do Maranhão

    Universidade Federal do Maranhão. Curso de Medicina. Pinheiro, MA, Brasil

  • Erika Barbara Abreu Fonseca Thomaz, Universidade Federal do Maranhão

    Universidade Federal do Maranhão. Departamento de Saúde Pública. São Luís, MA, Brasil

  • Eudes Alves Simões-Neto, Universidade Federal do Maranhão

    Universidade Federal do Maranhão. Hospital Universitário. São Luís, MA, Brasil
    Secretaria Municipal de Saúde. São Luís, MA, Brasil

  • Jamesson Ferreira Leite Júnior, Secretaria de Saúde do Estado do Maranhão

    Secretaria de Saúde do Estado do Maranhão. Centro de Informações Estratégicas de Vigilância em Saúde. São Luís, MA, Brasil

  • Lécia Maria Sousa Santos Cosme, Universidade CEUMA

    Universidade CEUMA. São Luís, MA, Brasil

  • Marcos Adriano Garcia Campos, Universidade Federal do Maranhão

    Universidade Federal do Maranhão. Programa de Pós-Graduação em Saúde Coletiva. São Luís, MA, Brasil

  • Rejane Christine de Sousa Queiroz, Universidade Federal do Maranhão

    Universidade Federal do Maranhão. Departamento de Saúde Pública. São Luís, MA, Brasil

  • Sérgio Souza Costa, Universidade Federal do Maranhão

    Universidade Federal do Maranhão. Departamento de Engenharia da Computação. São Luís, MA, Brasil

  • Vitória Abreu de Carvalho, Universidade Federal do Maranhão

    Universidade Federal do Maranhão. Programa de Pós-Graduação em Saúde Coletiva. São Luís, MA, Brasil

  • Vanda Maria Ferreira Simões, Universidade Federal do Maranhão

    Universidade Federal do Maranhão. Departamento de Saúde Pública. São Luís, MA, Brasil

  • Maria Teresa Seabra Soares de Brito e Alves, Universidade Federal do Maranhão

    Universidade Federal do Maranhão. Departamento de Saúde Pública. São Luís, MA, Brasil

  • Alcione Miranda dos Santos, Universidade Federal do Maranhão

    Universidade Federal do Maranhão. Departamento de Saúde Pública. São Luís, MA, Brasil

Referências

Johns Hopkins University. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. Baltimore, MD: CCSE; 2020 [cited 2020 Sept 21]. Available from: https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

The Lancet. COVID-19 in Brazil: “So what?” Lancet. 2020;395(10235):1461. https://doi.org/10.1016/S0140- 6736(20)31095-3

Candido DS, Claro IM, Jesus JG, Souza WM, Moreira FRR, Dellicour S, et al. Evolution and epidemic spread of SARS-CoV-2 in Brazil. Science. 2020;369(6508):1255-60. https://doi.org/10.1126/science.abd2161

Instituto Brasileiro de Geografia e Estatística. Projeção da população por sexo e idades simples, em 1º de julho - 2010/2060. Rio de Janeiro: IBGE; 2018 [cited 2020 Aug 18]. Available from: ftp://ftp.ibge.gov.br/Projecao_da_Populacao/Projecao_da_Populacao_2018/projecoes_2018_populacao_idade_simples_2010_2060.xls

Secretaria de Estado da Saúde do Maranhão. Bol Epidemiol COVID-19. 20 ago 2020 [cited 2020 Aug 21]. Available from:

https://www.saude.ma.gov.br/wp-content/uploads/2020/08/BOLETIM-20-08.pdf

Randolph HE, Barreiro LB. Herd immunity: understanding COVID-19. Immunity. 2020;52(5):737-41. https://doi.org/10.1016/j.immuni.2020.04.012

Aguas R, Corder RM, King JG, Gonçalves G, Ferreira MU, Gomes MGM. Herd immunity thresholds for SARS-CoV-2 estimated from unfolding epidemics. medRxiv [Preprint]. 2020 [posted 2020 Jul 24]. https://doi.org/10.1101/2020.07.23.20160762

Britton T, Ball F, Trapman P. A mathematical model reveals the influence of population heterogeneity on herd immunity to SARS-CoV-2. Science. 2020;369(6505):846-9. https://doi.org/10.1126/science.abc6810

Hallal PC, Hartwig FP, Horta BL, Victora GD, Silveira M, Struchiner C, et al. SARS-CoV-2 antibody prevalence in Brazil: results from two successive nationwide serological household surveys. Lancet Glob Heal. 2020;8(11):e1390–8.

https://doi.org/10.1016/S2214-109X(20)30387-9

Ioannidis J. The infection fatality rate of COVID-19 inferred from seroprevalence data. medRxiv [Preprint]. 2020 [posted 2020 Jul 14]. https://doi.org/10.1101/2020.05.13.20101253

Pollán M, Pérez-Gómez B, Pastor-Barriuso R, Oteo M, Hernán MA, Pérez-Olmeda M, et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study. Lancet. 2020;396(10250):535-44.

https://doi.org/10.1016/S0140-6736(20)31483-5

Rosenberg ES, Tesoriero JM, Rosenthal EM, Chung R, Barranco MA, Styer LM, et al. Cumulative incidence and diagnosis of SARS-CoV-2 infection in New York. Ann Epidemiol. 2020;48:23-29. e4. https://doi.org/10.1016/j.annepidem.2020.06.004

Tess BHC, Alves MCGP, Reinach F, Granato CFH, Rizzati EG, Pintão MC, et al. Inquérito domiciliar para monitorar a soroprevalência da infecção pelo vírus SARS-CoV-2 em adultos no município de São Paulo. São Paulo, SP: Projeto SoroEPI-MSP; 2020 [cited 2020 Aug 21]. Available from: https://0dea032c-2432-4690-b1e5-636d3cbeb2bf.filesusr.com/ugd/6b3408_90141a5c289e43cfb75c2ce6408d299e.pdf

Buss LF, Prete Jr CA, Abrahim CMM, Mendrone Jr AM, Salomon T, Almeida-Neto C, et al. COVID-19 herd immunity in the Brazilian Amazon. medRxiv [Preprint]. 2020 [posted 2020 Sept 21]. https://doi.org/10.1101/2020.09.16.20194787

Russell TW, Hellewell J, Jarvis CI, Zandvoort K, Abbott S, Ratnayake R, et al. Estimating the infection and case fatality ratio for coronavirus disease (COVID-19) using age-adjusted data from the outbreak on the Diamond Princess cruise ship, February 2020. Eurosurveillance. 2020;25(12):2000256. https://doi.org/10.2807/1560-7917.ES.2020.25.12.2000256

Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis. 2020;20(6):669-77. https://doi.org/10.1016/S1473-3099(20)30243-7

Ing AJ, Cocks C, Green JP. COVID-19: in the footsteps of Ernest Shackleton. Thorax. 2020;75(8):693-4. https://doi.org/10.1136/thoraxjnl-2020-215091

Meyerowitz-Katz G, Merone L. A systematic review and meta-analysis of published research data on COVID-19 infection-fatality rates. Int J Infect Dis. 2020;101:138–48. https://doi.org/10.1016/j.ijid.2020.09.1464

Menezes AMB, Victora CG, Hartwig FP, Silveira MF, Horta BL, Barros AJD, et al. High prevalence of symptoms among Brazilian subjects with antibodies against 2 SARS-CoV-2: a nationwide household survey. medRxiv [Preprint]. 2020 [posted 2020 Aug 12]. https://doi.org/10.1101/2020.08.10.20171942

Byambasuren O, Cardona M, Bell K, Clark J, McLaws ML, Glasziou P. Estimating the extent of true asymptomatic COVID-19 and its potential for community transmission: systematic review and meta-analysis. medRxiv [Preprint]. 2020 [posted 2020 Sept 13] https://doi.org/10.1101/2020.05.10.20097543

Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science. 2020;368(6490):489-93. https://doi.org/10.1126/science.abb3221

UNESCO. The International Standard Classification of Education ISCED 2011. Vol 5. Québec (CA): UNESCO Institute for Statistics; 2012 [cited 2020 Aug 21]. Available from: https://web.archive.org/web/20170106011231/https://uis.unesco.org/sites/default/files/documents/international-standard-classification-of-education-isced-2011-en.pdf

Travassos C, Williams DR. The concept and measurement of race and their relationshipto public health: a review focused on Brazil and the United States. Cad Saude Publica. 2004;20(3):660-78. https://doi.org/10.1590/S0102-311X2004000300003

Muench P, Jochum S, Wenderoth V, Ofenloch-Haehnle B, Hombach M, Strobl M, et al. Development and validation of the Elecsys Anti-SARS-CoV-2 Immunoassay as a highly specific tool for determining past exposure to SARS-CoV-2. J Clin Microbiol. 2020;58(10):e01694-20. https://doi.org/10.1128/JCM.01694-20

McGough SF, Johansson MA, Lipsitch M, Menzies NA. Nowcasting by Bayesian Smoothing: a flexible, generalizable model for real-time epidemic tracking. PLoS Comput Biol. 2020;16(4):e1007735. https://doi.org/10.1371/journal.pcbi.1007735

Conselho Nacional de Secretários de Saúde. Painel de análise do excesso de mortalidade por causas naturais no Brasil em 2020. Brasília, DF: CONASS; 2020 [cited 2020 Sept 21]. Available from: https://www.conass.org.br/indicadores-de-obitos-por-causas-naturais/

Marinho F, Torrens A, Teixeira R, França E, Nogales AM, Xavier D, et al. Excess mortality in Brazil: detailed description of trends in mortality during the COVID-19 pandemic. New York: Vital Strategies; 2020 [cited 2020 Aug 21]. Available from:

https://www.vitalstrategies.org/wp-content/uploads/RMS_ExcessMortality_BR_Report-English.pdf

Pastor-Barriuso R, Pérez-Gómez B, Hernán MA, Pérez-Olmeda M, Yotti R, Oteo J, et al. SARS-CoV-2 infection fatality risk in a nationwide seroepidemiological study. medRxiv [Preprint]. 2020 [posted 2020 Aug 7]. https://doi.org/10.1101/2020.08.06.20169722

Health Information and Quality Authority. Evidence summary of the immune response following infection with SARS- CoV-2 or other human coronaviruses. Dublin (IRL): HIQA; 2020 [cited 2020 Aug 21]. Available from: https://www.hiqa.ie/sites/default/files/2020-06/Evidencesummary_SARS-CoV-2-immune-response.pdf

Sekine T, Perez-Potti A, Rivera-Ballesteros O, Stralin K, Gorin JB, Olsson A, et al. Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell. 2020;183(1):158-68.e14. https://doi.org/10.1016/j.cell.2020.08.017

Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, et al. Targets of T Cell responses to SARS-CoV-2 Coronavirus in humans with COVID-19 disease and unexposed individuals. Cell. 2020;181(7):1489-1501.e15. https://doi.org/10.1016/j.cell.2020.05.015

Long QX, Tang XJ, Shi QL, Deng HJ, Yuan J, HU JL, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med. 2020;26(8):1200-4. https://doi.org/10.1038/s41591-020-0965-6

Perkmann T, Perkmann-Nagele N, Breyer MK, Breyer-Kohansal-R, Bugghuber OC, Hartl S, et al. Side by side comparison of three fully automated SARS-CoV-2 antibody assays with a focus on specificity. Clin Chem. 2020 Aug 10;hvaa198. https://doi.org/10.1093/clinchem/hvaa198. Epub ahead of print

Bastos ML, Tavaziva G, Abidi SK, Campbell JR, Haraoui LP, Johnston JC, et al. Diagnostic accuracy of serological tests for covid-19: systematic review and meta-analysis. BMJ. 2020;370:m2516. https://doi.org/10.1136/bmj.m2516

Flower B, Brown JC, Simmons B, Moshe M, Frise R, Penn R, et al. Clinical and laboratory evaluation of SARS-CoV-2 lateral flow assays for use in a national COVID-19 seroprevalence survey. Thorax. 2020 Aug 12;thoraxjnl-2020-215732.

https://doi.org/10.1136/thoraxjnl-2020-215732. Epub ahead of print.

Ward H, Atchison CJ, Whitaker M, Ainslie KEC, Elliott JE, Okell LC, et al. Antibody prevalence for SARS-CoV-2 in England following the first peak of the pandemic: REACT2 study in 100,000 adults. medRxiv [Preprint]. 2020 [posted 2020 Aug 21]. https://doi.org/10.1101/2020.08.12.20173690

Mahase E. Covid-19: two antibody tests are “highly specific” but vary in sensitivity, evaluations find. BMJ. 2020;369;m2066. https://doi.org/10.1136/bmj.m2066

Muecksch F, Wise H, Batchelor B, Squires M, Semple E, Richardson C, et al. Longitudinal analysis of clinical serology assay performance and neutralising antibody levels in COVID19 convalescents. medRxiv [Preprint]. 2020 [posted 2020 Aug 6]. https://doi.org/10.1101/2020.08.05.20169128

Tess BH, Granato CFH, Alves MCGP, Pintão MC, Rizzatti E, Nunes MC, et al. SARS-CoV-2 seroprevalence in the municipality of São Paulo, Brazil, ten weeks after the first reported case. medRxiv [Preprint]. 2020 [posted 2020 June 29,].

https://doi.org/10.1101/2020.06.29.20142331

Chu DK, Akl EA, Duda S, Solo K, Yaacoub S, Schünemann HJ, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet. 2020;395(10242):1973-87. https://doi.org/10.1016/S0140-6736(20)31142-9

Flaxman S, Mishra S, Gandy A, Unwin HJT, Mellan TA, Coupland H, et al. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature. 2020;584(7820):257-61. https://doi.org/10.1038/s41586-020-2405-7

Walker PGT, Whittaker C, Watson OJ, Baguelin M, Winskill P, Hamlet A, et al. The impact of COVID-19 and strategies for mitigation and suppression in low- and middle-income countries. Science. 2020;369(6502):413-22. https://doi.org/10.1126/science.abc0035

Kenyon C. COVID-19 infection fatality rate associated with incidence: a population-level analysis of 19 Spanish autonomous communities. Biology (Basel). 2020;9(6):128. https://doi.org/10.3390/biology9060128

Publicado

2020-12-12

Edição

Seção

Artigos Originais

Como Citar

Silva, A. A. M. da, Lima-Neto, L. G., Azevedo, C. de M. P. e S. de, Costa, L. M. M. da, Bragança, M. L. B. M., Barros Filho, A. K. D., Wittlin, B. B., Souza, B. F. de, Oliveira, B. L. C. A. de, Carvalho, C. A. de, Thomaz, E. B. A. F., Simões-Neto, E. A., Leite Júnior, J. F., Cosme, L. M. S. S., Campos, M. A. G., Queiroz, R. C. de S., Costa, S. S., Carvalho, V. A. de, Simões, V. M. F., … Santos, A. M. dos. (2020). Population-based seroprevalence of SARS-CoV-2 and the herd immunity threshold in Maranhão. Revista De Saúde Pública, 54, 131. https://doi.org/10.11606/s1518-8787.2020054003278