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ABSTRACT: Soil bulk density (ρb) data are needed for a wide range of environmental studies. 
However, ρb is rarely reported in soil surveys. An alternative to obtain ρb for data-scarce regions, 
such as the Rio Doce basin in southeastern Brazil, is indirect estimation from less costly covari-
ates using pedotransfer functions (PTF). This study primarily aims to develop region-specific PTFs 
for ρb using multiple linear regressions (MLR) and random forests (RF). Secondly, it assessed 
the accuracy of PTFs for data grouped into soil horizons and soil classes. For that purpose, we 
compared the performance of PTFs compiled from the literature with those developed here. Two 
groups of data were evaluated as covariates: 1) readily available soil properties and 2) maps 
derived from a digital elevation model and MODIS satellite imagery, jointly with lithological and 
pedological maps. The MLR model was applied step-wise to select significant predictors and its 
accuracy assessed by means of cross-validation. The PTFs developed using all data estimated 
ρb from soil properties by MLR and RF, with R2 of 0.41 and 0.51, respectively. Alternatively, using 
environmental covariates, RF predicted ρb with R2 of 0.41. Grouping criteria did not lead to a 
significant increase in the estimates of ρb. The accuracy of the ‘regional’ PTFs developed for this 
study was greater than that found with the ‘compiled’ PTFs. The best PTF will be firstly used to 
assess soil carbon stocks and changes in the Rio Doce basin.
Keywords: multiple linear regressions, random forests, soil predictors, spatial prediction 
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Introduction

Bulk density (ρb) is commonly not reported in soil 
survey reports due to laborious work and high costs in-
volved in the sampling and laboratory analysis of this 
property. However, despite data scarcity, ρb is needed 
for assessing stocks and fluxes of nutrients in the soil 
(Batjes, 1996; Bernoux et al., 1988; Martin et al., 2011). 
To overcome the lack of measured ρb data, pedotrans-
fer functions (PTF) are commonly used to estimate ρb 
from more widely available, measured soil chemical and 
physical properties (see Bouma, 1989). Recent advances 
in PTF development, in terms of prediction and assess-
ments of accuracy, are discussed elsewhere (McBrat-
ney et al., 2011, 2002; Minasny and Hartemink, 2011; 
Pachepsky and Rawls, 2004; Wösten et al., 2001). Typi-
cally, such functions are not portable to other regions 
with acceptable accuracy. 

Linear models are considered the most simple 
and the fastest way to estimate data by means of PTFs. 
Amongst the many model types that have been devel-
oped (Wösten et al., 2001), Random Forests (RF) is a non-
parametric model that has not yet been used extensively 
to predict ρb (Jalabert et al., 2010; Tranter et al., 2007). 

Soil properties, readily available from routine soil 
surveys, underpin most PTFs to estimate ρb (Benites et 
al., 2007; Bernoux et al., 1998; Han et al., 2012; Nanko et 
al., 2014). With the growing use of Digital Soil Mapping 
techniques, ρb is increasingly predicted using a combina-
tion of environmental data (covariates) and/or selected 
soil properties (Calhoun et al., 2001; Jalabert et al., 2010; 

Martin et al., 2009). Environmental covariates, indicative 
of the main soil forming processes, are typically derived 
from a digital elevation model and satellite imagery, and 
analyzed with auxiliary maps (e.g. land cover, geology, 
soil classes (pedology), and geomorphology) to develop 
models that spatially predict ρb. 

The primary aim of this study is to develop PTFs 
to estimate ρb from routinely measured soil properties 
as well as environmental covariates, using non-paramet-
ric and linear modeling. The secondary aim is to assess 
accuracy of PTFs developed for data grouped into soil 
horizons and soil classes. Therefore, we compared the 
performance of PTFs developed for tropical soils, as 
compiled from the literature (hereafter referred to as 
‘compiled’ PTFs) with the PTFs developed for the Rio 
Doce basin. 

Materials and Methods

Study site and data 
Although relatively small, the Rio Doce ba-

sin is important for Minas Gerais State as it accounts 
for around 15 % of the state’s gross domestic product 
(GDP). The study site covers circa 70,000 km2 (Figure 
1) and represents the hilly lowlands inter-plateau of the 
Rio Doce, an important physiographic feature of south-
eastern Brazil. The Rio Doce is the main fluvial course 
in the basin flowing in an NW-SE direction due to the 
structure of the landscape and flooding lowlands. Pre-
cambrian crystalline rocks altered by climate led to the 
formation of a thick mantle of weathered materials in 

environmental covariates: Rio Doce basin
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which soils typical for the humid tropics were formed 
(RADAMBRAZIL, 1983). Altitude varies between 64 m 
and 1,998 m and there are three main climate zones ac-
cording to Köppen’s climate classification: tropical with 
altitude climate with summer rains and cool summers; 
tropical with altitude climate with summer rains and hot 
summers; and hot climate with summer rains (Alvares 
et al., 2013). Until the beginning of 20th century, the Rio 
Doce basin area was under tropical Atlantic rainforest 
and transitional vegetation between forest and Cerrado. 
Since then, native vegetation has been greatly destroyed 
and replaced by grasses and coffee and eucalyptus plan-
tations (RADAMBRAZIL, 1983). According to the land 
coverage mapping of MMA (2006), forest covers 26 % of 
the basin area while 67 % is covered by pasture, while 
the remaining 11 % consists of secondary forest, euca-
lyptus plantations, and agriculture. Agricultural activi-
ties in the basin include reforestation, traditional crops, 
coffee culture, sugarcane, dairy farming, as well as beef 
cattle and swine livestock. Other economic activities in-
clude agribusiness (sugar and ethanol), mining (iron ore, 
gold, bauxite, manganese, precious stones and others), 
industry (cellulose, steel and dairy products), trade and 
support services to industrial plants, in addition to elec-
trical power generation (IGAM, 2010). 

According to the 1:600,000-scale soil map (FEAM, 
2011), the basin is mostly composed of homogeneous, 
strongly and deeply weathered Red-Yellow, Red and Yel-
low Ferralsols, as well as Red-Yellow and Red Acrisols 
(FEAM, 2011; RADAMBRAZIL, 1983). Ferralsols cover 
65 % of the area and occur mainly on dissected plateaus 
with suave undulating to high hilly relief. Acrisols rep-
resent around 23 % of the basin and are found in areas 
of undulating relief. The remaining soil units (12 %) are 
mainly Cambisols, Leptosols and Arenosols, with patch-
es of bare rocks, typically, the units occur in association 
with Ferralsols and Acrisols. According to the Brazilian 
System of Soil Classification (SiBCS), at the third level 

(subgroup), these are represented by 16 different soil 
classes: Ferralsols (Red, Yellow, and Red-Yellow), Acri-
sols (Red and Red-Yellow, dystrophic and eutrophic), 
Cambisols (Haplic and Fluvic, dystrophic and eutrophic, 
and Humic dystrophic), Leptosols (Litholic, dystrophic 
and eutrophic), and Arenosols (Hortic and Humic).

We described and sampled 125 soil profiles in the 
field (FEAM, 2011). For PTF development, we consid-
ered samples representing diagnostic horizons A (125) 
and B (117). The samples were air-dried and the fine 
earth fraction (< 2 mm) was used for the chemical and 
physical analyses. Further, at each profile site, two un-
disturbed samples were taken per horizon to determine 
bulk density (Figure 1). 

The physical and chemical analyses were carried 
out using methods presented by EMBRAPA (1997). The 
procedure to separate soil texture was modified according 
to Ruiz (2005), using the sieve method for the sand frac-
tion (2 - 0.05 mm) and the pipette method to determine 
the silt (0.05 - 0.002 mm) and clay (< 0.002 mm) fraction.

Soil reaction (pH) was measured in water, soil wa-
ter proportion 1:2.5. Sum of exchangeable bases (SB) was 
calculated as the sum of bases (Ca2+, Mg2+, Na+ and K+). 
Cation exchange capacity (CEC) was determined by the 
sum of bases, plus exchangeable acidity (H+ and Al3+). 
Organic carbon (OC) content was determined using the 
Walkley and Black (1934) titration method. Bulk density 
was determined by the Cylindrical Core method. Sam-
ples were oven dried at 100 °C for 48 h after which ρb 
was calculated as the ratio of the dried soil mass over the 
volume of the cylinder (EMBRAPA, 1997). 

Loam (< 35 % of clay and > 15 % sand), clay loam 
(35 to 60 % clay), and clay (> 60 % clay) represented 30 
%, 52 % and 18 % of the data, respectively. Most surface 
samples were classified as ‘horizon A-moderate’, while 
‘horizon A-weak’ types were reported in 5 % of the stud-
ied sites. Subsurface samples, grouped according to hori-
zon type, were classified as B-incipient, B-textural, and B-
latosolic, respectively, related to the Cambisols, Acrisols, 
and Ferralsols. Soil structure is generally blocky in the 
Acrisols, and granular or “pseudo-sand” in the Red and 
Red-Yellow Ferralsols. 

The data were divided into homogenous groups 
based on their classification: Ferralsols (115 samples), 
Acrisols (82), and Cambisols (36). As there were less 
than 30 samples for the Leptosols and Arenosols these 
were not analyzed as separate classes. However, the cor-
responding nine samples of both classes together were 
considered in the overall analysis that considered all 
measured data for A and B horizons (242).

The following measured soil properties (indepen-
dent variables) were used for PTF (ρb) development: silt 
and clay content, sum of exchangeable bases (SB), pH, 
cation exchange capacity (CEC), and OC content. Fur-
ther, for PTFs that consider environmental covariates, 
possible predictor variables, were selected in terms of 
the soil forming factors as originally described by Jenny 
(1941) and later modified by McBratney et al. (2003) in 

Figure 1 − Location of soil profiles sampled in the Rio Doce basin, 
State of Minas Gerais, Brazil (n = 125). 
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the Scorpan model: Sc = f(s, c, o, r, p, a, n), where Sc 
represents the soil class or attribute to be modelled in 
casu bulk density. For a given point (location), Sc is a 
function (f): s, soil measured properties; c, climate; o, 
organisms, including land cover or natural vegetation or 
fauna/human activity; r, relief (topography or landscape 
attributes); p, parent material/lithology; a, age, the time 
factor; and n, the spatial or geographic position. 

Two factors on the Scorpan model, age and spa-
tial position, could not be considered here due to a lack 
of appropriate data layers for them. A pedological map 
at scale 1:600,000 (FEAM, 2011) was used to represent 
information on soil classes. Air temperature was repre-
sented using MODIS temporal satellite imagery of day 
and nighttime temperature as a proxy for cool and hot 
summers in this predominantly subtropical area (1000-
1500 mm yr−1, see Souza et al., 2014). Alternatively, the 
influence of ‘organisms’ was accounted for as vegetation 
index, derived from MODIS satellite imagery, which also 
provided a proxy for regional differences in rainfall dis-
tribution and amount. The principal components for the 
Enhanced Vegetation Index (EVI, MOD13A3 product) 
and Land Surface Temperature (LST, MOD11A2 prod-
uct) images were derived using the 8-day and monthly 
time-series MODIS images. These images at 1 km spa-
tial resolution were downloaded from the USGS website 
(MODIS, 2013). Time series and principal components 
were prepared for the year 2013 as proposed by Hengl 
et al. (2012). 

Relief was represented by several landscape maps 
derived from a digital elevation model (DEM). A litholog-
ical map at scale 1:1,000,000 (CPRM, 2004) served as a 
proxy for parent material. The main geological units are 
gneiss, granitoids, schists and quartzites. For this study, 
the pedological map (FEAM, 2011) was generalized by 
considering only the dominant soil class of a mapping 
unit. The DEM, generated from images of the Shuttle 
Radar Topography Mission - SRTM (CGIAR, 2014), was 
processed to remove spurious cells to derive the follow-
ing maps: elevation above mean sea level (MDE), slope 
(SLP, in radians), topographic wetness index (TWI), and 
solar radiation (INS). Further, several maps were gener-
ated from MODIS imagery: first principal components of 
monthly series of daytime of surface temperature (TD), 
first principal components of series monthly nighttime 
surface temperature (TN), first principal components 
of vegetation index (EV1), and second principal com-
ponents of vegetation index (EV2). These maps served 
as environmental covariates for PTF development and 
were processed using SAGA software (System for auto-
mated geoscientific analyses, v. 2.1, 1999).

Development of PTFs and accuracy assessment 
PTFs were developed using two model-approach-

es: a) multiple linear regression (MLR), which was ap-
plied step-wise to select significant predictors, and b) 
random forest (Liaw and Wiener, 2002). All analyses 
were performed using R software.

Leave-one-out cross validation (Isaaks and Srivas-
tava, 1989) was applied to assess the prediction accuracy 
of the MLR-based PTFs. The following indexes were cal-
culated: adjusted coefficient of determination (R2

adj, see 
Equation 1), mean error (ME, see Equation 2), and root 
mean squared error (RMSE, see Equation 3). 

The ME gives the bias and allows evaluation of over-
estimation (positive values) or underestimation (negative 
values); values close to zero are preferable. The RMSE is a 
measure of the overall error of the estimation and can be 
used to compare performance of different PTFs.
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In equations 2 and 3, xi represents the measured 
value of ρb, x̂i  the estimated value; and n the total num-
ber of samples used in the estimation.

The accuracy of PTFs developed from RF was as-
sessed using a validation dataset, splitting the dataset 
into training and validation subsets. For each data group, 
15 % of the samples were randomly selected to apply 
the model and compute the accuracy indices. Similarly, 
validation dataset was used when comparing predictions 
of PTFs derived from RF and MLR using soil properties.

The relative importance of predictors for PTFs 
derived by RF was measured using the mean squared 
error of the regression using a method implemented 
into the RF package (Breiman, 2001). For PTFs devel-
oped with MLR, the Relaimpo package was used. This 
package computes the average increase in the R-square 
when predictors are added to the regression equation 
(see Grömping, 2006).

Random forest 
Random Forest (RF) modeling has the potential 

to improve predictions made using classification and 
regression trees (Breiman, 2001). Trees are constructed 
using a bootstrap of the entire dataset and the splits at 
each node are made from the best randomly selected 
subset of predictors from the entire suite of input vari-
ables, which prevents over-fitting (Liaw and Wiener, 
2002).

The user must define a several model parameters: 
the number of ‘trees in the forest’ (ntree), number of 
variables randomly sampled to be tested at each node 
(mtry), and number (n) of splits on the last node of each 
tree. The performance of the model training can be as-
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sessed by predicting the mean square error (MSE) of the 
“out-of-bag” (OOB) portion of the data at each tree, fol-
lowed by averaging over the entire forest (Equation 4). 
RF modeling provides a measure of fit comparable to the 
R2 values of other models. This “pseudo R2” is labeled as 
“percent variance explained” and calculated using Equa-
tion 5.

MSE
n
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n
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In equations 4 and 5, ẑi
OOB  is the mean out-of-bag 

prediction for the i-th observation,
 
α̂ y

2

 
is the total vari-

ance of the dependent variable, calculated with n as the 
divisor, rather than n-1 (Liaw and Wiener, 2002). 

The default setting for mtry is one third of the num-
ber of predictors. Liaw and Wiener (2002) suggest test-
ing this value by both doubling and halving the default. 
For this study, the optimal parameter combination was 
selected by simulation, choosing the setting that gave the 
highest accuracy using one of the following values: mtry 
= 3, 5, 10, 15, 30, 55, 80; ntree = 100, 500, 750, 1000, 
1250, and number of variables in the terminal node of 
each tree from 3 to 5.

RF advantages include its assumption of free 
distribution of the data and its flexibility to work with 
categorical variables without the need to create nu-
merical dummy variables (Sequeira et al., 2014). In 
addition, RF has the ability to rank predictor variables 
according to their importance in the model, which 
is done by calculating how much the estimate er-
ror increases when “out-of-bag” data for a particular 
variable is removed from the analysis and the other 
variables are left intact. This is done on a tree-by-tree 
basis for the entire forest. 

PTFs compiled from literature
For comparison, PTFs from the literature were 

compiled based on equivalence in model and soil prop-
erties used to develop the functions (Table 1). Among 
the reviewed so-called ‘compiled PTFs’, three functions 
were developed for Brazilian soils. Bernoux et al. (1998) 

and Tomasella and Hodnett (1998) used soil profile data 
from the Amazon Region, whereas Benites et al. (2007) 
considered soil profile data from different states in the 
country. Alternatively, Manrique and Jones (1991) used 
profiles from the United States and several countries in 
Central America, while Minasny and Hartemink (2011) 
considered soil profiles from Tropical areas.

All compiled PTFs included OC content and at 
least one particle size class as predictor variables. Fur-
ther, pH and SB were included respectively by Bernoux 
et al. (1998) and Benites et al. (2007). According to vari-
ous studies (Dupouey et al., 1997; Idowu, 2011), there 
may be indirect relationships between soil pH and bulk 
density because of interactions with other soil properties 
such as clay type, exchangeable cations, porosity, and 
structure. Alternatively, Manrique and Jones (1991) pre-
dicted ρb as a function of OC content only. None of the 
compiled PTFs considered thickness of horizon and CEC 
as possible predictors.

Results and Discussion

Descriptive statistics
The descriptive statistics for the data used to de-

rive the PTFs are shown in Table 2. Bulk density ranges 
from 0.77 to 1.87 Mg m−3 with a mean of 1.28 Mg m−3. 
The highest coefficient of correlation (r) between ρb and 
the soil properties under consideration, when expressed 
in absolute terms, is observed for pH (0.53), followed 
by the clay content (-0.45), OC content (-0.42) and total 
bases (0.41). A negative correlation is observed between 
ρb and clay content, CEC and OC content. The Pearson 
coefficient for correlation between environmental co-
variates and ρb was higher for the slope (p < 0.01) and 
lower than 5 % for the other covariates. Overall, the 
magnitude of the correlation varied from -0.49 to 0.46 
with p < 0.05.

PTFs developed using multiple linear regression
The PTFs developed using all soil profile data, re-

spectively data grouped into soil horizons and soil class-
es, are presented in Table 3 according to their respective 
indexes of accuracy from cross-validation and validation 
(all data). 

Table 1 − Summary of ‘compiled PTFs’ to estimate ρb.

Reference Function R2 n

A ρb = 100/[(OM/ ρb MO] + [(100-OM)/ ρb min)]

ρb min = 0.935 + 0.049(log(depth)) + 0.0055(sand) + 0.000065 (sand -38.96)2 0.34 670
ρb OM = 0.224 g cm−3

B ρb = 1.5600 - 0.0005(clay) - 0.0100(OC) + 0.0075(SB) 0.66 1,396
C ρb = 1.524 - 0.0046(clay) - 0.051(OC) - 0.0045(pHH2O) + 0.001(sand) 0.53 323
D ρb = 1.578 - 0.054(OC) - 0.006(%silt) - 0.004(clay) 0.77 396
E ρb = 1.660 - 0.318(OC)1/2 0.46 19,651
A: Minasny and Hartemink (2011), B: Benites et al. (2007), C: Bernoux et al. (1998), D: Tomasella and Hodnett (1998), E: Manrique and Jones (1991). Abbreviations: 
ρb = soil bulk density; OM = organic matter content; SB = sum of exchangeable bases; OC = soil organic carbon content; R2 = coefficient of determination of the 
model fit; and n = number of samples used to fit the model; PTF = pedotransfer functions.



Souza et al. Pedotransfer functions for bulk density

529

Sci. Agric. v.73, n.6, p.525-534, November/December 2016

The assessment of PTF accuracy showed a slightly 
smaller R2 when using external validation, compared to 
the PTF with the ‘leave-one-out’ approach. The valida-
tion methods gave equal RMSE and the difference in 
performance can be related to the smaller size of the 
dataset available for validation.

Using cross validation, the general PTF based on 
the whole dataset had R2 = 0.47. For this function, the 
partial coefficient of determination (Table 4) shows that 
OC was the main predictor, accounting for 31 % of the 
total R2, followed by pH (27 %), clay content (26 %) and 
SB (17 %). Grouping did not lead to a significant im-
provement per horizon. For B horizons, the function pro-

vided R2 4 % higher; the RMSE and ME were also higher. 
The PTF for A horizons was similar to that obtained us-
ing all data. 

As shown by Table 3, the grouping of soil classes 
did not increase accuracy of predictions. R2 varied from 
0.21 to 0.43 with the highest value found for the PTF for 
Ferralsols and the lowest for Acrisols, while for Cambi-
sols, R2 was 0.30. The functions underestimated ρb, as 
shown by the negative ME value for Acrisols and Cambi-
sols. The RMSE was 0.15 Mg m−3 for Ferralsols and 0.16 
Mg m−3 for all profile data combined. 

Differently from our observations for profiles 
grouped according to main soil classes, Manrique and 

Table 2 − Descriptive statistics for soil properties and environmental covariates used to develop PTFs for bulk density.

Property Unit Min Max Mean SD CV r (ρb)

ρb Mg m−3 0.77 1.87 1.28 0.23 18.0 1

Silt g kg−1 10 490 103 63 61.2 0.14*
Clay g kg−1 10 850 436 174 39.9 -0.45***
SB mmolc kg−1 0.1 90 20.9 21.7 103.8 0.41***
pH-H2O Log H+ 3.81 7.63 5.40 0.72 13.3 0.53***
CEC mmolc kg−1 10.1 145.9 62.9 27.6 43.9 -0.28***
OC g kg−1 0.75 49.5 15.3 9.98 65.2 -0.42***
DEM m 71 1.341 550 282 51.3 -0.48**
EV1 - -6.9 5.5 0.09 1.9 - -0.18**
EV2 - -2.8 2.5 -0.53 1.15 - -0.49**
INS kWh m−2 1,955 2,173 2,050 46.5 2.3 -0.15**
SLP  radians 0.01 0.2 0.07 0.04 57.1 -0.19***
TD - -8.5 9.9 0.1 4.19 - -0.45**
TN - -8.1 10.9 0.32 4.41 - 0.46**
TWI - 17 21.1 19.2 0.85 4.4 0.30**
ρb = bulk density; SB = sum of exchangeable bases; pH in H2O (1:2.5 v/v); CEC = cation exchange capacity at pH 7; OC = organic carbon; DEM = elevation above 
the sea level; EV1 = first principal components of vegetation index; EV2 = second principal components of vegetation index; INS = solar radiation; TD = first principal 
components of monthly daytime surface temperature; TN = first principal components of monthly nighttime surface temperature; SLP = slope; TWI = topographic 
wetness index; SD = standard deviation; CV = coefficient of variation (%); r = Pearson's coefficient of correlation; Statistical significance: ***p < 0.01, **p < 0.05, 
*p < 0.1. All maps of covariates were generated at 100 by 100 m spatial resolution. Number of samples (242); PTF = pedotransfer functions.

Table 3 − Accuracy of PTFs for ρb derived using MLR for the whole dataset and data grouped according to major soil classes and horizons using 
leave-one-out and validation dataset.

Intercept Clay Silt SB OC CEC pH R2
adj ME RMSE n

All data (validation dataset) 
   0.9039322 -0.0044017 -0.0695201 0.1249228 0.41 0.0271 0.16 206
All data 
   1.075000 -0.0003877 0.001533 -0.007864 0.085800 0.47 0.0003 0.16 242
A horizon
   1.618376 -0.001996 0.030326 -0.062456 -0.026794 0.48 0.0002 0.16 125
B horizon
   0.9718094 -0.000312 0.0028462 -0.0118018 0.0975471 0.51 0.0128 0.17 117
Acrisols
   1.456077 0.004871 -0.005451 -0.002490 0.21 -0.0001 0.16 82
Cambisols
   0.7217441 -0.0008874 -0.0075855 0.1491163 0.30 -0.0027 0.16 36
Ferralsols
   1.5950000 -0.0006553 0.003196 -0.001937 0.43 0.0232 0.15 115
SB = sum of exchangeable bases; OC = organic carbon content; CEC = cation exchange capacity at pH7; R2

adj = adjusted coefficient of determination; ME = mean 
error; RMSE = root mean squared error; n = number of samples (‘All data’ includes observations for Leptosols and Arenosols, see text); PTF = pedotransfer functions; 
MLR = multiple linear regressions.
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Jones (1991) reported notable improvement for ρb esti-
mated for data group according to soil classes at the sub-
order level. However, in their study, soil water content at 
permanent wilting point was used as a possible covariate, 
although it is rarely available from routine soil surveys. 
Although Manrique and Jones (1991) considered a data-
set of approximately 12,000 samples, R2 of their best per-
forming PTF was 0.58, while for their simplest model (as 
considered for comparison in the present work) R2 was 
0.46. Later R2 is considered comparable with the accuracy 
of the PTF developed here for Rio Doce basin (R2 = 0.47).

The use of MLR with mixed-data model (soil prop-
erties and environmental covariates, excluding pedo-
logical and geological data) resulted in 5 % increase of 
performance (R2 = 0.52); RMSE and ME were equal to 
those observed for the model using all data (0.16 Mg m−3 
and 0.003, respectively). Among the step-wise selected 
predictor variables, soil properties had the highest rela-
tive importance (clay (26 %), pH (21 %) and OC (19 %)) 
vis-à-vis the environmental covariates ((EV2 (16 %), TN 
(13 %) and TWI (5 %)). 

Studies for predicting ρb using soil data grouped 
into classes have been assessed using different criteria. 
Bernoux et al. (1998) estimated ρb for A, and B + C ho-
rizons using soils from the Brazilian Amazon basin and 
found no significant differences in R2 when compared to 
the function developed for the whole set of data. Simi-
larly, the PTFs of Benites et al. (2007) to estimate ρb for 
specific soil depths (0-30 and 30-100 cm) only had a 7 
% higher R2 compared to PTFs that considered all data. 

PTFs derived from Random Forest
Similarly, for the MLR-based approach, RF consid-

ers a number of environmental covariates. Initial studies 
for the Rio Doce dataset showed that RF performed best 
with a configuration of 3-mtry, 10-node size and 750 trees 
using soil properties, whereas with environmental covari-
ates the best setup was 5-mtry, 10-node size and 500 trees. 

The RF-based PTF developed using only soil prop-
erties has R2 = 0.51 and RMSE of 0.16 Mg m−3. The 

function underestimated ρb as reflected by the negative 
ME value. Alternatively, using environmental covariates, 
the PTF yielded an R2 = 0.41 and RMSE 0.17 Mg m−3; 
the ME shows that ρb is overestimated using environ-
mental covariates with all data and underestimated us-
ing data from A and B horizons (Table 5).

The relative importance of individual variables to 
the PTFs, developed using soil properties respective en-
vironmental covariates (Table 6), shows that the main 
predictors of PTFs developed using soil properties are 
SB, OC, and clay content, which accounted respectively 
to a 29 %, 27 % and 24 % decrease for the MSE predic-
tion using all data. Silt presented a negative contribution 
(-4) to the PTF for the B horizons, and therefore was left 
out of the prediction model. Best results were observed 
when considering all data, compared to the individual 
prediction for A and B horizons with R2 = 0.47 and 0.42, 
respectively (Table 5).

Of the categorical covariates, the pedological map 
contributed most (28 %) while the relative importance 
of the geological map was 18 %. Similarly, Hengl et al. 
(2014) highlighted the importance of such maps as pre-
dictors in broad scale digital soil mapping. For the con-
tinuous environmental covariates, the three main predic-
tors were the second principal components of vegetation 
(39 %), DEM (32 %), and nighttime surface temperature 
(30 %). The other environmental covariates (i.e. slope, 
solar radiation, and topographic wetness index) contrib-
uted from 21 to 25 % to reduce the MSE. 

The relative importance of environmental pre-
dictors in PTFs for the A and B horizons markedly de-
creased with depth (Table 6), reflecting the nature of 
surface-based landscape maps and remote sensing data 
from MODIS. DEM and EV2 were the main predictors 
of ρb in both horizons. For A horizons, surface tempera-
ture for day and nighttime (TD/TN) were also important. 
Predictors with negative importance were not included 
to the final model. Validation with external data showed 

Table 4 − Relative importance of predictors expressed by the partial 
coefficient of determination in PTFs developed for ρb using MLR 
for the whole dataset and data sets grouped according to horizons 
respectively and major soil classes.

Soil 
property All data

Horizon Soil class
A B Acrisols Cambisols Ferralsols

--------------------------------------------------------- % ---------------------------------------------------------
CEC   29   17   22
Clay 26 23 15 62
OC 31 30 27 26 28
pH 27 32 49
SB 17 26 57 16
Silt   18     23  
SB = sum of exchangeable bases; OC = organic carbon; CEC = cation 
exchange capacity pH7; R2 = partial coefficient of determination; MLR = multi-
linear regression; PTF = pedotransfer functions.

Table 5 − Accuracy of PTFs for ρb developed with RF using soil 
properties respectively environmental covariates and mixed-data 
model MLR model.

Model R2 ME RMSE MSE (OOB) n
Random Forest - Soil property
All data 0.51 -0.006 0.16 0.026 242
A horizon 0.47 -0.002 0.16 0.024 125
B horizon 0.42 -0.009 0.17 0.028 117
Random Forest - Environmental covariate
All data 0.41 0.025 0.17 0.032 242
A horizon 0.43 -0.004 0. 17 0.039 125
B horizon 0.15 -0.046 0.20 0.045 117
Mixed-data model
All data 0.54 -0.001 0.15 0.026 242
R2 = coefficient of determination; ME = mean error; RMSE = root mean square 
error (Mg m−3); n = number of samples; Mixed-data model = model that 
considers environmental covariates and soil properties (see text for details); 
MSE (OOB) = MSE computed by averaging the prediction for the entire forest; 
MLR = multi-linear regression; PTF = pedotransfer functions; RF = random 
forests.
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an R2 of 0.43 and 0.15, respectively, for PTF for A and B 
horizons. The PTF-derived ρb maps for A and B horizons 
are shown in Figure 2. This information may be used, 
for example, in subsequent studies of soil organic carbon 
stocks and changes in the Rio Doce basin 

Estimating ρb from freely-available environmental 
covariates is supported by the fact that the cost for soil 
sampling can be prohibitive on a large scale (Taalab et 
al., 2013). Furthermore, the use of remote sense data 
and auxiliary maps in soil modeling makes this approach 
very promising for areas with limited soil data. Martin 
et al. (2009) included land use to adjust PTFs whereas 
Calhoun et al. (2001) included parent material. Alterna-
tively, Jalabert et al. (2010) spatially estimated ρb using a 
mixed data source, combining soil properties and maps 
of environmental covariates. 

The mixed-data MLR model, which consid-
ers soil properties and environmental covariates as 
predictors, performed somewhat better (R2 = 0.54; 
RMSE = 0.15) than the PTFs developed for the two 
separate groups (Table 5). Similar relative importance 
of the four main predictors (soil properties SB, OC, 
Clay and pH, resp. environmental covariates EV2, 
DEM, TN, and pedological map) are reported in Table 
6. These findings suggest that, for ρb mapping pur-
poses, a dual approach may be beneficial. First, apply 
the PTF derived from soil properties to fill gaps in 
horizons with missing ρb data and second, use envi-
ronmental covariates to obtain spatial estimates for 
ρb. This dual approach could be of great interest for 
regions with limited soil legacy data, yet adequate co-
variate maps.

Table 6 − Relative importance measured by percentage decrease in mean squared error (MSE) due to permutation of variables in PTFs for ρb 
developed using RF with environmental covariates, soil properties, resp. the mixed-data model that considers environmental covariates and 
soil properties.

Environmental
covariate

Random Forest model Mixed-data model
All data A Horizon B Horizon Soil property All data A horizon B horizon Envir. covariate Soil property

------------------------------------------- % ------------------------------------------- --------------------------------------------------------------------------- % ---------------------------------------------------------------------------
EV2 39 21 12 SB 29 30 14 13 15
DEM 32 16 11 OC 27 23 21 12 11
TN 30 14 3 Clay 24 14 16 12 19
Pedological 28 1 -3 pH 19 14 15 9 17
EV1 25 -4 -3 CEC 16 3 17 3 10
INS 23 -3 1 Silt 2 5 -4 3 2
TWI 23 4 1 4
TD 22 10 2 8
SLP 21 1 -2 1
Geological 18 1 6 4
SLP = slope; DEM = elevation above the sea level; TWI = topographic wetness index; INS = solar radiation; EV1 = first principal components of vegetation 
index; EV2 = second principal components of vegetation index; TD = first principal components of the monthly series of daytime surface temperature; TN = first 
principal components of the series of monthly nighttime surface temperature; CEC = cation exchange capacity at pH7; OC = organic carbon content; SB = sum of 
exchangeable bases; PTF = pedotransfer functions. See text for details about the Random Forest (RF) respectively mixed-data model.

Figure 2 − Bulk density predicted by Random Forest for A and B horizons in the Rio Doce basin, State of Minas Gerais, Brazil.
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Table 7 − Accuracy of estimates for PTFs for ρb, compiled from the 
literature, applied to the Rio Doce dataset (n = 242).

PTF R2
adj RMSE ME

Benites et al. (2007) 0.11 0.34 -0.26
Bernoux et al. (1998) 0.29 0.19 0.01
Manrique and Jones (1991) 0.16 0.21 -0.01
Minasny and Hartemink (2011) 0.18 0.21 0.05
Tomasella and Hodnett (1998) 0.24 0.20 0.02
R2

adj = adjusted coefficient of determination; RMSE = root mean square error 
(Mg m−3); ME = mean error; PTF = pedotransfer functions.

As indicated, RF supports punctual and spatial 
predictions. However, it does not generate an equation 
for estimating single ρb data without having to rerun the 
model. Still, RF has been shown to be a promising model 
to obtain ρb data, particularly when using environmental 
covariates that allow for direct spatial predictions. Us-
ing soil properties alone, on the other hand, implies that 
only point data will be generated, requiring further steps 
to allow spatial predictions. 

PTFs compiled from the literature 
The ‘compiled PTFs’, as derived from the litera-

ture, applied to the Rio Doce dataset, estimated ρb with 
R2 ranging from 0.11 to 0.29, while RMSE, it varied 
from 0.19 to 0.34 Mg m−3 (Table 7). Among the PTFs 
developed for soil profiles from Brazil, the function 
proposed by Benites et al. (2007) presented the lowest 
R2 (0.11) and gave the largest error of estimates, RMSE 
= 0.34 Mg m−3. Alternatively, PTFs developed by Ber-
noux et al. (1998) and Tomasella and Hodnett (1998), 
also using soils from Brazil, showed the best perfor-
mance among the evaluated functions with R2 = 0.29, 
and 0.24 respectively, and RMSE = 0.19 and 0.20 Mg 
m−3. The poorer PTF performance proposed by Benites 
et al. (2007) may be related to the larger variability of 
the dataset used to develop their function, as these data 
were collected for geographically scattered locations 
across Brazil. The functions that considered soil data 
from a wider range of tropical countries (Minasny and 
Hartemink, 2011) data from North and Central Ameri-
ca (Manrique and Jones, 1991) showed similar results, 
with R2 = 0.18 and 0.16, respectively. Although these 
functions performed slightly better than the function 
proposed by Benites et al. (2007), they did not perform 
better than the functions developed specifically for Bra-
zil. The PTFs proposed by Benites et al. (2007), and 
Manrique and Jones (1991), underestimated ρb, as re-
flected by a negative value for ME. The other functions 
under consideration here gave a positive value for ME, 
hence overestimated ρb (Table 7).

None of the ‘compiled PTFs’ performed better 
than the PTFs developed in our study for the Rio Doce 
basin. PTFs developed using RF and environmental co-
variates (R2 = 0.41) explained more variation of ρb than 
the best ‘compiled’ PTF (R2 = 0.29) that considered soil 
properties (Tables 5 and 7). This shows that more accu-

rate estimates can be achieved using PTFs developed 
directly using data for the study area to which they will 
be applied (e.g. to compute stocks of organic carbon).

Conclusions

PTFs developed using MLR and RF estimated ρb 
from soil properties more accurately than from envi-
ronmental covariates. Similar results were observed 
when ρb was estimated from soil properties, with a 
slightly better performance of RF (R2 = 0.51) over MLR 
(R2 = 0.47). 

RF showed good performance when only environ-
mental covariates were used (R2 = 0.41). Because this 
approach allows to directly generate spatial representa-
tions for ρb, it is proposed as a feasible alternative to de-
rive ‘first estimates’ for ρb for areas lacking soil survey 
information. Consideration and availability of more de-
tailed environmental datasets, however, would probably 
lead to better predictions.

Grouping data into major soil classes did not im-
prove ρb estimates. There was no significant difference 
between predictions obtained with the general PTF, us-
ing all data, and the PTF for Ferralsols. For groups by 
horizons, estimates were more accurate for superficial 
than for subsurface horizons, both for soil properties and 
environmental covariates. Likewise, grouping according 
to horizon did not improve the PTFs.

The estimates of ρb obtained with the PTFs com-
piled from the literature presented lower accuracy than 
those derived from the PTFs derived for our study. The 
later outperformed the compiled PTF, as reflected by 18 
% to 36 % higher R2. 

The best PTFs developed here will be used to cal-
culate soil organic carbon stocks in the Rio Doce basin 
to provide baseline estimates. 

The study indicated that, for the Rio Doce basin, 
the performance of a PTF depends on both the covari-
ates and the type of model used.
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