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ABSTRACT: This study aimed to map the stem biomass of an even-aged eucalyptus plantation 
in southeastern Brazil based on canopy height profile (CHPs) statistics using wall-to-wall discrete 
return airborne laser scanning (ALS), and compare the results with alternative maps generated 
by ordinary kriging interpolation from field-derived measurements. The assessment of stem bio-
mass with ALS data was carried out using regression analysis methods. Initially, CHPs were 
determined to express the distribution of laser point heights in the ALS cloud for each sample 
plot. The probability density function (pdf) used was the Weibull distribution, with two parameters 
that in a secondary task, were used as explanatory variables to model stem biomass. ALS 
metrics such as height percentiles, dispersion of heights, and proportion of points were also 
investigated. A simple linear regression model of stem biomass as a function of the Weibull scale 
parameter showed high correlation (adj.R² = 0.89). The alternative model considering the 30th 
percentile and the Weibull shape parameter slightly improved the quality of the estimation (adj.
R² = 0.93). Stem biomass maps based on the Weibull scale parameter doubled the accuracy of 
the ordinary kriging approach (relative root mean square error = 6 % and 13 %, respectively).
Keywords: LiDAR, basal area, biometric model, forest inventory, fast-growing plantations

represented by a probability function is a convenient 
way of summarizing and retrieving the canopy vertical 
form (Coops et al., 2007). The Weibull probability densi-
ty function (pdf) has been used to model vertical profiles 
thanks to its flexibility in characterizing different types 
of vegetation, and its parameters of scale and shape were 
successfully correlated with above ground attributes, 
such as height of trees, density of stems, and diameter 
at breast height (Coops et al., 2007; Mori and Hagihara, 
1991). In Brazil, ALS technology has been used for ter-
rain modeling, but applications involving assessment 
and mapping of biomass in eucalypt stands are still in-
cipient (Packalén et al., 2011; Silva et al., 2014; Vauh-
konen et al., 2011). This study aimed to map the stem 
biomass stock based on canopy height profiles statistics 
using ALS data of an even-aged eucalypt plantation, in 
southeastern Brazil, and compare the results with alter-
native maps generated by ordinary kriging interpolation 
from field-derived measurements.

Materials and Methods

Study site
The study site is located in the state of São Paulo, 

southeastern Brazil (22º58’04” S; 48º43’40” W) (Figure 
1). The area is approximately 200 ha and is composed 
of a 6.5-year-old Eucalyptus grandis (W. Hill ex Maiden) 
plantation with seedlings coming from a fourth-genera-
tion seed orchard (Campoe et al., 2012). The stands were 
planted in December 2002, with an approximate density 
of 1600 trees ha−1 (3.75 m × 1.6 m) following minimum 
site preparation (Gonçalves et al., 2013). The Köppen cli-
mate type is Cfa; with mean annual temperature equal 
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Introduction

Current methods of forest inventory are based on 
the direct surveying of trees and sampling of ground 
plots (Campos and Leite, 2013). Statistical models gen-
erated to predict average estimates of stand attributes 
and their spatial variability are assessed only sporadi-
cally (Zhou et al., 2013). Data interpolation techniques 
can be used to assess stand spatial structure, yet they are 
limited by the sampling intensity of ground plots, which 
is usually insufficient to yield precise estimates (Bouvier 
et al., 2015; Viana et al., 2012). On the other hand, in-
tegrating remotely sensed data is an actual possibility, 
as it can be acquired to a great extent, within a short 
time and at reasonable prices (Hummel et al., 2011). 
Airborne laser scanning (ALS) technology is a potential 
remote sensing tool, as it can provide data on multiple 
strata of the canopy, while passive sensors cannot (Mag-
nussen and Boudewyn, 1998; Næsset, 1997). The laser 
sensor records tridimensional coordinates over the sur-
veyed area by collecting the time in which a laser pulse 
takes to go back to the aircraft after being reflected by 
the target. The result is a georeferenced 3D point cloud 
with high spatial resolution (Baltsavias, 1999; Reutebuch 
et al., 2005).

One of its promising applications has consisted of 
characterizing the vertical structure of forests with ap-
parent canopy height profiles (CHPs) (Coops et al., 2007; 
Dean et al., 2009; Lefsky et al., 1999; Lovell et al., 2003; 
Maltamo et al., 2004). The apparent CHP is a vertical 
distribution of laser points, which can be represented by 
their empirical distribution or by probabilistic functions 
(Harding et al., 2001; Magnussen et al., 1999). A CHP 
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to 19.4 ºC and mean annual precipitation totaling 1300 
mm (Alvares et al., 2013). The site relief is mainly flat to 
soft wavy, and the altitude approximately 750 m (Cam-
poe et al., 2012).

Field measurements and plot summaries
Figure 1 shows the network of inventory ground 

plots in the study site. They were divided into 22 training 
plots and 21 validation plots. Plots 1 to 12 (457 m2 to 574 
m2) were established for research related to ecophysiol-
ogy. Their location covered the site’s productivity range 
after a census of diameter at breast height was carried out 
(Campoe et al., 2012). In addition, plots 13 to 22 (811 m2 
to 881 m2) were designed specifically for ALS investiga-
tions. Plots 23 to 43 (240 m2) are permanent ground plots 
of continuous inventory owned by the forest producer.

Field measurements were conducted in the train-
ing plots in July 2009, and July 2008, in the validation 
plots (Table 1). Diameter at breast height (DBH, 1.3 m 
above ground level) and total tree height were measured 
on all plots. Stem dry biomass was estimated using the 
following local-specific allometric equation derived from 
destructive sampling in Sep 2008 (Campoe et al., 2012) 
(Eq. 1).

ˆ . .B D Hi i i=− +0 58 147 1 2  (1)

where: B̂i = dry stem biomass per tree (kg per tree), Di 
= diameter at breast height (cm), Hi = total height (m).

Airborne laser scanning (ALS) data
The ALS survey was undertaken during Apr 2009, 

a period of the year with maximum stable leaf area index 
(LAI) (le Maire et al., 2011). The flight mission was con-
ducted by a twin-engined light aircraft equipped with 
a discrete-return small footprint laser scanner (laser 

wavelength = 1064 nm). The parameters from the flight 
mission and the scanning process were as follows: flight 
height = 900 m; flight speed = 132 km h−1; swath width 
= 235 m; swath overlap = 30 %; scanning angle = 15º; 
scanning frequency = 74 Hz; frequency of pulse emis-
sion = 110 kHz; footprint = 21 cm; point density = 6.5 
pts m−2; standard deviation of point density = 2 pts m−2.

GPS observations from ground and aircraft were 
processed in a method to obtain a unique and adjusted 
cinematic solution to a well-known coordinate system, 
using the Waypoint GraphNav software. A digital ele-
vation model (DEM) was generated with a one meter 
resolution, after ground points were labeled with the 
Multiscale Curvature Classification algorithm (MCC-
LiDAR) (Evans and Hudak, 2007). The DEM was sub-
tracted from all point elevations to remove topographic 
variations (normalization process). Then, the normalized 
point cloud was clipped to the same locations as the in-
ventory field plots. The Fusion LiDAR Toolkit software 
was used to normalize the point cloud (clipdata), to clip 
plots using shapefiles (polyclipdata) and to extract ALS 
metrics (cloudmetrics).

We tried to select metrics based on a priori knowl-
edge in an attempt to improve the capacity of the model 
generalization (Bouvier et al., 2015). Among the met-
rics extracted from each ALS plot, we focused on using 
height percentiles. A percentile x is the height z in which 
x % of points in the ALS cloud are beneath z. We tested 
the percentiles which predicted better basal area and 
volume in Zonete et al. (2010): first return percentiles 10, 
30, 70, 90. Moreover, we selected metrics such as mean 
height, standard deviation and variance of heights, all of 
them also being derived from first returns. These metrics 
were calculated disregarding laser points with a height 
less than 2 m (Næsset, 2002; Zonete et al., 2010). We 
also parameterized a metric of density, which we named 
p_understory consisting of the proportion of laser points 
between 0.3 and 15 meters in height and the laser points 
between ground, (0 meters) and 15-meters in height. The 
15-meter threshold was set based on visual inspection of 
the point cloud and on field experience. In this case, all 
return echoes were used to increase the sample of points 
in the understory layer.

Figure 1 – Location map of the study site (22º58’04” S; 48º43’40” 
W; southeastern Brazil).

Table 1 – Summary of field measurements in the eucalypt plantation 
site.

Training plots (n = 22) Validation plots (n = 21)
Stat. Surv. DBH G H B Stat. Surv. DBH G H B

- % cm m² ha−1 m Mg ha−1 - % cm m² ha−1 m Mg ha−1

min. 82 13.1 25 21.5 115 min 72 12.7 22 20.7 94
avg. 90 14.9 30 24.6 155 avg. 88 14.2 27 22.6 125
max. 97 16.6 34 27.5 195 max 98 16.4 35 24.9 167
st. dev. 3.9 1 3.5   1.5 27 st. dev. 6.8   0.9 3.4 1 19
n = number of sample plots; Stat. = statistics; Surv. = survival of trees; 
DBH = diameter at breast height; G = basal area; H = total height; B = dry 
stem biomass; min. = minimum observed value among plots; avg. = average 
value among plots; max. = maximum observed value among plots; st. dev. = 
standard deviation of mean values.
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Apparent canopy height profiles (CHPs)
From a set of possible theoretical distributions, we 

chose the Weibull pdf due to its flexibility in characterizing 
foliage distributions of different types of vegetation and its 
potential for fitting skewed data, which is a common fea-
ture of forest-derived ALS data (Coops et al., 2007; Dean 
et al., 2009; Lovell et al., 2003; Magnussen et al., 1999).

The apparent canopy height profiles (CHPs) were 
obtained by curve-fitting all ALS returns with a height 
greater than 5 m. The threshold aimed to exclude laser 
points on the ground, in shrubs, and dominated trees, 
to eliminate the bimodal effect on the vertical profile 
(Coops et al., 2007; Lovell et al., 2003). Curve-fitting 
analysis was carried out applying the maximum likeli-
hood estimation technique (Cohen, 1965) using fitdistr in 
R (R Foundation for Statistical Computing; MASS pack-
age). The Weibull pdf with two parameters (scale and 
shape) is shown in Eq. (2).

f x x exp x
x

/ , , ; ;α β αβ α ββ α β

( ) = < < ∞ > >− − 1 0 0 0  (2)

where: f (x / α,β) = probability density of x; α = scale 
parameter; β = shape parameter. 

A Weibull pdf with a shape parameter equal to 1 
reduces to an exponential distribution, while shape val-
ues between 3 and 4 will approximate a normal curve. 
The scale parameter is at the 63.2nd percentile of the 
distribution (McCool, 2012). The Weibull scale and 
shape parameters were obtained from the CHPs at each 
training plot, and they were used as candidate predictors 
for stem biomass modeling.

Regression modeling of stem biomass with ALS 
data

The linear relationships between the ALS predic-
tors and stem biomass were explored by carrying out 
a paired sample correlation t-test. We suspended ALS 
metrics from further analysis when the Pearson’s cor-
relation coefficient (ρ) was not significant at 99 % confi-
dence level. Regression models were fit by the ordinary 
least squares method, and the ALS predictors were se-
lected using the best subset approach (Lumley, 2009). 
We used the variance inflation factor (VIF) to detect mul-
ticollinearity of explanatory variables (Fox and Monette, 
1992). Models with VIF greater than 5 were excluded 
from further analysis (d’Oliveira et al., 2012). Graphical 
analyses of residuals and hypothesis testing were per-
formed to check the assumptions underlying the linear 
regression theory.

The regression models were submitted to leave-
one-out cross validation (Picard and Cook, 1984). This 
method uses the training data set without one of its 
observations (n-1) to predict the value removed from 
the sample (n is the sample size). This process occurs n 
times, so all observations are excluded once. The cross 
validation output was assessed by the relative root mean 
square error (rRMSE) statistic (Meng et al., 2009; Nys-
tröm et al., 2012) (Eq. 3).
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where: rRMSE = relative root mean square error (%); yi = 
observed stem biomass in plot i (Mg ha−1); ŷ i  = predicted 
stem biomass in plot i (Mg ha−1); n = number of observa-
tions; y  mean of observed stem biomass (Mg ha−1).

Furthermore, we compared observed values of 
stem biomass in the validation dataset with predictions 
by the best regression models. To make such a compari-
son, we used Pearson’s correlation coefficient statistic 
(Eq. 4).
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where: ρ̂XY = sample Pearson’s correlation coefficient; 
Xi and Yi = observed values of variables X and Y; X

_
 and 

Y
_
= mean of variables X and Y.

Stem biomass interpolation with ordinary kriging
We used ordinary kriging to interpolate stem bio-

mass from the training dataset as an alternative method 
(Viana et al., 2012). The experimental semivariograms 
were obtained according to Eq. (5):

ˆ ˆ ˆγ ε εh
N

x x hK
K

i
N

i i
K( ) = ∑ ( ) − +( )( )=

1
2 1

2 	  (5)

where: γ̂ hK( ) = semivariance estimate of class k in dis-
tance h hK;  = mean distance of class k; Nk = number of 
pairs observed in class k; ε̂ Xi( ) = residual (random error) 
observed in xi; xi = position i with coordinates x and y.

The following types of theoretical models were 
tested: spherical, exponential, linear, and Gaussian, and 
we picked the one with the least residual squares sum-
mation (Hiemstra et al., 2009). Ordinary kriging interpo-
lation was carried out according to Eq. (6):

Ẑ x Z xi
n

i i0 1( ) = ∑ ( )= λ 	  (6)

where: Ẑ x0( ) = stem biomass estimate at position x0; n 
= number of observations; Z(xi) = observed value of 
stem biomass at position xi; λi = weight assigned to ob-
servation Z(xi), in which the sum of weights is 1 (Viana 
et al., 2012).

The fitting of theoretical semivariograms and the 
ordinary kriging were conducted using autofitVariogram 
and autoKrige in R (automap package). As for the regres-
sion models, we used leave-one-out cross validation and 
the validation dataset to assess the ordinary kriging per-
formance.

Spatial representation of stand attributes
The prediction maps were generated with a spatial 

resolution of 16 m, an approximate size of the validation 
plots. We also generated two extra basal area maps (lin-
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the best fit for the Weibull pdf in the canopy upper layer 
(Figure 3), partially due to crowns occluding the penetra-
tion of laser beams at lower parts (Harding et al., 2001). 
The integration of terrestrial laser scanning (TLS) data 
with ALS-derived CHPs was presented as an alternative 
for improving canopy modeling at lower layers (Zhao et 
al., 2013).

The Weibull shape parameter (β_CHP) ranged 
from 5.7 to 11.3 confirming the negative asymmetry ob-
served in the histograms of Figure 2 (Table 2). All the 
ALS metrics except β_CHP were positively correlated 
with the stem biomass. The metric P10 did not present 
strong correlation with the stem biomass, and it was ex-
cluded from further analysis (Table 3).

ear regression and ordinary kriging) to visually compare 
results with one former basal area map obtained from 
a census of DBH on Feb 2008 (Campoe et al., 2012). To 
our knowledge, no study has yet compared the quality 
of stem biomass maps generated from regression with 
ALS data and generated from ordinary kriging of field-
derived data, in even-aged eucalypt plantations.

Results

All plots presented negatively skewed data, and 
considerable variability between plots (Figure 2). On av-
erage, 88 % of the laser points were observed above a 
height of 20 meters. The quantile-quantile plot showed 

Figure 2 – Apparent eucalypt canopy height profiles (CHPs) per training plot. The vertical axis shows the laser point heights and the horizontal axis 
is the probability density of occurrence in each height class. The solid lines are the Weibull probability density functions fitted to the observed 
airborne laser scanning (ALS) data (histograms).

Table 2 – Summary of metrics resulted from processing the airborne laser scanning data (ALS) data of the 22 training plots in the eucalypt 
plantation site.

Stat. α_CHP β_CHP P10 P30 P70 P90 Mean St. dev. Variance p_understory
- m - ------------------------------------------------------------------------------------- m ------------------------------------------------------------------------------------- m² %
min 23.4 5.7 18.6 21.9 23.8 25.0 22.4 2.8 8.0 4.0
avg. 26.6 8.4 20.8 25.1 27.6 29.0 25.4 4.4 20.1 10.7
max 28.9 11.3 24.4 28.0 30.7 32.2 27.7 6.0 36.4 16.5
st. dev. 1.7 1.6 1.4 1.8 2.1 2.1 1.6 0.9 8.3 3.7
Stat. = statistics; α_CHP = Weibull distribution scale parameter; β_CHP = Weibull distribution shape parameter; P## = percentiles in height ##; Mean = mean height 
of first returns; St. dev. = standard deviation of heights from first returns; Variance = variance of heights from first returns; p_understory = proportion of points in 
the canopy understory layer; min. = minimum observed value among plots; avg. = average value among plots; max. = maximum observed value among plots; st. 
dev. = standard deviation of mean values.
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The best model resulted from using the explanatory 
P30 variable combined with β_CHP (adj. R² = 0.93), since 
using the P30 alone had already yielded a good fit (adj. 
R² = 0.91). It was already expected that height metrics 
would have greater explanatory power than metrics of 
height dispersion (Bouvier et al., 2015). The metric p_un-
derstory had only moderate correlation with the stem bio-
mass (adj. R² = 0.5) and no interaction effect with other 
ALS metrics was observed. On the other hand, there was 
an improvement issue when α_CHP was combined with 
the field-derived statistic density of stems (adj. R² = 0.89 
to adj. R² = 0.92). No improvements were noted through 
using the natural logarithm of the stem biomass (Table 3). 

The observed and predicted values for the stem bio-
mass regressed on P30 and β_CHP (model 1) and on α_CHP 
(model 2) are shown in Figure 4. The observations close to 
the 1:1 diagonal indicate a good model fit. This was also 
corroborated by the leave-one-out cross validation, which 
demonstrated rRMSE to be equal to 5 % for both models.

Figure 5 shows the Gaussian semivariogram for the 
stem biomass constructed from the training dataset. The 
model presented a nugget effect equal to 128 (Mg ha−1)2 
and a sill equal to 1129 (Mg ha−1)2 at a range of 574 m. The 
leave-one-out-cross validation from the ordinary kriging 
resulted in an rRMSE equal to 13 %, which was 160 % 
greater than the regression models.

Figure 3 – Quantile-quantile plot per training plot. The vertical axis shows the sample quantiles for laser point heights and the horizontal axis 
illustrates the Weibull distribution quantiles.

Table 3 – Eucalypt stem biomass models dependent on airborne 
laser scanning (ALS) metrics. The values between parentheses 
represent the standard error of the parameters.

# Model adj.R² AIC VIF

1
 B = -287.3 + 16.2*P30 + 4.3*β_CHP

0.93 151.1 3.43
               (49.4)      (1.5)            (1.7)

2
 B = -207.2 + 13.7*α_CHP

0.89 159.8 -
                        (27.63)   (1.03)

3
 B = 254.0 - 11.6*β_CHP

0.5 193.4 -
                         (20.9)   (2.5)

4
 B = 104.9 + 4.9*p_understory

0.5 193.5 -
                     (11.8)    (1.0)

5
 ln(B) = -3.9 + 2.6*ln(P30) + 0.16*sqrt(β_CHP)

0.93 -71.6 3.33
              (0.88) (0.23)             (0.06)

6*
 ln(B) = 2.9 + 0.09*P30

0.91 -65.6 -
                              (0.15)  (0.006)

7*
 ln(B) = 4.6 + 0.1*P30 - 0.7*ln(P90)ns

0.91 -64.8 22.4
                     (1.6)   (0.03)      (0.67)

8*
 ln(B) = 2.6 + 0.09*Mean + 0.0002* sqrt(P70)ns

0.89 -60.9 40.4
            (0.86)  (0.04)            (0.38)

9
 B = -304.1 + 14.5*α_CHP + 0.05*stem.density

0.92 153.4 1.1
        (40.1)     (0.9)                (0.02)

adj.R² = adjusted coefficient of determination; AIC = Akaike information 
criterion; VIF = variance inflation factor; ns = not significant (p > 0.01); *= 
adapted from Zonete et al. (2010).
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The predictions from the regression models 
showed slightly higher correlation with the validation 
dataset than the ordinary kriging (ρ = 0.8, ρ = 0.82, and 
ρ = 0.71, respectively, Figure 6). The result is coherent 
with the work of Meng et al. (2009), who studied differ-
ent methods of kriging to estimate the basal area in pine 
forests in the state of Georgia, USA. They found that 
applying regression kriging using Landsat ETM+ data as 
the auxiliary variable improved the results compared to 
ordinary kriging interpolation (R2 = 0.9 and R2 = 0.75, 
respectively). 

The map of the stem biomass generated from the 
metrics P30 and β_CHP were shown to be sensitive to 
the overlapping effect along adjacent flight lines (pixels 
scattered in the northwest-southeast direction) (Figure 7).

All maps show the gradient of productivity simi-
lar to that described by Campoe et al. (2012); i.e., lower 
elevations in the terrain had higher stem biomass stock 
than the highest locations. However, the maps differed 
considerably in relation to local spatial patterns. A visual 
validation with the collinear variable of the stem bio-
mass, basal area, is shown in Figure 8.

Discussion

There was great variability between the observed 
apparent canopy height profiles (CHPs), even though 
all trees in the stand are about the same age. The CHP 
is a signature of the forest structure, and is useful in a 
variety of contexts, like monitoring spatial and tempo-
ral changes (Coops et al., 2007), mapping homogeneous 
strata (Nelson et al., 2003), and identifying vegetation 
types (Harding et al., 2001; Jaskierniak et al., 2011). 
Dean et al. (2009) were able to retrieve DBH values in a 
36-year-old even-aged loblolly pine (Pinus taeda L.) stand 
from variable height to the base of live crown and height 
to crown median, which were retrieved from ALS-de-
rived CHPs (n = 17, R2 = 0.97).

The ALS metric P30 presented the greatest cor-
relation with stem biomass. d’Oliveira et al. (2012) 
observed a similar correlation between the height per-

Figure 4 – Eucalypt stem biomass (B) regressed on P30 and b_CHP 
(model 1, from Table 3) in the upper layer and regressed on a_CHP 
(model 2) in the lower layer. The horizontal bars in the left column 
represent the prediction intervals with 95 % confidence level.

Figure 5 – Gaussian semivariogram of eucalypt stem biomass built 
from the training dataset. The points represent the number of 
observed pairs in class k.

Figure 6 – Eucalypt stem biomass (B) in the validation dataset: predicted and observed. The regression models shown on the left and center 
correspond to models 1 and 2, from Table 3; ρ = Pearson’s correlation coefficient; yr = years.



510

Silva et al. Mapping eucalypt biomass with ALS data

Sci. Agric. v.72, n.6, p.504-512, November/December 2015

tical foliage profile from a hinoki stand (Chamaecyparis 
obtusa (Sieb. et Zucc.) Endl.) in central Japan. The im-
provement from adding the field-derived variable den-
sity of trees together with α_CHP seems to be promising 
owing to the potential of ALS data to quantify trees at 
the stand level (Görgens et al., 2015b; Popescu et al., 
2003; Oliveira et al., 2012).

The shape parameter of the Weibull distribution 
(β_CHP) was the only ALS metric negatively correlat-
ed with stem biomass. This result was also observed in 
Coops et al. (2007) in relation to the DBH variable in 
different mixed stands of Vancouver Island, Canada. The 
Weibull pdf shape parameter is related to the degree of 
data dispersion in the distribution. With the scale pa-
rameter fixed, the greater the value of the shape param-
eter, the smaller the curve width at the mode. In models 
where β_CHP was used together with P30, there was a 
mediation effect; i.e., β_CHP correlated positively with 
stem biomass. The hypothesis is that for similar canopy 
height layers, a smaller vertical dispersion of heights is 
indicative of homogeneity, which would lead to more 
productive stands (Stape et al., 2010).

The ALS metric p_understory showed only moder-
ate correlation with stem biomass and did not capture 
the variation in the forest horizontal structure as ex-
pected. This is because the most productive plots also 
had more ALS points intercepted by the crown, thereby 
underestimating the density of trees in the understory 
layer. Additionally, observations were influenced by the 
point density heterogeneity within the ALS data, par-
tially created by the overlapping of swaths during the 
flight (Bater et al., 2011; Görgens et al., 2015a). The se-
lected regression models had at most two explanatory 
variables, and they were able to explain 93 % of the stem 
biomass variation. Stephens et al. (2012) explained 70 
% of total carbon stock in forests of New Zealand with 
just one ALS height metric, observing that the addition 
of a density metric slightly improved the quality of the 
model (2 %), but a third variable did not bring any im-
provement. 

Figure 8 – Eucalypt basal area (G) maps. The map in the center is 
generated from a census of diameter at breast height (DBH) when 
the forest was 5.3 years old. The map on the left is G regressed 
on α_CHP, while the map on the right was derived from ordinary 
kriging interpolation.

Figure 7 – Eucalypt stem biomass prediction maps. In the upper and 
middle layer are linear regression models 1 and 2, from Table 3. 
The lower layer was derived from ordinary kriging interpolation (the 
white dots represent the training plots location).

centile P25 (all returns) and above-ground biomass in 
the Amazon rainforest, Brazil. In planted forests, simi-
lar results were observed by Stephens et al. (2012) and 
Zonete et al. (2010). According to Stephens et al. (2012), 
the lower percentiles can combine information of tree 
height and crown density, in which denser stands will 
present greater values for such metric. The significant 
correlation obtained between the scale parameter of the 
Weibull distribution (α_CHP) and stem biomass was 
consistent with the work of Mori and Hagihara (1991). 
They succeeded in correlating the scale parameter of the 
Weibull distribution with DBH, when studying the ver-
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The stem biomass maps constructed from the 
linear models with ALS metrics and from the ordinary 
kriging interpolation were consistent with the existing 
gradient of productivity shown by Campoe et al. (2012). 
However, we observed from the validation statistics and 
visual inspection that the regression models fitted from 
the ALS metrics (P30 and α_CHP) generated more real-
istic maps, corroborating the initial hypothesis.
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