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ABSTRACT: Phenomic characterization through digital imaging (DI) can capture the three dimen-
sional variation in wheat grain size and shape using different image orientations. Digital imaging 
may help identifying genomic regions controlling grain morphology using association mapping 
with simple sequence repeats (SSRs) markers. Accordingly, seed shape phenotypic data of 
a core collection of 55 wheat genotypes, previously characterized for osmotic and drought 
tolerance, were produced using computer based Smart grain software. Measured dimensions 
included seed volume, area, perimeters, length, width, length to width ratio, circularity, horizontal 
deviation from ellipse (HDEV), vertical deviation from ellipse (VDEV), factor form density (FFD) 
etc. The thousand grain weight (TGW) was positively correlated with grain size direct measure-
ments; however, VDEV, FFD and other derived grain attributes showed no or negative correlation 
with TGW. Digital imaging divided the genotypes correctly into well-defined clusters. The wheat 
genotypes studied were further grouped into two sub-clusters by the Bayesian structure analysis 
using unlinked SSR markers. A number of loci over various chromosomal regions were found 
associated to grain morphology by the genome wide analysis using mixed linear model (MLM) 
approach. A considerable number of marker-trait associations (MTAs) on chromosomes 1D and 
2D may carry new alleles with potential to enhance grain weight due to the use of untapped 
wild accessions of Aegilops tauschii. Conclusively, we demonstrated the application of multiple 
approaches including high throughput phenotyping using DI complemented with genome wide 
association studies to identify candidate genomic regions underlying these traits, which allows a 
better understanding on molecular genetics of wheat grain weight.
Keywords: synthetic derived bread wheats, seed digital imaging, path analysis, marker-trait 
association
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Introduction

Wheat grain size and shape are important charac-
teristics, influenced by genetic and environmental fac-
tors causing variations in these attributes. Various grad-
ing methods using diverse morphological attributes for 
sorting different cereal grains and varieties through im-
age processing techniques have been reported in the lit-
erature (Majumdar and Jayas, 2000; Visen et al., 2001). 
The digital imaging analysis (DIA) is the process of con-
verting digital images into quantitative measurements 
based on pixel counts. This can result in changing the 
generation of large quantitative data and has previously 
been used in many works (Kwack et al., 2005; Dana and 
Ivo, 2008).

Genetic improvement in yield related attributes 
has become possible through the introgression of dwarf-
ing genes and recently the use of synthetic hexaploid 
wheats (Mujeeb-Kazi et al., 2013). From agronomic per-
spectives, wheat grain yield is the most important trait 
underpinned by two numerical components including 
grains per square meter and grain weight (Calderini 
and Reynolds, 2000). In addition, improvement in TGW 
is considered a promising approach to improve wheat 
yield potential and is considered an important area of 
wheat genetic and breeding studies (Peng et al., 2003; 
Su et al., 2011). Seed quality is mainly determined by 

interactions between the environment and the genome 
during seed development and maturation (Groos et al., 
2003; Tsilo et al., 2010; Jamil et al., 2017). 

Exploring quantitative trait loci (QTLs) for grain 
weight and its related component are important steps 
to deploy favorable alleles through marker-assisted 
selection. However, the relative disadvantages of link-
age mapping studies over linkage disequilibrium (LD) 
or association mapping (AM) for the underlying trait 
control mechanisms suggest the use of mapping tech-
nique to be more appropriate for diverse germplasm 
(Breseghello and Sorrells, 2006; Huang and Han, 2013). 
Since several studies in wheat have reported QTLs for 
grain size and weight (Breseghello and Sorrells, 2007; 
Sun et al., 2009; Ramya et al., 2010, Rasheed et al., 
2014). However, few studies have reported on QTLs for 
grain shape (Gegas et al., 2010; Williams et al., 2013; 
Williams and Sorrells, 2014) and studies under drought 
stress conditions are very rare (Nezhad et al., 2012). 
This study therefore aimed to i) characterize a core col-
lection of wheat germplasm (Ali et al., 2015; Ali et al., 
2017) for grain weight and explore its relationship to 
size and shape using digital imaging for high-through-
put phenotyping, ii) manipulate digital imaging data for 
genotype discrimination, and iii) to identify SSR mark-
ers associated with grain phenotypes using the associa-
tion mapping analysis.
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Materials and Methods

The main population consisted of conventional 
and synthetic-derived wheat lines developed for drought 
tolerance. Derived synthetics were produced earlier 
by crossing primary synthetic hexaploid wheats from 
crosses of durum wheat (T. turgidum)/Ae. tauschii with 
susceptible bread wheat cultivars and originated from 
CIMMYT through Wheat Wide Crosses and Cytogenet-
ics program in Pakistan. From this main population, a 
core collection of 55 wheat genotypes was previously 
characterized for drought stress tolerance under field 
condition for three consecutive years and under osmotic 
stress tolerance in lab conditions. Details of the germ-
plasm, its pedigree, experimental layout and the studied 
attributes are given in Ali et al. (2015 and 2017). Spikes 
were harvested individually by hand and threshed with 
a mechanical belt thresher.

Digital imaging analysis of wheat seeds
Twenty-five intact randomly selected seeds of 

each genotype were used for the imaging analysis us-
ing the procedure discussed in Williams et al. (2013), 
Tanabata et al. (2012). Vertical and horizontal photog-
raphy of seeds was accomplished on black sheet in a 
5 × 5 grid spaced 1.5 cm apart with a digital camera. 
The two photographs for each genotype were named 
horizontal (H) and vertical (V) image (Figures 1A and 
1B). The procedure followed was according to Williams 
et al. (2013). Digital photos were transferred to a pho-
tographic expert group (JPEG) files and were further 
processed by using the software package SmartGrain 
version 1.1, which was initially designed for rice seed 
images (Tanabata et al., 2012). Photograph files were 
renamed according to concerned genotype. In Smart-
Grain software, quantitative measures were directly 
derived from JPEG image, by setting a uniform scale 
in each photograph as seen in Figures 1A and 1B, to al-
low estimation of the pixel based actual distance. Seed 
color and background color commands were selected 
after loading the image into the software. Then, the 
morphology of selected seeds (25) was analyzed, out-
lines detected, longitudinal and horizontal axes were 

drawn automatically to calculate seed length, seed 
width, seed area, seed perimeter, length to width ra-
tio, circularity and distance from the gravity point 
(Figures 2A and 2B). The result file was transferred as 
CSV (comma-separated values) output file that could 
be opened in spread software (Tanabata et al., 2012) 
for further statistical analysis. Then, Elliptic Fourier 
Descriptors (EFDs) analysis was performed to assess 
the variations in grain shape (Iwata and Ukai, 2002; 
Iwata et al., 2010). For that purpose, bitmap images 
of wheat seeds were taken with a digital camera, pro-
cessed through software SHAPE that alters the shapes 
of objects (wheat seeds) into a data apposite to record 
the EFDs and calculate the PCA score for each object. 
The PCA score simplifies a large number of EFD coef-
ficients produced for each shape and minimizes them 
to quantitative values (Williams et al., 2013).

Molecular analysis
The same germplasm was previously genotyped 

with 101 simple sequence repeat (SSR) markers. De-
tails of the allele number, polymorphic information 
content (PIC), gene frequency, SSR genetic diversity, 
and population structure analysis carried through 
STRUTURE software (v. 2.1; Bradbury et al., 2007) 
were discussed in Ali et al. (2015). Observed Q matrix 
for maximum ΔK was used for the association map-
ping analysis carried out on phenotypic and genotypic 
data of the studied germplasm with TASSEL 2.0.1 ac-
cording to Bradbury et al. (2007). Due to the small 
population size, a marker-trait association study was 
conducted based on the mixed linear model (MLM) 
approach. The MLM approach is relatively strict be-
cause it takes into account both population structure 
coefficients and kinship matrices (K), hence, it is 
highly recommended in such cases in order to avoid 
false positives or spurious marker trait associations. A 
significant threshold considered was based on Bonfer-
roni correction (Bland and Altman, 1995). Associated 
markers were assigned to wheat chromosomes based 
on their position on a wheat consensus map (Somers 
et al., 2004) and data in the GrainGenes database 
(www.graingenes.org).

Figure 1 – Showing A) horizontal seed image, B) vertical seed image of genotype AA01 on a 5 × 5 grid. A paper cube of 30 × 30 mm is placed 
in each photograph to calibrate the scale.
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Statistical analysis
Relationships between variables were determined 

using the Pearson correlation test with the STATISTICA 
software (Statsoft v. 7.0, 2004). Based on the correla-
tion approach, the data obtained were also subjected 
to the principal component analysis (PCA) in order to 
generalize and characterize the germplasm more com-
prehensively by using the multivariate option in PAST 
2.12 (Hammer et al., 2001). The cluster analysis was 
performed to find similarity matrix with UPGMA (un-
weighted pair-group method with arithmetic mean) by 
using the same software PAST 2.12.

The multiple regression analysis was performed 
to check the variation in TGW as dependent variable 
affected by the seed shape parameters taken as inde-
pendent variables using Lisrel 9.1 software package. 
Moreover, the covariance matrix and structure equation 
of the model was formulated. Path diagram with ap-
propriate coefficients was drawn by the same software 
package elucidating the interaction of direct effects of 
dependent variables either positively or negatively to 
thousand-grain weight.

Results

Summary statistics for wheat grain attributes of 
the studied germplasm is given in Table 1. For TGW, the 
genotypes ranged from 29.5 g (AA02) to 51.9 g (AA24). 
There were seven synthetic derived bread wheats (SBWs) 
(AA17, AA18, AA19, AA24, AA28, AA32 and AA46) and 
four conventional bread wheats (CBWs) (AA03, AA15, 
AA25 and AA40) with TGW above 45.0 g. Grain length, 
width, and thickness are considered the direct measure-
ment of TGW regarding its contribution. This was fur-
ther confirmed by observing the same trends for these 
attributes between the genotypes as was observed for 

Table 1 – Descriptive statistics of wheat grain attributes in the 
germplasm studied.

Grain phenotype Mean Min Max Variance CV
%

HA (mm) 18.02 10.10 36.38 32.46 21.6
HP (mm) 17.96 13.99 25.55 5.98 13.6
SL (mm) 6.93 5.56 9.71 0.75 12.4
HC 0.68 0.587 0.77 0.002 7.1
HDEV 0.85 0.75 0.90 0.001 3.9
AR 2.12 1.80 2.75 0.06 11.9
SW (mm) 3.35 2.35 4.96 0.39 18.7
SV 333.3 107.4 954.6 33236.9 34.7
ST (mm) 3.19 1.52 5.11 0.48 21.7
VP (mm) 12.31 6.41 19.17 5.94 19.7
VA (mm) 9.54 2.47 22.47 16.87 23.1
VC 0.75 0.61 0.83 0.002 6.2
VDEV 0.68 0.38 1.08 0.019 20.3
TGW (g) 41.02 29.48 51.94 20.62 11.1
FFD 0.19 0.08 0.30 0.004 21.6
DS 0.64 0.35 0.99 0.019 21.7
HA = horizontal area; HP = Horizontal perimeter; SL = seed length; HC = 
Horizontal circularity; HDEV = horizontal deviation from ellipse; AR = aspect 
ratio; SW = seed width; SV = seed volume; ST = seed thickness; VP = 
vertical perimeter; VA = vertical area; VC = vertical circularity; VDEV = vertical 
deviation from ellipse; FFD = factor from density; DS = distance between IS 
(intersection of length and width) and CG (center of gravity); TGW = thousand 
grain weight. 

Figure 2 – (A) Steps involved in the digital image analysis using 
SmartGrain; (B) seed image analyzed by SmartGrain showing 
measured dimensions (L = length; W = width; CG = center of 
gravity; IS = intersection).

TGW. For instance, maximum grain length (9.71 mm) 
and grain width (6.96 mm) were exhibited by genotype 
SBW10. The most consistent traits with reference to 
coefficient of variation (CV) were horizontal deviation 
from ellipse (HDEV, 9 %), vertical circularity (VC, 6 %), 
horizontal circularity (HC, 7 %), thousand grain weight 
(TGW, 11 %), followed by aspect ratio (AR, 12 %), seed 
length (SL, 12 %) and horizontal perimeter (HP, 13 %).

Pearson coefficient of correlation and path 
coefficient analysis for grain size descriptors

The Pearson coefficient of correlation (r) between 
the studied grain size descriptors are given in Table 2. 
The maximum positive correlation (r = 0.98) was re-
corded between horizontal area (HA) and horizontal 
perimeter (HP), between vertical perimeter (VP) and 
seed thickness (ST), between vertical area (VA) and seed 
thickness (ST), and, between vertical area (VA) and ver-
tical perimeter (VP). Similarly, the maximum negative 
correlation (r = -0.91) was recorded between density 
(FFD) and seed weight (SW). Further, ST, SW, and SL 
had positive correlation with TGW (r = 0.61, r = 0.46 
and r = 0.62 respectively). The FFD and VDEV (verti-
cal deviation from ellipse), important derivatives, were 
negatively correlated with TGW, (r = -0.29 and r = -0.31 
respectively). Similarly, the aspect ratio (AR) correlated 
negatively with most studied measurements.

For a further investigation of individual measure-
ment on grain weight, the path coefficient analysis was 
conducted using TGW as dependent variable. The grain 
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size descriptors, taken as independent variables, com-
prised those describing the different aspects of grain 
size and shape as well as some miscellaneous derivatives 
(Figure 3). Horizontal and vertical deviations from the 
ellipse have an indirect positive effect on grain weight 
and both vertical and horizontal perimeters have direct 
positive effect on grain weight, because these are deriva-
tives of grain length, width, and thickness. Grain thick-
ness revealed a maximum direct effect (0.71) on TGW, 
followed by vertical area (VA, 0.68), vertical perimeter 
(VP, 061) and seed volume (SV, 0.41), while seed length 
(SL) exhibited the least direct effect of 0.05. Similarly, 
HDEV and VDEV, derivatives of seed thickness, width, 
and length, showed indirect positive effect on TGW. 
However, negative direct effect (-0.08) was observed for 
the derived variable FFD on TGW.

Principal component analysis (PCA)
In order to identify the most appropriate combina-

tion of the attributes studied for grain yield, the PCA 
and biplot analyses were conducted using mean values 
(Figure 4 and Table 3). Trait vectors displaying angles 
smaller than 90° have a positive association, while vec-
tors with angles greater than 90° have a negative asso-
ciation. Further, correlation intensity increased in angles 
near 0° and 180°. The vector length shows the extent 
of variation explained by respective trait in the PCA. 
The first two axes, that is, PC1 (eigen value = 9.1) and 
PC2 (eigen value = 2.7), explained up to 74 % of the 
total variability. The attributes in order of their positive 
contribution to PC1 included HA (0.322), HP (0.316), 
SL (0.302), SW (0.318), SV (0.324), ST (0.303), and VP 
(0.295). Similarly, for PC2, the major contributing attri-
butes were TGW (0.416) and DS (0.236). For PC3, only 

Table 3 – The principal component analysis of all the traits studied 
measured in a set of 55 wheat genotypes.

  PC1 PC2 PC3
Eigenvalue 9.1 2.7 1.3
Variance (%) 56.6 17.1 8.2
Cumulative Variance (%) 56.6 73.7 81.9

Eigenvector
HA 0.322 –0.002 –0.085
HP 0.316 0.061 –0.180
SL 0.302 0.146 –0.133
HC 0.171 –0.412 0.251
HDEV –0.007 –0.370 –0.087
AR –0.205 0.431 0.027
SW 0.318 –0.128 –0.085
SV 0.324 0.073 0.015
ST 0.303 0.087 0.135
VP 0.295 0.115 0.085
VA 0.300 0.119 0.148
VC 0.129 –0.044 0.478
VDEV 0.069 –0.551 –0.142
TGW 0.198 0.416 –0.116
FFD –0.292 0.062 0.240
DS 0.115 0.236 –0.580
HA = horizontal area; HP = Horizontal perimeter; SL = seed length; HC = 
horizontal circularity; HDEV = horizontal deviation from ellipse; AR = aspect 
ratio; SW = seed width; SV = seed volume; ST = seed thickness; VP = 
vertical perimeter; VA = vertical area; VC = vertical circularity; VDEV = vertical 
deviation from ellipse; FFD = factor from density; DS = distance between IS 
(intersection of length and width) and CG (center of gravity); TGW = thousand 
grain weight.

Table 2 – The Pearson coefficient of correlation (r) and associated probabilities (*, ** and *** for p ≤ 0.05, ≤ 0.01, ≤ 0.001 respectively) 
between measured grain size descriptors (n = 55).

HA HP SL HC HDEV AR SW SV ST VP VA VC VDEV TGW FFD
HP 0.98***
SL 0.95*** 0.97***
HC 0.50** 0.34* 0.28*
HDEV –0.01NS –0.14NS 0.02NS 0.47**
AR –0.59*** –0.50** –0.32* –0.81*** 0.10NS

SW 0.97*** 0.93*** 0.85*** 0.63*** –0.05NS –0.77***
SV 0.96*** 0.94*** 0.93*** 0.42** 0.01NS –0.50** 0.91***
ST 0.80*** 0.80*** 0.78*** 0.34* –0.06NS –0.44** 0.77*** 0.91***
VP 0.79*** 0.80*** 0.77*** 0.28* –0.08NS –0.39** 0.75*** 0.89*** 0.98***
VA 0.80*** 0.80*** 0.78*** 0.31* –0.04NS –0.39** 0.76*** 0.92*** 0.98*** 0.98***
VC 0.29* 0.24NS 0.22NS 0.34* 0.16NS –0.29* 0.32* 0.34* 0.43** 0.29* 0.40**
VDEV 0.24NS 0.19NS 0.11NS 0.47*** 0.03NS –0.52*** 0.34* 0.05NS –0.21NS –0.32* –0.23NS 0.19NS

TGW 0.56*** 0.54*** 0.62*** 0.21NS 0.29* –0.04NS 0.46** 0.64*** 0.61*** 0.61*** 0.63*** 0.30* –0.19NS

FFD –0.87*** –0.89*** –0.80*** –0.48*** 0.18NS 0.69***–0.91***–0.80***–0.70***–0.68***–0.68***–0.25NS –0.36** –0.29*
DS 0.35* 0.45** 0.44** –0.26NS –0.36** 0.03NS 0.27* 0.34* 0.29* 0.29* 0.28* 0.02NS –0.04NS 0.06NS –0.40**
* and ** represents significance at p < 0.05 and p < 0.01, respectively and NSrepresent non-significant. Where, HA = horizontal area; HP = Horizontal perimeter; SL 
= seed length; HC = horizontal circularity; HDEV = horizontal deviation from ellipse; AR = aspect ratio; SW = seed width; SV = seed volume; ST = seed thickness; 
VP = vertical perimeter; VA = vertical area; VC = vertical circularity; VDEV = vertical deviation from ellipse; FFD = factor from density; DS = distance between IS 
(intersection of length and width) and CG (center of gravity); TGW = thousand grain weight.

FFD (0.624) was noted for its prominent contribution. 
Eigenvectors from the biplot analysis clearly indicated 
that HDEV, FFD, AR, and VDEV displayed a negative 
association.
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Cluster analysis
All wheat genotypes were broadly divided into 

two major clusters (Figure 5). Major cluster 1 contained 
genotypes (AA31, AA28, AA18, AA39, AA32, AA17, 
AA24), all synthetic-derived bread wheats. Cluster 2 
consisted of several sub-clusters designated as 2a, that 
is, 2a(i), 2a(ii), and 2b designated as 2b(i) and 2b(ii). The 
genotypes clustered in 2a(i) and 2a(ii) comprised con-
ventional bread wheats (except AA36 and AA46 which 
are SBW). The check cultivars, which included AA53, 
AA54 and AA55, were also found confined to same clus-
ter 2a(ii). Similar inferences were true for the rest of the 
genotypes in sub-cluster 2b(i) and 2b(ii).

Marker Trait Association
The scoring patterns of SSRs loci have shown 525 

alleles across 55 wheat accessions. Number of alleles per 
locus ranged from two to 14 with an average of 5.2, indi-

cating that the diversity between wheat accessions was 
relatively high. The PIC values also confirmed these re-
sults. The population structure analysis was performed 
using STRUCTURE software version. 2.1. The Q ma-
trix was recorded by running structure at K= 2 and 7, 
where the highest value of ΔK occurred, demonstrating 
its maximum likelihood. The data obtained through the 
structure analysis was further validated by the cluster-
ing (UPGMA) method. For the AM analysis, K = 2 from 
population structure data was used. Significant markers 
(p ≤ 0.01) are given in Table 4 along with their chromo-
somal locations. In total, 26 MTAs were found identified 
for 101 SSRs used in this study, of which, the number 
of multi-trait MTAs (markers associated with more than 
one trait) was 22, while trait-specific MTAs (marker as-
sociated with only one trait) were four in number. The 
specific trait MTAs included Xwmc798-1BS (r2 = 0.03) for 
AR, Xgdm35-2DS (r2 = 0.06) for HA, Xgwm372-2AL (r2 

= 0.05) for AR and Xgwm544-5BS (r2 = 0.03) for dis-
tance between intersection of length and width (DS). 
The chromosomes with association included two from 
A-genome (2A and 3A), four from B-genome (1B, 3B, 5B 
and 7B), and two from D-genome (1D and 2D). Chromo-
some 2D had the largest number of MTAs (total 9 which 
included MTAs for HA, SL, HP, TGW, VA, VP and SW). 
Regarding homologous chromosomes, group 2 displayed 

Table 4 – Marker trait associations (MTAs) for the studied grain 
phenotypes at p ≤ 001.

Trait Locus Chr cM p r2

HC Barc147 3BS 7.0 2.40E-03 0.103
AR Barc147 3BS 7.0 5.00E-03 0.087
SL Barc149 1DS 14.0 5.40E-03 0.039
VA Barc149 1DS 14.0 3.49E-04 0.057
SL Barc149 1DS 14.0 1.30E-03 0.048
VP Barc149 1DS 14.0 1.20E-03 0.049
SW Barc149 1DS 14.0 2.00E-03 0.045
HDEV Barc45 3AS 37.0 1.70E-03 0.058
VC Barc45 3AS 37.0 3.30E-03 0.052
HDEV WMC606 7BS 0.0 9.80E-03 0.034
DS WMC606 7BS 0.0 6.70E-03 0.036
AR WMC798 1BS 19.0 9.80E-03 0.028
HA Xgdm35 2DS 15.0 8.80E-03 0.055
HA Xgdm6 2DL 141.7 4.10E-03 0.064
SL Xgdm6 2DL 141.7 7.40E-03 0.056
HP Xgdm6 2DL 141.7 8.60E-03 0.054
TGW Xgdm6 2DL 141.7 1.90E-03 0.075
AR Xgwm372 2AL 60.0 3.57E-04 0.053
VA Xgwm539 2DL 91.0 1.85E-04 0.103
SL Xgwm539 2DL 91.0 6.12E-04 0.087
VP Xgwm539 2DL 91.0 1.70E-03 0.073
SW Xgwm539 2DL 91.0 2.60E-03 0.067
DS Xgwm544 5BS 137.0 4.90E-03 0.032
HA = horizontal area; HP = Horizontal perimeter; SL = seed length; HC = 
horizontal circularity; HDEV = horizontal deviation from ellipse; AR = aspect 
ratio; SW = seed width; VP = vertical perimeter; VA = vertical area; VC = 
vertical circularity; DS = distance between IS (intersection of length and width) 
and CG (center of gravity); TGW = thousand grain weight.

Figure 3 – The path analysis for direct and indirect effects of seed 
size and shape descriptors to grain weight. HA = horizontal area; 
HP = Horizontal perimeter; SL = seed length; HDEV = horizontal 
deviation from ellipse; HPC1,2,3 = horizontal principal component 
1,2,3 respectively; AR = aspect ratio; SW = seed width; SV = 
seed volume; ST = seed thickness; VP = vertical perimeter; VA 
= vertical area; VDEV = vertical deviation from ellipse; VPC1,2,3 
= vertical principal component 1,2,3 respectively; FFD = factor 
from density; DS = distance between IS (intersection of length and 
width) and CG (center of gravity); TGW = thousand grain weight.
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the largest number (10) of MTAs, followed by group 3 
(7 MTAs) while the smallest number was observed in 
group 5 (with only one MTA for DS). While the homolo-
gous groups 4 and 6 showed no association with any of 
the studied grain phenotypes.

Discussion

Seed shape and size are vital agronomic traits 
because of their immense effects on yield and market 
value. Large collections of measurements are needed to 

obtain precise seed size data because very small differ-
ences exist in size between seeds from a plant. Manual 
measurement methods have certain limitations, namely 
limited data, low quality measurements, and variety of 
shape data that could be gleaned. Therefore, a well-or-
ganized, consistent, high-throughput grain phenotyping 
method is needed to validate the genetic analysis and se-
lection for seed shape in plant breeding (Breseghello and 
Sorrells, 2007; Gegas et al., 2010; Williams et al., 2013). 
Smartgrain software was originally used to analyze the 
rice seeds. However, here we are reporting digital im-

Figure 5 – Clustering analysis (UPGMA) of genotypes based on imaging data of wheat seed.

Figure 4 – The principal component and biplot analysis for PC1 and PC2 based on the trait means. Trait vectors displaying angles smaller 
than 90° have positive association, while those with angles greater than 90° have negative association (HP = Horizontal perimeter; HC = 
Horizontal circularity; SL = seed length; HDEV = horizontal deviation from ellipse; AR = aspect ratio; SW = seed width; SV = seed volume; ST 
= seed thickness; VP = vertical perimeter; VA = vertical area; VC = vertical circularity; FFD = factor from density; DS = distance between IS 
(intersection of length and width) and CG (center of gravity); TGW = thousand grain weight).
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aging analysis of wheat grains to determine seed shape 
and size with some precise and updated attributes. This 
software identifies the seeds in digital image, recogniz-
es seed outlines, and calculates seed length (SL), seed 
width (SW), length-to-width ratio (aspect ratio i.e. AR), 
seed thickness (ST, which is width of vertical image), 
seed area (SA), horizontal perimeter (HP), horizontal cir-
cularity (HC), distance of length to width intersection 
with the center of gravity (DS). As a preliminary exam-
ination, we analyzed the seeds with ImageJ software; 
however, SmartGrain was superior and user friendly 
and also described seed shape and size with more pa-
rameters as compared to ImageJ. Secondly, SmartGrain 
uses JPEG format, thus, there is no need to alter picture 
file formatting into bitmap, 8-bit or black and white as in 
ImageJ. Moreover, output files produced by SmartGrain 
are saved automatically, and could transformed and ana-
lyzed by any spreadsheet software. Circularity and dis-
tance of L/W intersection with gravity are the additional 
parameters determined by SmartGrain as compared to 
ImageJ.

In this work, computational methods using DI 
imaging technique enabled to automatically measure 
a large quantitative dataset of robust size descriptors 
[AR, aspect ratio; DS, distance between IS (intersection 
of length and width) and CG (center of gravity); FFD, 
factor form density; HA, horizontal area; HC, horizon-
tal circularity; HDEV, horizontal deviation from ellipse; 
HP, Horizontal perimeter; SL, seed length; TGW, thou-
sand grain weight; ST, seed thickness; VA, vertical area; 
VDEV, vertical deviation from ellipse; VP, vertical pe-
rimeter; SV, seed volume; SW, seed width; TE, total ef-
fect].

Significant correlations between various seed 
morphological attributes provided new insights into 
the complex composition of grain size and shape com-
ponents. For instance, vertical (VDEV) and horizontal 
(HDEV) deviations from ellipse were negatively corre-
lated with grain length and width, meaning that devia-
tion from the ellipse enhances grain length and width, 
and ultimately TGW. Similarly, the positive correla-
tion between SL and SW indicated the possibility of 
finding some potential cultivars/genotypes possessing 
wider and lengthy grains simultaneously which may 
lead to enhanced TGW. The findings are in accordance 
to those reported recently by Zhang et al. (2013) and 
Rasheed et al. (2014); however, SL had more positive 
impact on TGW as compared to SW. Similar reports of 
mild to moderate correlations between grain weight, SL 
and SW with r = 0.21-0.75 were discussed in Shouche 
et al. (2001), Okamoto et al. (2013), and Abdipour et 
al. (2016). Similarly, the studies conducted by Gegas 
et al. (2010) and Williams et al. (2013) for seed shape 
variations targeted traits influencing grain size/weight 
and results are comparable to our findings. The posi-
tive direct and indirect effects of a trait on grain weight 
may allow its use in selection under specific conditions 
(Ramazani et al., 2017).

The principal component and cluster analysis re-
vealed that variability in grain attributes could be cap-
tured quantitatively. In the PCA, differences in grain 
attributes were decomposed into mutually independent 
quantitative characteristics, that is, principal compo-
nents (PCs). Using symmetric standardized coefficients 
for PCA, 74 % of the variation was attributed to the first 
two PCs. The trend observed from PCA pave a way for 
possible unsupervised classification algorithm devel-
opment for grain type identification and classification. 
Similar inferences were also discussed in details by Me-
batsion et al. (2012). With advances in imaging systems, 
identification and classification of cereal grain using one 
or a combination of morphological features has been at-
tempted with different levels of success (Majumdar and 
Jayas, 2000; Choudhary et al., 2008). In this context, the 
present work is crucial as it aims at developing a consis-
tent procedure for an objective and quantitative classifi-
cation of cereal grains. General concerns in plant breed-
ing are focused on the quantitative data generated per 
genotype and decrease in breeding cycle duration. This 
could be well achieved with the help of high throughput 
phenotyping techniques in breeding programs (Heffner 
et al., 2010). Unravelling morphological data through 
DIA accomplished in this study is consistent with these 
trends and has potential to allow direct use of quality 
and agronomic attributes. Thus, this study, which used 
grain morphometric parameters, could lead to wheat 
class/variety identification with useful implications in 
plant breeding. Precise clustering of the studied wheat 
genotypes based on diverse grain attributes obtained 
could further lead to genotype discrimination. This is 
supported by the fact that SBW and CBW were found 
clearly separated in different clusters. Further infer-
ences could be made for individual genotypes within 
the sub-clusters based on its pedigree. Further studies 
are recommended for developing a universal statisti-
cal model to achieve more precise results (Zapotoczny, 
2011). The DIA test stringency has potential for discern-
ing genetic expression aspects of targeted diverse wheat 
genome accessions introgressed via interspecific hybrid-
ization and is under exploration.

For a better understanding of the effect of indi-
vidual measurement on grain weight, the path coefficient 
analysis was conducted by having TGW as dependent 
variable, which showed the phenotypic model with great-
er precision. Grain thickness was found to reveal maxi-
mum direct effect, whereas SL exhibited the least direct 
effect of 0.05. Similarly, HDEV and VDEV, derivatives of 
seed thickness, width and length, exhibited indirect posi-
tive effect on TGW. However, negative direct effect was 
observed for the derived variable FFD on TGW, mean-
ing that the loci harboring their control should undergo 
negative selection in order to get superior grain weight 
genotypes. The efficiency of indirect selection depends 
on heritability of the selected trait as well as correlation 
between a targeted and selected trait. The results further 
revealed that genes having pleiotropic effect or closely 
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linked genes might probably involve for correlations be-
tween these traits (Cooper et al., 2012; Abdipour et al., 
2016). Gegas et al. (2010) and Rasheed et al. (2014) previ-
ously confirmed that kernel size and shape were largely 
independent traits in a study of six wheat populations.

The scoring patterns of SSRs loci have shown 525 
alleles across 55 wheat accessions. Number of alleles 
per locus ranged from 2 to 14 with an average of 5.2, 
indicating that the diversity between wheat accessions 
was relatively high. The PIC values also confirmed these 
results. This indicated the importance of such diverse 
bread wheat germplasm in order to improve further 
wheat diversity and productivity in a scenario of climate 
change, which has posed serious problems in recent 
years. Henkrar et al. (2016) have also reported similar 
findings for enhancing genetic diversity and improving 
wheat productivity. 

Since the experimental germplasm basically com-
prised synthetic derived (SBW) and conventional (CBW) 
bread wheat, along with check cultivars (CCT), a com-
parison between these groups with respect to marker 
trait associations revealed that most MTAs for grain shape 
and size variation were allocated in the D genome of al-
lohexaploid wheat. This means that natural variations in 
Ae. tauschii populations are the most important sources 
to enhance the D-genome diversity in bread wheat (Jones 
et al., 2013). Derived-synthetic wheats are thus valuable 
sources in order to identify important loci from agricul-
tural perspectives and investigate the expression of D-ge-
nome variation in different grain phenotypes that act in 
the hexaploid genetic background (Rasheed et al., 2014).

Genetic partition of the grain shape related attri-
butes by means of association mapping and QTL map-
ping, followed by MAS (marker-assisted selection), is an 
active research area, and several QTLs have already been 
reported (Reif et al., 2011). Recently, Yan et al. (2017) iden-
tified a new QTL QTgw.cau-2D controlling grain weight 
from the synthetic allohexaploid wheat, which may play 
significant role in genetic improvement of wheat breed-
ing. Similarly, Chen et al. (2019) reported on new QTLs 
that provided insights into the genetic basis of grain shape 
as well as additional genetic resources to develop elite 
rice varieties. In this study, 23 genomic loci were identi-
fied having association with wheat grain weight and other 
seed phenotypes for the germplasm grown under differ-
ent water regimes. Jing-Lan et al. (2015) previously re-
ported 208 MTAs in wheat under four different environ-
ments. They further identified SSR loci associated with 
some grain shape related attributes, which were common 
in hexaploid wheat and Ae. tauschii, and hexaploid wheat, 
suggesting that the presence of common alleles may eluci-
date selection between Ae. tauschii and hexaploid wheats, 
and the evolutionary process. Koebner and Summers 
(2003) stated that favorable allele identification could help 
select parents for breeding programs in order to ensure 
high level of favored alleles across different sets of loci. 
However, the probability of other genetic effects should 
not be ignored while considering the additive effects of 

genes that resulted from linear association between grain 
shape phenotypes (including TGW, SL, SW and ST) and 
favorable alleles. Wu et al. (2012) reported on QTL related 
to TGW on chromosome 2D, which might be analogous 
to TGW-MTA found in this work with associated marker 
Xgdm6-2DL. The differences in chromosomal positions 
may be attributed to the different germplasm sources 
used, that is, mainly synthetic-derived wheats. The same 
MTA (Xgdm6-2DL) is also comparable to QTLs namely 
QTkw.ncl-2D.2 (located between Xwmc41 and Xgwm349) 
and QTkw.ncl-2D.2 (located between Xwmc601 and 
Xwmc41) reported by Ramya et al. (2010).

Conclusion

The integrated approach of using genomics with 
phenomics resulted in documentation of many genomic 
loci with its putative functions to enhance TGW in wheat. 
In this study, different alleles were identified from SSRs 
in the wheat germplasm studied that showed significant 
association with grain-shape related attributes and TGW. 
Some of these alleles exhibited positive effect on wheat 
genotypes, meaning the enhanced phenotypic value of 
grain-related attributes. As indirect selection indices, 
these traits could help deepen understanding on grain 
weight components in wheat. Further studies, including 
comparative genomics approaches, are recommended to 
investigate the association for sorting variations at loci 
with important grain shape related attributes.
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