Correlação espacial da covid-19 com leitos de unidades de terapia intensiva no Paraná

Autores

DOI:

https://doi.org/10.11606/s1518-8787.2022056003868

Palavras-chave:

COVID-19, complicações, Unidades de Terapia Intensiva, provisão & distribuição, Análise Espacial, Necessidades e Demandas de Serviços de Saúde, Estudos Ecológicos

Resumo

OBJETIVO Analisar a correlação espacial entre os casos confirmados de covid-19 com os leitos de unidades de terapia intensiva exclusivos para a doença nos municípios do Paraná. MÉTODO Trata-se de um estudo epidemiológico, do tipo ecológico que utilizou dados do Informe Epidemiológico fornecido pela Secretaria de Estado da Saúde do Paraná sobre os casos confirmados de covid-19, no período de 12 de março de 2020 a 18 de janeiro de 2021. A quantidade de leitos de terapia intensiva exclusivos para covid-19 de cada município paranaense foi obtida pelo Cadastro Nacional de Estabelecimentos de Saúde disponibilizado online pelo Departamento de Informática do Sistema Único de Saúde. A variável leito de terapia intensiva foi analisada pelo Índice Bivariado de Moran (local e global). Para a identificação de áreas críticas e de transição utilizou-se o LISA Map. Para avaliar a correlação espacial foi utilizado o Índice Bivariado de Moran, considerando o nível de significância de 5%. RESULTADOS No período analisado foram confirmados 499.777 casos de covid-19 no Paraná e identificados 1.029 leitos de terapia intensiva exclusivos para a doença entre os municípios do estado. Foi identificado autocorrelação espacial positiva entre os casos confirmados de covid-19 (0,404–p ≤ 0,001) com os leitos de terapia intensiva exclusivos para a doença (0,085–p ≤ 0,001) e disparidades entre as regiões do Paraná. CONCLUSÃO A análise espacial permitiu confirmar a relação entre os casos confirmados de covid-19 e a distribuição de leitos de terapia intensiva exclusivos para a doença no Paraná e possibilitou identificar áreas prioritárias de atenção no estado, relacionadas à disseminação e controle da doença.

Referências

Frater JL, Zini G, d’Onofrio G, Rogers HJ. COVID-19 and the clinical hematology laboratory. Int J Lab Hematol. 2020;42 Suppl 1:11-8. https://doi.org/10.1111/ijlh.13229

World Health Organization. Middle East respiratory syndrome coronavirus (MERS-Cov). Geneva (CH): WHO; 2016 [citado 26 abr 2021]. Disponível em: https://www.who.int/emergencies/mers-cov/en/

Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Viral Diseases. Severe Acute Respiratory Syndrome (SARS). Atanta, GA: CDC; 2005 [citado 26 abr 2021]. Disponível em: https://www.cdc.gov/sars/about/faq.html

World Health Organization. Laboratory testing for coronavirus disease 2019 (COVID-19) in suspected human cases: interim guidance. Geneva (CH): WHO; 2020. Disponível em: https://www.who.int/publications-detail/laboratory-testing-for-2019-novel-coronavirus-in-suspected-human-cases-20200117

Yang WZ. [Thoughts of the COVID-19 outbreak phases changed from emergency response to the combination of emergent response and regular prevention and control activities]. Zhonghua Liu Xing Bing Xue Za Zhi. 2020;41(6):806-8. Chinese. https://doi.org/10.3760/cma.j.cn112338-20200404-00516

World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard. Geneva (CH): WHO; 2021 [citado 26 abr 2021]. Disponível em: https://covid19.who.int/

Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020;109:e102433. https://doi.org/10.1016/j.jaut.2020.102433

Zhang G, Hu C, Luo L, Fang F, Chen Y, Li J, et al. Clinical features and short-term outcomes of 221 patients with COVID-19 in Wuhan, China. J Clin Virol. 2020;127:104364. https://doi.org/10.1016/j.jcv.2020.104364

World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard: Brazil situation. Geneva (CH): WHO; 2021 [citado 26 abr 2021]. Disponível em: https://covid19.who.int/region/amro/country/br

Secretaria da Saúde do Estado do Paraná. Coronavírus (COVID-19): panorama Covid 19. Inf Epidemiol. 24 abr 2021 [citado 26 abr 2021]. Disponível em: https://www.saude.pr.gov.br/sites/default/arquivos_restritos/files/documento/2021-04/informe_epidemiologico_26_04_2021.pdf

Instituto Brasileiro de Geografia e Estatística. Cidades. Paraná: Panorama. Rio de Janeiro; IBGE; 2020 [citado 13 jan 2021]. Disponível em: https://cidades.ibge.gov.br/brasil/pr/panorama

Secretaria da Saúde do Estado do Paraná. Regionais de Saúde. Curitiba, PR; 2021 [citado 13 jan 2021]. Disponível em: http://www.saude.pr.gov.br/Pagina/Regionais-de-Saude

Secretaria da Saúde do Estado do Paraná. Coronavírus (COVID-19). Inf Epidemiol. 18 jan 2021 [citado 18 jan 2021]. Disponível em: https://www.saude.pr.gov.br/sites/default/arquivos_restritos/files/documento/2021-01/informe_epidemiologico_18_01_2021.pdf

Ministério da Saúde (BR), Departamento de Informática do Sistema Único de Saúde (DATASUS). CNES - recursos físicos - hospitalar - leitos complementares – Brasil. Brasília, DF; 2021 [citado 18 jan 2021]. Disponível em: http://tabnet.datasus.gov.br/cgi/tabcgi.exe?cnes/cnv/leiutibr.def

Melo JAVB. Policentralidade e mobilidade na Região Metropolitana do Rio de Janeiro. Bitácora Urbano Territorial. 2019;29(3):11-20. https://doi.org/10.15446/bitacora.v29n3.62420

Moran PAP. Notes on continuous stochastic phenomena. Biometrika. 1950;37(1-2):17-23. https://doi.org/10.1093/biomet/37.1-2.17

Anselin L, Smimov O. Visualizing multivariate spatial correlation with dynamically linked Windows. In: Anselin L, Rey S. editors. New tools for spatial data analysis: proceedings of the Specialist Meeting. Santa Barbara, CA: Center for Spatially Integrated Social Science (CSISS), University of California; 2002 [citado 18 jan 2021]. p. 1-20. Disponível em: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.201.2665&rep=rep1&type=pdf

Pedrosa NL, Albuquerque NLS. Análise espacial dos casos de COVID-19 e leitos de terapia intensiva no estado do Ceará, Brasil. Cienc Saude Colet. 2020;25 Suppl 1:2461-8. https://doi.org/10.1590/1413-81232020256.1.10952020

Gomes GGC, Bisco NCB, Paulo MF, Fabrin SCV, Fioco EM, Verri ED, et al. Perfil epidemiológico da Nova Doença Infecciosa do Coronavírus - COVID-19 (Sars-Cov-2) no mundo: estudo descritivo, janeiro-junho de 2020. Braz J Health Rev. 2020;3(4):7993-8007. https://doi.org/10.34119/bjhrv3n4-064

Garcia LP, Duarte E. Intervenções não farmacológicas para o enfrentamento à epidemia da COVID-19 no Brasil. Epidemiol Serv Saude. 2020;29(2):e2020222. https://doi.org/10.5123/s1679-49742020000200009

Ministério da Saúde (BR), Secretaria de Vigilância em Saúde. Doença pelo Coronavírus COVID-19. Bol Epidemiol: 2021[citado 18 jan 2021];(52 Nº Espec):1-85. Disponível em: http://saude.gov.br/images/pdf/2020/July/01/Boletim-epidemiologico-COVID-20-3.pdf

Lopes LFD, Faria RM, Lima MP, Kirchhof RS, Almeida DM, Moura GL. Descrição do perfil epidemiológico da Covid-19 na Região Sul do Brasil. Hygeia. 2020;16;188-98. https://doi.org/10.14393/Hygeia16054772

Crokidakis N. Modeling of the evolution of COVID-19 in Brazil: results from a Susceptible-Infectious-Quarantined-Recovered (SIQR) model. Int J Mod Phys C. 2020 [citado 16 jan 2021];31(10):2050135. Disponível em: https://arxiv.org/pdf/2003.12150.pdf

RankBR. Coronavírus a pandemia no Brasil [Internet]. Brasília; 2021 [citado 2021 abr 2021]. Disponível em: https://www.rankbr.com.br/

CDC COVID-19 Response Team. Geographic differences in COVID-19 cases, deaths, and incidence - United States, February 12-April 7, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(15):465-71. https://doi.org/10.15585/mmwr. mm6915e4

Kuchler T, Russel D, Stroebel J. The geographic spread of COVID-19 correlates with structure of social networks as measured by Facebook. Cambridge, MA: National Bureau of Economic Research; 2020. (NBER Working Papers; nº 26990). https://doi.org/10.3386/w26990

Zheng R, Xu Y, Wang W, Ning G, Bi Y. Spatial transmission of COVID-19 via public and private transportation in China. Travel Med Infect Dis. 2020;34:101626. https://doi.org/10.1016/j.tmaid.2020.101626

Nascimento E, Tombini LHT, Ripplinger F. Espacialização da Covid-19 no Sul do Brasil: a interiorização da doença e o caso da mesorregião grande fronteira do Mercosul. Finisterra. 2020;55(115):27-35. https://doi.org/10.18055/Finis20367

Chen ZL, Zhang Q, Lu Y, Guo ZM, Zhang X, Zhang WJ, et al. Distribution of the COVID-19 epidemic and correlation with population emigration from Wuhan, China. Chin Med J (Engl). 2020;133(9):1044-50. https://doi.orrg/10.1097/CM9.0000000000000782

Moreira RS. COVID-19: unidades de terapia intensiva, ventiladores mecânicos e perfis latentes de mortalidade associados à letalidade no Brasil. Cad Saude Publica. 2020;36(5):e00080020. https://doi.org/10.1590/0102-311X00080020

Noronha KVMS, Guedes GR, Turra CM, Andrade MV, Botega L, Nogueira D, et al. Pandemia por COVID-19 no Brasil: análise da demanda e da oferta de leitos hospitalares e equipamentos de ventilação assistida segundo diferentes cenários. Cad Saude Publica. 2020;36(6):e00115320. https://doi.org/10.1590/0102-311X00115320

Publicado

2002-04-01

Edição

Seção

Artigos Originais

Como Citar

Covre, E. R. ., Pereira, N. D., Oliveira, N. N. de ., Charlo, P. B., Oliveira, M. L. F. de, Oliveira, R. R. de ., Carreira, L., Facchini, L. A., Vissoci, J. R. N., & Salci, M. A. (2002). Correlação espacial da covid-19 com leitos de unidades de terapia intensiva no Paraná. Revista De Saúde Pública, 56, 14. https://doi.org/10.11606/s1518-8787.2022056003868