Critical points on growth curves in autoregressive and mixed models
DOI:
https://doi.org/10.1590/S0103-90162014000100004Resumen
Adjusting autoregressive and mixed models to growth data fits discontinuous functions, which makes it difficult to determine critical points. In this study we propose a new approach to determine the critical stability point of cattle growth using a first-order autoregressive model and a mixed model with random asymptote, using the deterministic portion of the models. Three functions were compared: logistic, Gompertz, and Richards. The Richards autoregressive model yielded the best fit, but the critical growth values were adjusted very early, and for this purpose the Gompertz model was more appropriate.Descargas
Los datos de descarga aún no están disponibles.
Referencias
Descargas
Publicado
2014-02-01
Número
Sección
Biometry, Modeling and Statistics
Licencia
Todo el contenido de la revista, excepto donde esté identificado, está protegido por el Creative Commons del tipo BY-NCCómo citar
Critical points on growth curves in autoregressive and mixed models . (2014). Scientia Agricola, 71(1), 30-37. https://doi.org/10.1590/S0103-90162014000100004