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1. Introduction

Groups generated by finite automata (groups of automata or automaton
groups) were formally introduced at the beginning of 1960’s [Hof63], but
more substantial work on this remarkable class of groups started only in
1970’s after Aleshin [Ale72] confirmed a conjecture by Glushkov [Glu6l]
that these groups could be used to study problems of Burnside type (note
that groups of automata should not be confused with autornatic groups as
described in [ECH'92]). It was observed in 1960’s and 1970’s that groups
of antomata are closely related to iterated wreath products (pioneering

-work in this direction is due to Kaloujnin [Kald5]) and that the theory of

such groups could be studied by using the language of tables developed by
Kaloujnin {Kal48] and Sushchanskii [Sus79].

Even more intensive study of groups of finite automata started in the
beginning of 1980°s after the development of some new ideas such as self-
similarity, contracting properties, and a geometric realization as groups
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acting on rooted trees. These developments allowed for elegant construc-
tions of Burnside groups [Gri80, GS83b, GS83a] and pushed the study of
groups of automata in many directions: analysis [Cri84, Ers04}, geome-
try {BGNO3], probability [BVO05, Ers04, AV05], dynamics [BGO0a, GZ01],
formal languages [HR04], etc.

Two well known and important problems were solved using groups of
automata in the early 1980’s, namely Milnor Problem [Mil68] on intermedi-
ate growth and Day Problem [Day57] on amenability. A 5-state automaton
constructed in [Gri80] (on the right in Figure 1) generates a 2-group, de-
noted G. It was shown in [Gri84] that G has intermediate growth (hetween
polynomial and exponential). This led to construction of other examples

of this type [FG91, BS01] and also made important contribution to and

impact on the theory of invariant means on groups [Gre69, Wag85, Pat88]
initiated by von Neumann {vN29| by providing an example of amenable,
but not elementary amenable group (in the sense of Day [Day57)).

Among the most interesting newer developments is the spectral the-
ory of groups generated by finite automata and graphs associated to such
groups [BGOOa, GZ01]. For instance, automaton groups provided first ex-
amples of regular graphs realized as Schreier graphs of groups for which
the spectrum of the combinatorial Laplacian is a Cantor set [BG00a]. Fur-
ther, the realization of the lamplighter group Z 1 Cy as automaton group
(bottom left in Figure 1) was crucial in the proof that this group has a
pure point spectrum (with respect to a system of generators related to the
states of the automaton) and thus has discrete spectral measure, which was
completely described [GZ01]. This, in turn, led to a construction [GLSZ00]
of a 7-dimensional closed manifold with non-integer third L2-Betti number
providing & counterexample to the Strong Atiyah Conjecture [Liic02].
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FiGURE 2. Schreier graph of the action of Basilica group B
on the 5-th level of the tree

Another fundamental recent discovery is the relation of groups of au-
tomata to holomorphic dynamics [BGN03, Nek05]. Namely, it is shown

that to every rational map f : ¢ — € on the Riemann Sphere with finite
posteritical set one can associate a finite automaton generating a group, de-
noted IMG(f) and called iterated monodromy group of f. The geometry
and the topology of the Schreier graphs of IMG(f) is closely related to the
geometry of the Julia set of f. Figure 2 depicts a Schreier graph associated
to an automaton group, denoted B and called Basilica group. Its reminis-
cence to the Julia set of the map z ~ 2% — 1 is related to the fact that
B is the iterated monodremy group IMG{(z? — 1} of the holomorphic map
z = 22 — 1 [BGN03, Nek05]). Groups of automata represent the basis of
the theory of self-similar groups and actions [Nek05] and are related to the
study of Belyi polynomials and dessins d’enfants of Grothendieck [Pil00].
The use of iterated monodromy groups was crucial in the recent solution
of Hubbard’s Twisted Rabbit Problem in [BNO6].

One of the most important developments in the theory of autoraton
groups is the introduction of groups with branch structure, providing a
link to just-infinite groups [Gri00, Wil00, BGS03] and groups of finite
width [BG00b]. In particular, a problem suggested by Zelmanov was solved
by using the profinite completion of G [BG0O0b]. The problem of Gromov
on uniformly exponential growth was solved recently by using branch au-
tomaton groups [Wil04]. An unexpected link of groups of automata and
their profinite completions to Galois theory was found by R. Pink (private
communication) and Aitken, Hajir and Maire [AHMO04}, while N. Boston
{Bos06, Bos05] related branch groups of automata to Fontaine-Mazur Con-
jecture and other problems in number theory. The class of branch groups is
also a new source for infinitely presented groups, for which the presentation
can be written in a recursive form (see [Lys85, Sid87, GSS)).
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A tecent observation [GS06] is that automaton groups and their Schreier
graphs stand behind the famous Hanoi Towers Problem (see {Hin89]) and
some of its generalizations [Sto94]. '

There are indications that spectral properties of groups generated by
finite automata could be used in the study of Kaplansky Conjecture on
Idempotents (and thus also Baum-Connes Conjecture [Con94] and Novikov
Conjecture [FRR95]), Dixmier Unitarizability Problem {Dix50, Pis05), and
for construction of new families of expanders, and perhaps even Ramanujan,
graphs [Lub94]. :

In this article we are going to describe some progress which was achieved
during the last few years in the problem of classification of automaton
groups. .

Two important characteristics of an automaton are the cardinalities m
and n of the set of states and the alphabet, respectively, and the pair (m, n)
is a natural measure of complexity of an automaton and of the group it
generates.

The groups of complexity (2,2) are classified [GNS00] and there are
only 6 such groups (see Theorem 8 in Section 7 here). The problem of
classification of (3,2) groups or (2, 3) groups is much harder.

The current text represents the progress being made by the research
group at Texas A&M University over the last few years toward classification
of (3,2) groups.

The total number of invertible automata of complexity (3,2) is 23 .35 =
5832, However, the number of non-isomorphic groups gencrated by these
automata is much smaller. :

Theorem 1. There are no more than 124 pairwise non-isomorphic groups
of complezity (3,2).

The proof of this theorem is too long to be presented here (even the list
of all groups takes a lot of space).

Instead, we have chosen for this article a set of 24 automata generating

+ 20 groups {among the most interesting in this class, in our opinion), which

we list in the form of a table. The table provided here is a part of the table

listing the whole set of 124 groups. We keep the numeration system from
the whole table (the rule for numeration is explained in Section 5).

Major results obtained for the whole family are the following theorems.
The numbers in the brackets indicate the numbers of corresponding au-
tomasa in the class.

Theorem 2. There are 6 finite groups in the class: {1} [1], Ca [1090],
Cy x Cq [730}, Dy [847], Ca x Cy x Cy [802] and Dy x Cs [748].
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Theorem 3. There are 6 abelian groups in the class: {1} [1], Cy [1090],
Ca x Cy [780], C3 x Cy x Cy [802), Z [781] and Z% [171].

Note that there are also virtually abelian groups in this class (having Z,
Z7 [2212], 23 [752] or Z° [968] as subgroups of finite index). .

Theorem 4. The only free non-abelian group in the class is the free group
of rank 8 generated by the Aleshin-Vorobets automaton [2240]. Moreover,
the isomorphistn class of this automaton group coincides with its equivalence
class under symmetry.

The definition of symmetric automata is given in Section 5.

Theorem 5. There are no infinite torsion groups in the class.

We do not provide the complete proofs of these theorems (by the reason
explained above). Instead, we give here some information about each of
the chosen groups and include proofs of most facts.

Properties that are in our focus are the contracting property, self-rep-
lication, torsion, relations {we list the relators up to length 10), rank of
quotients of the stabilizers series, shape of the related Schreier graphs. The
article is organized as follows. We start with a general information about
rooted trees and their automorphisms. Then we provide guick introduction
to the theory of automaton groups. We continue with the definition of
Schreier graphs and explain how they naturally appear for the actions on
rooted trees. Then we list 24 automata generating 20 groups together with
some of their properties. In the last section we give proofs of many facts
related to the groups in the list.

The last part also contains some more general results (such as an algo-
rithm detecting transitivity of an element and a criterion for group transi-
tivity on the binary tree).

We recommend the articles {GNS00] and the book [Nek05] to the reader
who is interested in becoming more familiar with automaton groups.

2. Regular rooted tree automorphisms and self-similarity

Let d > 2 be fixed and let X be the alphabet X = {0,1,...,d—1}. The
set, of words X* over X (the free monoid over X} can be given the structure
of a regular rooted labeled d-ary tree 7 in which the empty word 0 is the
root, the level n in T consists of the words of length n over X and every
vertex v has d children, labeled by vz, for £ € X. Denote by Aut(7) the
group of automorphisms of 7. Let f be an automorphism in Aut(7). Any
such automorphism can be decomposed as

fzaf(fﬂv"'afd—-l) . (1)

S&o Paulo J.Math.Sci. 1, 1 {2007), 1-39
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where f,, for € X, are automorphisms of T and « ¢ is a permutation of X.
The automorphisms f; (also denoted by f|.), z € X, are called (the first
level} sections of f and each one acts as an automorphism on the subtree
7. hanging below the vertex z in 7 consisting of the words in X* that
_start with z (any such subtree is canonically isomorphic to the whole tree).
The action of f is decomposed in two steps. First the d-tuple (fos--s fa—1)
acts on the d subtrees hanging below the root, and then the permutation
ay, called the root permutation of f, permutes these d subtrees. Thus the
action of f from (1} on X* is given by

flew) = ay(x) fz(w), (2)

for z a letter in X and w a word over X. Further iterations of the decom-
position (1) yield the second level sections Jey = (fo)y, 2,4 € X, and s0
on. Algebraically, we have

AUt(T) = Sym(X) x (Aut(T), ..., Aut(T)) = ;
Sym(X) & Aub(T)Y = Sym(X) 1 Aut(7), (3)

where ! is the permutational wreath product in which the coordinates of
Aut(T)* are permuted by Sym{X).

Iterations of the decomposition (3) show that Aut(7) has the structure
of an iterated wreath product Aut(7) = Sym(X )}2(Sym{X ) (Sym(X)1...)).
Thus Aut(T) is a pro-finite group and in particular, all of its subgroups
are residually finite. An obvious and natural sequence of normal subgroups
of finite index intersecting trivially is the sequence of level stabilizers. The
n-th level stabilizer Stg(n) of a gronp G < Aut{T) consists of those tree
automorphisms in G that fix the vertices in 7 up to level n. The group
Aut(7) is obviously an uncountable object. We are interested in finitely
generated subgroups of Aut{7) that exhibit some important features of
Aut{T). One such feature is self-similarity.

. Definition 1. A group G of tree automorphisms is self-similar if, for every
¢ in G and a letter z in X there exists a letter ¢ in X and an element & in
G such that

g(zw) = yh(w),

_for all words w over X.

Another way to express self-similarity of a group G of tree automor-
phisms is to say that every section g, of every element g in G is again
an element of G. The full tree automorphism group Aut(7) is clearly
self-similar (see (2)). A self-similar group G embeds in the permutational
wreath product Sym(X)1G = Sym(X) x GX by

g ag(g{)wgl!'-' :gd—l)' (4)
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3. Definition of automaton groups

Consider a finite system of recursive relations

FO = o (5059, 1),

5B = o (0,50, 18,

where each symbol ff), i=1,...,k j=0,...,d -1, is equal to one of
the symbols fU ..., %) and a1,...,0% € Sym(X). The system (5) has
a unique solution in Aut(7). The action of f () on T is given recursively
by D (zw) = ay(z) f}ﬂ {(w). The group generated by the automorphisms
FO L £ is finitely generated self-similar group of automorphisms of T.

This group can be described by a finite invertible automaton (just called
automaton in the rest of the article).

Definition 2. A finite invertible automaton A is a 4-tuple A = (Q, X, p, T)
where Q is a finite set of states, X is a finite alphabet of cardinality d > 2,
p:Qx X — X is a map, called ouiput map, 7 : @ x X —  is a map,
called transition map, and for each state ¢ in (), the restriction pg : X — X
given by pe(z) = p(g,z) is a permutation, i.e. pg € Sym(X). ‘

(5)

The automaton A = {Q, X, p, 7) reads words from X* and provides out-
put words that are also in X*. The behavior is encoded in the output and
trancition maps. An indtial nutomaton Ay is just an automaton A with a
distinguished state ¢ € @ selected as an initial state. We first informalty de-
scribe the action of the initial automaton A, on X*. The automaton starts
at the state g, reads the first input letter z1, outputs the letter pq(z1) and
changes its state to g1 = 7(g,%1). The rest of the input word is handled
by the new state ¢ in the same fashion (in fact it is handled by the initial
automaton Ag). Formally, the action of the states of the automaton A
on X* can be described by extending the output function p to a function
p:Q x X* — X* recursively by

p(Qa :I.'w) = p(Qt ﬂ:)p('r(q, 55): w) (6)
for all states g in Q, letters z € X and words w over X. Then the action
of the initial automaton A, is defined by Ag(u) = p(g, u), for words u over

X. In fact, (6) shows that each initial automaton Ag, g € @, defines a tree
automorphism, denoted by g, defined by

g(zw) = aq(z)g:(w), (7
where the section gz is the state 7(g, z) and the root permutation ay is the
permutation p,. :
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Definition 3. Given an automaton A — (@, X, p,7), the group of tree
automorphisms generated by the states of A is dencted by G(A) and called
the automaton group defined by A. The generating set ) is called the
standard generating set of G(A).

Boundary of the tree T, denoted 87, is the set X“ of words over X that
are infinite to the right (infinite geodesic rays in 7~ starting at the root).
It has a natural metric (infinite words are close if they agree on long finite
prefixes) and the group of isometries lsom(97) is canonically isomorphic
to Aut(7). Thus the action of the automaton group G(A) on 7 can be
extended to an isometric action on 87. In fact, (6) and (7) are valid for
infinite words w as well.

An antomaton A can be represented by a labeled directed graph, called
Moore diagram, in which the vertices are the states of the automaton,
each state g is labeled by its own root permutation ay and, for each pair
(g,z) € @ x X, there is an edge from ¢ to g; = 7(g,z) labeled by z.
For example, the 5-state automaton in the right half of Figure 1 generates
the group G mentioned in the introduction (6 denotes the permutation
exchanging 0 and 1). The two 2-state automata. given on the left of Figure 1
are the so called adding machine (top), which generates the infinite cyclic
group Z and the lamplighter automaton (bottom) generating Ly = Z ) Cs.
Recursion relations of type (5) for the adding machine and the lamplighter
automaton are given by

a=o(l,a) | a=g(b,a)
1= (1,1) . b= (ba), (8)

respectively.

Various classes of automaton groups deserve special attention. An au-
tomaton group G' = G(A) is contracting if there exist constants &, C, and
N, with 0 < x < 1, such that |gy] < &|g] + C, for all vertices v of length at
least V and g € G (the length is measured with respect to the standard gen-
erating set (). For sufficiently long elements g this means that the length
of its sections at vertices on levels deeper than N is strictly shorter than
the length of g. This length shortening leads to an equivalent definition
of a contracting group. Namely, a group G of tree automorphisms is con-
tracting if there exists a finite set A" C G, such that for every g € G, there
exists N > 0, such that g, € A for all vertices v € X* of length not shorter
than N. The minimal set A" with this property is called the nueleus of G.
The contraction property is a key feature of various inductive arguments
and algorithms involving the decomposition 9 = ag(go, ..., Fd-1)-

Another important class is the class of automaton groups of branch type.
Branch groups arise as one of the three [Gri00] possible types of just-infinite
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groups {infinite groups for which all proper homomorphic images are finite).
Every infinite, finitely generated group has a just-infinite image. Thus if
a class of groups C is closed under homomorphic images and if it contains
infinite, finitely generated examples then it contains just-infinite examples.
Such examples are, in a sense, minimal infinite examples in C. For example,
G is a branch automaton group that is a just-infinite 2-group. i.e., it is an
infinite, finitely generated, torsion group that has no proper infinite quo-
tients. Also, the Hanoi Towers group [GS06] and the iterated monodromy -
group IMG(z%+1) [GSS] are branch groups, while B = ITM G(z?-1)isnot a
branch group, but only weakly branch (for definitions see {Gri00, BGS03)).

The class of polynomielly growing automate was introduced by Sidki
in [Sid04], where it is proved that no group G(A) defined by such an au-
tomaton contains free subgroups of rank 2. Moreover, for a subclass of
so called bounded automata it is known that the corresponding groups are
amenable [BKNV05| (this class of automata, for instance, includes the au-
tomata generating G, B and Hanoi Towers group on 3 pegs, but not for
more pegs).

Finally, self-replicating groups play an important role. A self-similar
group G is called self-replicating if, for every vertex u, the homomorphism
@u @ Stg(u) — G from the stabilizer u in G to G, given by wlg) = Gu,
iz surjective. This condition is usually easy to check and, together with
transitivity of the action on level 1, it implies transitivity of the action
on all levels. Another way to show that a group of automorphisms of the
binary tree is level transitive is to use Proposition 2.

4. Limit spaces, Schreier graphs and iterated monodromy
groups

Let us fix some self-similar contracting group acting on X* by automor-
phisms. Denote by X~ the space of left infinite sequences over X.

Definition 4. Two elements ...%3%2%1,... ysyey1 € X ¥ are said to be
asymptotically equivalent with respect to the action of the group G, if there
exist a finite set K C G and a sequence {gx}$2; of elements in K such that

Gk(TrTh—1 - - - T2Z1) = Yelh—1- - Y21
for every k = 1.
The asymptotic equivalence is an equivalence relation. Moreover, se-
QUeNces ... TaTy,.. Y2y € X~ are asymptotically equivalent if and only

if there exists a sequence {hy} of the elements in the nucleus of G such that
hy(zx) = yi and hglz, = hg—, for all k > 1.
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Definition 5. The quotient space J¢ of the topological space X~ by the
asymptotic equivalence relation is called the limit space of the self-similar
action of G. :

The limit space J¢ is metrizable and finite-dimensional. If the group G is
finitely-generated and level-transitive, then the limit space J¢ is connected.

The last decade witnessed a shift in the attention payed to the study of
Schreier graphs. Let G be a group generated by a finite set S and let G act
on a set Y. The Schreier graph of the action (G,Y) is the graph I'(G, S5, Y)
with set of vertices ¥ and set of edges S x Y, where the arrow (s,y) starts
in y and ends in s(y). If y € Y then the Schreier graph I'(G, S, y) of the
action of G on the G-orbit of y is called orbital Schreier graph. _

Let G be a subgroup of Aut(7) generated by a finite set S (not necessary
self-gimilar). The levels X™, n > 0, are invariant under the action of & and
we can consider the Schreier graphs I',(G,S) = (G, S, X"). Let w =
z129z3 ... € X¥. Then the pointed Schreier graphs (T'n (G, S), z172 . .. Tn)
converge in the local topology (topology defined in |Grig4]) to the pointed
orbital Schreier graph (I'(G, S, w),w).

The limit space of a finitely generated contracting self-similar group G
can be viewed as a hyperbolic boundary in the following way. For any given
finite generating system S of G define the self-similarity graph £(G, §) as
the graph with set of vertices X* in which two vertices v,v2 € X* are
connected by an edge if and only if either v; = zv;, for some x € X (vertical
edges), or s(v;) = w; for some s € § (horizontal edges). If the group
is contracting then the self-similarily graph (G, 5) is Gromov-hyperbolic
and its hyperbolic boundary is homeomorphic to the limit space . The set
of horizontal edges of X((, ) spans the disjoint union of all Schreier .graphs
I'(G, 8).Thus, the Schreier graphs I', (G, §) in some sense approximate the
limit space J¢ of the group G. Moreover, for many examples of self-similar
contracting groups there exists a sequence of numbers ), such that the
metric spaces (', d{-,")/An), where d is the combinatorial metric on the
graph, converge in the Gromov-Hausdorff metric to the limit space of the
group.

We recall the definition and basic properties of iterated monodromy
groups {IMG). Let M be a path connected and locally path connected
topological space and let AMM; be its open path connected subset. Let
f: My — M be a d-fold covering. By f™ we denote the n-th iteration of
the map f. The map f™ : M, — M, where M, = f~*(M), is a d™fold
covering, :

Choose an arbitrary base point £ € M. Let 7; be the disjoint union of the
sets f7"(t),n > O (these sets are note necessarily disjoint by themselves).
The set of pre-images 7; has a natural structure of a rooted d-ary tree with
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root t € f70(¢) in which every vertex z € f~™(£) is connected to the vertex
Ff(z) € f™*(t), n > 1. The fundamental group m(M,t) acts naturally
on every set f~™(t) and, in fact, acts by automorphisms on 7;.

Definition 6. Iierated monodromy group IMG(f) of the covering f is the
quotient of the fundamental group m (M, ¢) by the kernel of its action on
7.

It is proved in [Nek05} that all iterated monodromy groups are self-
similar. This fact provides a connection between holomorphic dynamics
and groups generated by automata.

Theorem 6. The iteroted monodromy group of a sub-hyperbolic rational
function is contracting and its limit space 15 homeomorphic to the Julia set
of the rational function.

In particular, the sequence of Schreier graphs I',, of the iterated mon-
odromy group of a sub-hyperbolic rational function can be drawn on the
Riemann sphere in such a way that they converge in the Haunsdorff metric
to the Julia set of the function.

Schreier graphs also play a role in computing the spectrum of the Markov
operator M on the group. Namely, given a group & generaied by a finite
set S = {%1,89,..., sz}, acting on a tree X* there is a natural unitary rep-
resentation of G in the space of bounded linear operators H = B(La(XY))

given by 7y(f)(z) = f(g™ x).

The Markov operator M = 3 (7, + -« 4 g, -+ Tt + -+ + mg-1) cor-
responding to this unitary representation plays an important role. The
spectrum of M for a self-similar group ¢ is approximated by the spectra

of finite dimensional operators arising from the action of G on the levels of
the tree X*. For more on this see {BG00al.

Let H, be a subspace of H spanned by the | X|" characteristic functions
fu,v € X™, of the cylindrical sets corresponding to the {X|* vertices on
level n. Then H, is invariant under the action of G and H, C Hp41.

Denote by ‘Il'_f(?n) the restriction of w4 on H,. Then
1
M, = ﬂ(:'rg’:) + a4 ---—l—wé? + Wi?‘ +7r$)1 + --°+1ri7£)1)
are finite dimensional operators, whose spectra converge to the spectrum
of M in the sense

_SP(M) = U SP(MTL)-

n>0

If P is the stabilizer of an infinite word from X, then one can consider
the Markov operator Mg, p on the Schreier graph of G with respect to P.
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The following fact is observed in [BGOOa] and can be applied to compute
the spectrum of Markov operator on the Cayley graph of a group in case if
P is small. '

Theorem 7. If G is amenable or the Schreier graph G/P (the Schreier
graph of the action of G on the cosets of P) is amenable then sp{Mg/p) =

sp(M).

9. Approach to a classification of groups generated by 3-state
automata over a 2-letter alphabet

The next three sections are devoted to the groups generated by 3-state
automata over the 2-letter alphabet X = {0,1}. Fix {1,2,3} as the set of
states. Every (3,2) automaton is given by

1 =0%ay3, a13),
2 = g% (agy, az3),
3 = 0% (agy, aas),

where a;; € {1,2,8}, for j # 1, a; € {0,1}, 1 = 1,2,3, and ¢ = (01) €
Sym(X). A number is assigned to the automaton above by the {ollowing
formula

Number(A) =
(@12 — 1) + 3(ea3 — 1) -+ 9(age — 1) + 27(aps — 1)+
81(&32 - 1) + 243(0.33 — 1) + 729(0.11 + 2697 + 4&.31) + 1.

Thus every (3,2) automaton obtains a unique number in the range from
1 to 5832. The numbering of the automata is induced by the lexicographic
ordering of all automata in the class. The automata numbered 1 through
729 act trivially on the tree and generate the trivial group. The automata
numbered 5104 through 5832 generate the group Cy of order 2, because
every element in any of these groups is either trivial, or changes all letters
in any word over X. Therefore the “interesting” automata have numbers
730 through 5103.

Denote by A, the automaton numbered by n and by G}, the correspond-
ing group of tree automorphisms. Sometimes, when the context is clear,
we use just the nurnber to refer to the corresponding automaton or group.

The following operations on automata change neither the group gener-
ated by this automaton, nor, essentially, the action of the group on the
tree.

(2) passing to inverses of all generators -
(i) permuting the states of the automaton
(#4i) permuting the letters of the alphabet

Séo Paulo J.Math.Sci. 1, 1 {2007}, 1-39
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Definition 7. Two automata A and B that can be obtained from one an-
other using a composition of the operations {i)—(ii1), are called symmetric.

Definition 8. If the minimization of an automaton A is symmetric to the
minimization of an automaton B, we say that the automata A and B are
mintmally symmetric and write A ~ B.

Another equivalence relation we consider is the isomorphism of the groups
generated by the automata. The minimal symmetry relation is a refinement
of the isomorphism relation, since the same abstract group may have dif-
ferent actions on the binary tree.

There are 194 classes of automata, which are pairwise not minimally
symmetric, 10 of which are minimally symmetric to automata with fewer
than 3 states. These 10 classes of automata are subject of Theorem 8,
which states that they generate 6 different groups.

At present, it is known that there are at most 124 non-isomorphic groups
in the considered class.

6. Selected groups from the class

In this section we provide information about selected groups in the class
of all groups generated by (3,2) automata. The groups are selected in such

a way that the corresponding proofs in Section 7 show most of the main
methods and ideas that were used for the whole class.

The following notation is used:

e Rels - this is a list of some relators in the group. All independent
relators up to length 20 are included. On some situations addi-
tional longer relators are included. For G7s3 and Ggss there are no
relators of length up to 20 and the relators provided in the table
are not necessarily the shortest. In many cases, the given relations
-are not sufficient (for example, some of the groups are not finitely
presented).

e SF - these numbers represent the size of the factors G/ Stg(n), for
n > 0.

e Gr - these numbers represent the values of the growth function
~vg(n), for n > 0, and generating system a, b, c.

Finally, for each automaton in the list a histogram for the spectral density
of the operator My acting on level 9 of the tree is shown.

In some cases, in order to show the main ways to prove the group isomor-
phism, we provide several different automata generating the same group.

Sio Paulo J.Math.Sci. 1, 1 (2007), 1-39
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Automaton number 739
a=o{e,a) Group: C2 x (C21Z)

b=(b,a) Contracting: yes

c=(a,a) Self-replicating: no

Rels: %, b°, c?, acae, acbabeabab, acbabachab,
abacbeacheab, acbacbabeabe, achcbabcabebab,
achchabachebab, achacheacheabe, abebacbeachcheab,
achchachebebeabe, achebebubeabebebab,
acbchebabachebebab, abcbachebabebeabeb,
acbebacheacbebeabe

SE: 20,21 ’23,261282210,2121214,215

Gr: 1,4,9,17,30,47,68,93,122,155,192 16.0
14.41

12.8

1.2

9.61

8.01

6.4+

4.8

3.2

1.61

0.0-
~L1-0.9-0.7-0.5-0.3-0.10.1 0.3 0.5 0.7 0.9 1.1

Automaton number 744
a=oc{c,b) Group:
b=(ba) Contracting: no

¢={a,a) Selfreplicating: yes

Rels: abeb™*ac™ a"2bcb~tac ™ aca " tbc b Lea " Lbe 167,

abcb™lac™'a " 2bch™tab~ taca " the " te " them b Y,

abch™ab 'a"*beb lae " taba " be b log Mo 15~

abeb™'ab~la"%beb Lab~ taba~ tbe~ o Lhe~ 1b)
SF: 20,21 ,23’26 ’212,223 72‘4-‘5’238 ,21?4
Gr: 1,7,37,187,037,4687

1]

6.0
544
4.8
4.2
3.61
3.0
2.4
1.81
1.21
0.67
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Automaton number 748
a=ca(a,a) Group: Du x Cp

b= (c,a) Contracting: yes
¢=(a,a)  Selreplicating: no
Rels: a2, b°, ¢%, acac, bebe, abababab
SE: 20,2123, 94 94 21 9% 94 of

Gr: 1,4,8,12,15,16,16,16,16,16,16

640
57.61
51.29
44.81
38.44
32.01
25.61
19.2]
12.81

6.4

0

0.0+———rr——r—r—t——
~1.1-0.9-0.7-05-03-0.1C.1 0.3 0.5 0.7 0.9 1.1

Automaton number 753

e=o(c,b) Group:

b= {c,a) Contracting: no

e=(a,a) Self-replicating: yes

Rels: aba~ 6" tab lca  ba~ b~ *ab lcoc tba " tbab~!-

2 Yo ba " bab™?, aba b lab team e e e

ab~leac~ e~ tbab o e ba b eab e,

ac"Yba~ e Ybab lea " ba b tab " teae tha b Lea

b leate b tbab?

SF: 20’21’23 ’26’212 ’223 ?245 ,288,2174

Gr: 1,7,37,187,937,4687 10

: 6.34

5.6
4.9
4.2
3.51
2.8
2.1
1.49
0.7

O'QI.1—0.9—O. .5-03-0.10.1 0.3 0507 09 L1
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Automaton number 771
a=ofc,b)  Group: Z*

b= (b,b} Contracting: pes
c=(a,a) Self-replicating: yes
Rels: b, a”le Yac

SF: 2°,2" 2% 23 94 25 96 o7 o8

Gr: 1,5,13,25,41,61,85,113,145,181,221
Limit space: 2-dimensicnal torus Tp

32,
28.81
2561
2244
19.24
16.01
12.84
. 9‘6.
6.4
3,24

O 8 50705-0.-0.101 03 05 07 0.9 1.1

Automata number 775 and 783 ' (De
a = afa,a) o =golc,c) Group: Cy x IMG ((:;1)2)

b= {c.b) 783 b={e.b) Coulracting: yes

¢=(a,a) Cc={a,a) Self-replicating: yes 0

Rels: a%, 8%, ¢?, acac, achebabebeabebabeb,
achchabcbachebubeb, abebachebeachcheabeb,
achcbachcbabebeabebe, achebacbebeachebeabebe
SF: 29,27 92 9% 95 97 915 926 918

Gr: 1,4,9,17,30,51,85,140,229,367,579

Limit space:

44.00
39.604
35.204
30.807
26.404
22.00
17.601
13.201

8.801

4.401

(.00
S"l.l—().9~-€}.T"—()..‘:—O.}-O.10.1 0.3 0507 09 1.1

530 Paulo J.Math.Sei. 1, 1 (2007), 1-39
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Automaton number 803
a=o(ba) Group: Z°

b={ec,c} Contracting: yes
e=(a,a) Self-replicating: yes

Rels: cba.z, e le tac

SF: 29,27 22 9% 2% 95 96 o7 9%

Gr: 1,7,21,48,73,111,157,211,273,343,421
Limit space: 2-dimensional torus T

12.0 .
10.8] g}
9.64 él
8.41 i

7.2]
6.0 gl
4.8 bl
3.6] | I
2.4] -

B

1.2] Rt '

el 31
0_ -1
TL1-0.9-0.7-0.5-03-0.10.1 0.3 0.5 0.7 09 LI

Automaton number 846
a=c(c,e) Group: CzxCsz = Ca
b=(a,b} Contracting: no
c=(b,a) Self-replicating: no
Rels: a2, b%, ¢*

SF- 20’21,23,25,27,210’213,216 ,219

Gr: 1,4,10,22,46,94,190,382,766,1534

21.0
24.3]
21.67
18.9]

16.24
13.57
16.81
8.17
5.4
2.H

00T 70.5-0.70.5-0.3-0.10.1 03 6.5 0.7 0.9 1.1
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Automaton

a=o{c,b)
= (b, b)

number 852

Group: Basitice Group B = IMG(Z -1}
Contracting: yes

Self-replicating: yes
e rac e eac, a” c_zac_la_lczac,
a lelac %0 Yeac?, a2 la Peale d%e,
ale” 3ac o 1caac e e %ae 20" ad?,
a ‘¢ lac e teadd
SF: 20,21,23:251212,223,245,283,2174
Gr: 1,5,17,53,153,421,1125,2945, 7545
Limit space:

c=(ba)

Rels: b, o™
—1.-1. -2
1

43.00
38.707
34.401
30.101
25.80
21.501
17.209
12.901

8.601

4.307

0.004
-1.1-0.9-0.70.5-0.3-0.10.1 0.3 0.5 0.7 0.9 1.i

Automaton number 857
a=uo(ba) Groum
= (e, ) Contracting: no

c={ba)

Self-replicating: yes

Rels: ¢ fea"'c, a”tba " ha " ba b,

a bt acatp ! a~lb ale b g,
b leb~teblcb e, a” Yha " tbe tac " tha b,
a teae b Yaca b te, a” Ybae 2ae Thea”
SF- 20321 ’231271213 ’225 ,2471290‘2175

Gr: 1,7,35,165,758,3460

a " 2bea2be,

1

7.0
6.31
5.6
4.9
4.2
3.5
2.8
2.11

2 ol

6.7 1 H

m

ii i Lﬂ
0.0

—L1-09-0.7-0.5-0.3-0.10.1 0.3 0.5 0.7 0.9 L]
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Automaton number 858

a =ai{c,a) Group:

b= (c,b) Contracting: nro

c=(ha) Self-replicating: yes

Rels: abea~lc™ab™ 'a®c o e thee " te tab ta%e
b tabea"2ba " teac b ta " tbea "Zha " lcacT b7,
abca~ e Yab " late b e teba Y Yab™ Labea ~2b-

a Ycac™ b e e thab et

SE: 20,21 723’271213,22‘1 ’246’290=2176

Gr: 1,7,37,187,937,4687

14.0
12.61
11.29
9.8
8.4
7.8
5.67
4.2
2.8
1.44

0.0
-L.1-0.9-0.7-0.5-0.3-0.10.1 03 0.5 0.7 0.9 1.1

Automaton number 870

a =o(e,b)  Group: Baumslag-Solitar group BS(1,3)
b= (a,e) Contracting: neo

c=(b,a) SeM-replicating: yes

Rels: e tea™ b, (b7 1a)b (b a) 3

SF: 27,21 23,24 26 28 210 912 93¢

Gr: 1,7,33,127,433,1415

320
28.84
25.67
2241
19.29
16.0
12.81

9.6

6.4

3.21

0 1 95-6.7-0.5-03-0.101 0.3 0.5 0.7 09 L1
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Automaton number 878

a=a(bb) Group: C; x IMG(1 - %)

b= (b,c) Contracting: yes

c= (b a} Self-replicating: yes

Rels: a?, #2, ¢?, abcabeacbach, abcbeabeachchach

SF: 20 21 23 27 213 224 246 289 2175

Gr: 1,4,10,22,46,94,184,352,664,1244,2296,4198,7612
Limit space:

240
21.61
19.24
16.81
14.4-
12,01
9.61

B
4.8
2.4

0.0-
=L1-0.9-0.7-0.5-0.3-0.10.1 0.3 0.5 0.7 0.9 1.

Automaton number 929
a=oa{ba) Group:

b= (b,b) Contracting: no

¢ ={c,a Sell-replicating: yes
Rels: b, e 3caclac lac

SF: 20’21’23,26’212,2231245,288,21?4

Gr: 1,5,17,53,161,475,1387

19.0
17.14
£5.21
13.34
11.41
9.5
767
5.
3.81
1.99

0.0-
—LH0.9-0.70.503-0.10.1 0.3 0.5 0.7 09 i.1
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Automaton number 942

a = of{c,b}  Group: Contains the lamplighter gmup
b={c,b) Contracting: no

¢ = {c,a) Selfreplicating: yes

Rels: ¢ *bath, b teb™te, b tca a1,

a e b ab, a."zbab‘ ab, ()"26"4':-'1 ¢ toe,

b 2cbe2be, e ea len " tea e, b‘ "lcb'lca"lc,
a"tbab e at, b tebe T b

a_zbac'lbc"lb”ab, a’lbc’lac"lac'lac'lb,
b‘lca_zbza'lb_lac, b lea 2bab ac,
b 2a " tba e M be, bl eab " 2aba " e,
I C&b_l —lb‘Z —2

a ‘bab e oo™ abafl,

b lchela e %!
SF: 20,21 ,23127’213,225,247,290=217S
Gr: 1,7,33,143,597,2465

77.0
69.31
61.67
53.91
46.2
38.57
30.81
23,11
15.44
7.7 |
M

0.0] jl.lulh Ii |Ii|
-1 ]'—09*0?"05'"03“0101 03 05 07 09 1.1

Automaton number 968

a = o{b,b) Group: contains Z° as a subgroup of index 16
b={(e,c) Contracting: yes

c=(c,a} Self-replicating: no

Rels: a?, b*, ¢°, abeabeacbach, acbcbabachebab,
acacbcbacacheb, abeheabeachebach, acabachabacabachab,
acbabacacachacacad, acacacachacacacach,
acbebabcbacbebabeb, acbeacbebacheacheb

SF: 20121 ,23,26 :291213121T,2211225

Gr: 1,4,10,22,46,94,184,338,600,1022,1682

-
WBRLR LB D

ry

Lo

11—09—07—05—03—010] 0.3 05 8709 1.1
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Auviomaton number 2205

a=ocfc,c) Group: Co x IMG ((i—i—i— 2)
b= a(b,a) Contracting: yes

c=(e,a) Self-replicating: yes

Rels: a?, ¢%, acac, acheab, acbach,

abeabe, ach®cab®, ach®ach?, ab’cab’e,
ach®cab®, acb®ach®, abPcab®e, achicab?,
achach?, ab?cabe

SF: 2°,2",92,2%,25 99,915 976 948 901

Gr: 1,5,16,40,88,184,376,746,1458

Limit space:

L |,’,1, NI N

S11-09-0.7-0.5-03-0.10.1 0.3 0:5 0.7 0.9 1.1

Automaton number 2212

a=o(a,c} Group: Klein bottle group, virtually Z2
b=o(c,e) Contracting: yes

c={a,a) Self-replicating: ne

Rels: ca?, eb®

SF: 2°,21,2%,2¢ 95 98 910 912 914

Gr: 1,7,19,37,61,91,127,169,217,271,331

S50 Paulo J.Math.Sci. 1, 1 (2007), 1~39
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Automaton number 2240

a=a{be) Group: F3 — frec of rank 3 (Aleshm Vorobets)
b =o(c,by  Contracting: no
c=(a,a) Self-replicating: no
Rels:

SF: 20,21 92 9 97 210 911 921 534
Gr: 1,7,37,187,937,4687

44,00
39.601
35.20
; 30,801
| 26.4(H
: 22.001
17.60
13.20

8.80]

R

0.0G
L108-0.7-0.5-03-0.10.1 0.3 0.5 0.7 09 1.1

Automaton number 2277

a=g(e,¢} Group: Cz x (Z X Z)

b=o{a,a) Contracting: yes

c= (b,a) Sell-replicating: yes

Rels: a2, b2, 2, acbach, acbebachcb,

bacacbacac, achchebacheheb, bacacachacacac,

achchehebachebebeb, bacacacachacacacoc,

acbebebebebachebebebeb, bacacacacacbacacacacae,

acbchebebebebacbebebebebel

SF: 29,21 22 22 25 98 97 98 99

Gr: 1,4,10,19,31,46,64,85,109,136,166 0

Limit space: 2-dimensional sphere 5z 28,81
25.61
22.44
19.24
16.04
12.81

, 9.61

2 6.41

324

0Q_l.1-0.9—0.‘?—{).5—0.3—0.10.! 03050705 1.1
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Automaton number 2369

a=o(b,a) Group:

b=o(e,a) Contracting: no

c={c,a} Self-replicating: yes

Rels: a~'ba™ b, b Yeb e, b ea " tha T e,

a %% b lab, e %bab~%ab, a lea leatea " e,

b lea teb~teate, " hab la" e,

a"2bac~tbc" 6 lab, a tbc rac tae tac b,

b ca2b%a " Tb Yac, b lea” 2bab " %ac,

b teab™2aba 3¢, b leab la"b%a ¢,

a Ybab" e tbe taba "t

ST 20121,23,2?,213’225’247’290!2176 60

Gr: 1,7,33,143,602,2514 54l
4.8
4.2
3.64
3.0
2.41

1.81

1.2

0.6

0.0+ .
-11-0.9-0.70.5-03-0.10.F 0.3 0.5 0.7 0.5 1.1

Auvtomaton number 2851
a=o{a,c} Group: Isomorphic to Gozo
b= g(b,a} Contracting: no

c= (¢, ¢} Self-replicating: yes

Rels: ¢, e~ *bab~ a2 1ab

SF: 20,21 ’23’25,212 ,223 ,245 ’28812174 ’2345
Gr: 1,5,17,63,161,485,1445

21.0
18.91
16.81
14.H
12.61
10.5
84
6.31
4.21
2.1

0.9
~1.1-0.9-0.7-0.50.3-0.10.1 0.3 0.5 0.7 09 1.1
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Automaton number 2853

a=oc{c,c} Group: IMG ((2"1)2)

z+1
b=a(b.a) Contracting: yes

c=(¢,¢) Self-replicating: yes

Rels: ¢, o2, ab~tab~%ab ™ ababab

SF: 20,21 22,9395 28 g1 975 947

Gr: 1,4,10,22,46,94,190,375,731,1422,2752,6246,0908
Limit space:

8.0
7.21
6.4
5.67
4.81
4.01
3.1
2.4
1.61
6.3

50709 1.1

0.0+
-1.1-0.9-0.7-0.5-0.3-0.10.1 0.3 0.

7. Proofs of some facts about the selected groups

We start this section with a few useful observations, which simplify com-
putations and were used often in the classification process.

First, we need to mention the classification of the groups generated by
2-state automata over a 2-letter-alphabet. The following theorem is proved
in [GNS00]. :

Theorem 8. There are, up to isomorphism, 6 different groups generated by
2-state automate over a 2-letter alphabet (automata of complezity (2,2)).
Namely, trivial group, Ca, Cs x Ca, infinite cyclic group Z, infinite dihedral
group Dy, and the lamplighter group Z1C,.

The following proposition allows sometimes to see directly from the au-
tomaton structure that the corresponding group is not a torsion group.

Proposition 1. Let G be a group generated by an automaton A over the
2-letter alphabet X = {0,1} that has the following property. The set of
states of A splits into two nonempty parts P and Q) such that

(1) one of the parts contains all active states and the other contains all
inactive states;

S50 Pauto J.Math.Sdi. 1, 1 {2007), 1-39
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it) for each state in part P, both arrows go to states in the same part
b
(either both to P pr both to Q);
(iit) for each state in part Q, one arrow goes to part P and the other to
part Q

Then any element of the group that can be written as a product of odd
number of active generators and odd number of inactive generators in any
order, has infinite order. In particular, G is not a torsion group.

Proof. Let g be such an element. Let us prove by induction on n that, for
each n > 0, there exists a vertex v fixed by ¢ such that the section of g%"
at v has the same form (i.e. is a product of odd number of active generators
and odd number of inactive generators).

For n = 0 this is true. Suppose it is true for n = & and let & be a section
of g“k -at some vertex v € X* satisfying the conditions of the assumption.
Since h is a product of odd number of active states and odd number of
inactive states we can write h = o(hy, hs). Since v is fixed under gzk we
have that v0 is fixed under (g2°)2 = g2**" and ¢2** |,o= P2h1. The element
hahy is product (in some order) of the first level sections of the generators
(and/or their inverses) used to express h. By assumption, among these
generators, there are odd number of active and odd number of inactive.
The generators from part P, by condition (41), will produce even number of
active and even number of inactive generators, while the generators from
part ¢, by condition (7ii), will give odd number of generators from both
categories, which proves the induction step. Thus g% # 1 for all n. |

There is an algorithm which determines whether a given element of a self-
similar group generated by a finite automaton over the 2-letter alphabet
X = {0,1} acts level transitively on the tree.

The abelianization of Aut X* is isomorphic to the infinite Cartesian prod-
uct [T;:24 C2. The canonical isomorphism sends g € G to {¢; mod 2)20,
where ¢; is the number of vertices v € X*, such that g, acts nontrivially on
the first level (i.e. ¢; is the number of active sections of g at level 1)

The abelianization group [];2,Cs can be endowed with the structure of
a ring of formal power series Cal[t]] by (a:){2g + 322, ast?, where a; € Co.

Algorithm 1 (Element transitivity). Let G be a self-similar group gener-
ated by a finite automaton over the 2-letter alphabet X = {0,1}, and let
g € G be given as a product of states and their inverses. Denote by 7 the
image of g in Cy{t]]. The element g acts level transitively on X* if and
only if § = (1,1,1,...).
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Suppose g = (g9, 91), ¢ € 0,1. Then
g=1i+tt-(Go+m)

We can produce similar equations for the sections go, g1 and so on. Since
G is generated by a finite automaton the number of different sections of
g is finite. Therefore we get finite linear system of equations over the
variables {gy,v € X*}, whose solution will express § as a rational function
P(t)/Q(t), where P,Q are polynomials with degrees not higher than & =
Hgo, v € X7}H.

Expanding this rational function as a power series will produce a prepe-
riodic sequence of coefficients from Cs with period and preperiod no longer
than 2%. In particular, g acts level transitively if and only if all ¢;, ¢ =
1,...,25%! are equat to 1.

We often need to show that a given group of tree automorphisins is level
transitive. Here is a very convenient necessary and sufficient condition for
this in the case of a binary tree.

Proposition 2 (Group transitivity). 4 self-similar group of binary tree
automorphisms is level transitive if and only if it is infinite.

Proof. Let G be an infinite self-similar group acting on a binary tree.
Level transitivity clearly implies that ¢ is infinite.

For the converse, let us first prove that all level stabilizers Stg(n) are
different. For this it suffices to show that for every n > 1 Stg(n — 1)\
Sto{n) # @. Since all stabilizers have finite indices in G and G is infinite
we get that all of themn are infinite.

Let g € Stg(n — 1) be an arbitrary nontrivial element and v = 21... %%
be a word of shortest length (one of them) such that g{v) # v (in other
words, g € Stg(k — 1) and such k is maximal). Clearly &£ > n and we can
consider the section b = gz,z,.. z,_, which is an element of G because of self-
similarity. The fact that g € Stg{k — 1) implies h € Stg(n — 1). On other
hand 1 ... TknZronit--- Tk = ¥ 7 g(v) = g(@1 .. Lh-n)P{Thons1 - - - Tk)
= Z1 ... Tp—nP(Tkontl - .- Tk). Therefore h(zp_ni1..-Tk) # Thonti--- Tk,
- thus h ¢ Stg{n) and we found the desired element.

Now let us prove transitivity by induction on the level. The section of any
nontrivial element at the vertex where it acts nontrivially gives transitivity
on the first level. :

Suppose G acts transitively on level n. Let h € Stg(n) \ Ste(n + 1) be
an arbitrary element and let w = 2 ..., € X™ be one of the words such
that h{wz) = wE, where T=1—z. For u =1 ... Yns1 € X1, let us find
an element g € G such that g(w0) = u. This will prove the induction step.
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By inductive assumption there exists f € G such that f(w) = ¥1 ... ¥n-
Suppose f(w0) = 1 ... ynPn+1. Then, if fnt1 = yny1 we are done, other-
Wise Jnp1 = Tnt1 and, for g = fh, we obtain g(wQ) = f{A(w0)) = flwl) =
Y- Ynlntt = U . €]

Note, that the last proof works also for self-similar subgroups of the
infinitely iterated permutational wreath product !>1Cy (the subgroup of
Aut(7) consisting of those automorphisms of the d-ary tree for which the
activity at every vertex is a power of some fixed cycle of length d. Also,
certain generalizations of this method could be used in more complex situa-
tions (see, for example, the construction of Gagsp = Ca + Ca + Cs in {Nek05],
or proof of transitivity of Sushchansky groups on a subtree in [BS}).

We provide below additional information and proofs about the groups
listed in Section 6.

739: Cy x (Cy1Z). For Gyag, we have ¢ = g(a,a), b = (b,a) and ¢ = {a,a).
All generators have order 2. The elements v = acba = {1,ba) and v =
be = (ba, 1) generate Z2 because ba = o(1,ba) is the adding machine and
has infinite order. Also we have ac = ¢ and {u,v) is normal in H = (u,v, ¢}
because u = v and v* = u. In other words, H & Co % (Z x Z) = Ca1 Z.

Furthermore, Gr3g = (H, a) and H is normal in Grzg because u® = v~1,
v® = u~! and 0® = 0. Thus Gr3g = Ca x (Cy 1 Z), where the action of Cs
on H is specified above.

744: For G744, we have ¢ = o(c, b}, b = (b,a) and ¢ = (a, a).

Since (a7'¢)*? = (clebla,blacla) and clabla =
((cab~ta) "t a"lc) we see that (2 lc)® fixes the vertex 0l and its sec-
tion at this vertex is equal to a~l¢. Hence, a~¢ has infinite order.

Furthermore, the element c~lab~!a has infinite order, fixes the vertex 00
and its section at this vertex is equal to ¢~ lab~la. Therefore Gr4 is not
contracting (all powers of ¢"lab~'a would have to belong to the nucleus).
748: Dy x Cy. For G4z, we have a = o(a,a), b = (c,a) and ¢ = (a, a).

It follows from the relations a? = b = ¢ = acac = bebe = abababab = 1
that Grsg is a homomorphic image of Dy x Cy. Since a # 1, b # 1 and
(ab)® # 1, it follows that (a,b) = Dy. One can verify directly that ¢ is not
equal to any of the four elements in {a,b) that stabilize level 1 (namely 1,
b, aba and abab). Thus Girag = Dy x Cy.

753: For G753, we have a = o(c,b), b= (¢,a) and ¢ = (a, a).
Since ab™1 = o(1, ba~1), this element is conjugate to the adding machine.
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For a word w in w € {a®, 5%, ct1}*, let |wlg, |wlp and jw|. denote the
sum of the exponents of a, b and ¢ in w. Let w represents the element g € G.
If jwl, and |wl, are odd, then g acts transitively on the first level, and g°jg
is represented by a word wg, which is the product {in some order) of all first
level sections of all generators appearing in w. Hence, |wgle = Jwls + 2fw|.
and |wg|p = |wl, are 0dd again. Therefore, similarly to Proposition 1, any
such element has infinite order.

In particular ¢*ba has infinite order. Since o? = {cace, a?, acac, o) and

caca = (baca,c®ba,bac?, caba), the element a* has infinite order (and so
does a). Since a* fixes the vertex 01 and its section at that vertex is equal
to a?, the group Gvss is not contracting.

771: Z2. For Gyn, we have a = o(c,b), b= (b,b} and ¢ = (a, a).

Since Gy is finitely generated, abelian, and self-replicating (easy to
check), it follows from [NS04] that it is free abelian. There are two options:
either it has rank 1 or rank 2 (since b = 1). Let us prove that the rank
is 2. For this it is sufficient to show that ¢™ # a™ in . Assume on the
contrary that ¢® = «™ for some integer n and m and choose such integers
with minimal |n| + |m|. Since ¢ stabilizes level 1, m must be even and we
have (a®,a®) = ¢* = a™ = (¢™/?2,c™?). But then a® = ¢™? and by the
minimality assumption m must be 0, implying ¢™ = 1. The last equality
can only be true for n = 0 since Gyy; is torsion free (free abelian) and ¢ # 1.
Thus G771 = Z2.

775: Gy IMG((j—ﬂ 2). For Gyzs, we have a = a(a,a), b = (¢,b),
c= (a,a).

We have a2 = b2 =c? = 1, ac = ca = ¢(1, 1) and ba = o(ba, ca). Hence,

for the subgroup H = (ba,ca) < G, we have H = Gogss = IMG ((ﬁ—}— 2).

On the other hand H is normal in G since (ba)? = ab = (ba)~! and (ca)* =
ac = ca. Thus G = Cy x H, where C5 is generated by ¢ and the action of
a on H is given above. It is proved below (see Grssz), that G775 = Grss.
Therefore G5 also contains a torsion free subgroup of index 4.

7832 Gr7s: Co x IMG ((g_;_})z) For Grgz, we have a = o(c,c), b= (¢, b)
“and ¢ = (g, a).

All generators have order 2 and & commutes with ¢. Conjugating this
group by the automorphism v = (¢vy,v) yields an isomorphic group gen-
erated by the 4-state automaton defined by the recursive relations o' =
o(1,1), ¥ = (¢,V) and ¢ = (¢/,d'). On the other hand, we obtain the
same automaton after conjugating Gr7s by p = (ay, i) (here a denotes the
generator of Grrs).
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It can be proved that the subgroup H = (ba, cabe) is torsion free and not
metabelian. Furthermore, Gygs = {a,¢) x H & (Cp x C2) x H. The group
Grgs is regular weakly branch group over H”.

Since bea = o(bea, a), Gres = {ach, a,c} = Gazgs.

8032 Gy Z2. For Gyps, we have a = o(b, a), b={c, ¢}, c=(a,a).

Since Gyy; is finitely generated, abelian, and self-replicating, it follows
from [NSO04] that it is free abelian. Consider the -%-endomorphism ¢ :
Stabggy, (1) — Gaos associated to the vetrex 0, given by ¢(g) = h for g €
Stabgy, (1), provided g = (h, *). Consider also the linear map 4 : C3 — C3
induced by ¢. It has the following matrix representation with respect to
the basis corresponding to the triple {a,b,c}:

i

fi
fan LT[R T Y
gl B ove)
o O

Its characteristic polynomial x4(A) = —A3 4+ £A? + 1 has three distinet
complex roots A = 1, Ap = —% - %z‘ 7 and Az = -—% + %z\/'? Choose an
eigenvector v; associated to the eigenvalue A;, i = 1,2, 3. In particular, we
may choose v; = (2,1, 1), which shows that a2bc = 1 in Gaga. In order to
show that a?™c® # 1 (except whenm = n = 0) we will prove that the vector
v = (2m,0,n) is eventually pushed out from the domain corresponding to
the first level stabilizer, i.e. from the set D = {(2i,5,k),%,4,k € Z}, by
iterations of the action of A.

Consider the expansion of v in the basis {v1,v2,u3}: v = ayv; + agvp +
agvz. Since m # (0 or n # 0, v is not a scalar multiple of v;. We have
Af(v) = ayvy + Aazve + Magus — ayvy, as t — oo, since |Agf = [Ag] < L.
We can choose a neighborhood of a1 that does not contain points from
D, except maybe a;v;. Eventually A*(v) will be in this neighborhood and,
since A*(v) # a;v; for all ¢, A'(v) will be outside of D. This implies that the
w2ord a?™ " represents a nontrivial element in Gioz- Thus Ggpg = {a,¢) &
Z-.

846: 3+ Cy + Cy. This is a result of Muntyan. See the proof in [Nek05].
In particular, G4 contains a self-similar free group of rank 2 generated by

a 6-state automaton. The automaton 846 is sometimes called Bellaterra
automaton.

852: Basilica group B = IMG(2* - 1). First studied in [GZ022], where it is
proved that B is not in the class SG of sub-exponentially amenable groups,
does not contain a free subgroup of rank 2, and the nontrivial generators
a and b generate a free subsemigroup. Spectral properties are considered
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in [GZ02b]. It is proved in [BVOS] that B is amenable, providing the first
example of an amenable group not in the class §G.
857: For Gggy, we have a = o(b,a), b = (¢,b) and ¢ = (b,a).

Let us prove that b has infinite order. For any w € X* Hw0®) =
b(w0)by,o{0°). Since byp equals either b or ¢ and b(0%°) = ¢(0°°) = 0%,
we have b{w0®) = b(w0)0%. Therefore all elements in the forward orbit of
010°° under the action of b end in 0°°. The length of the non-zero prefix
of any infinite word ending in 0°° cannot decrease under the action of b.
Indeed, for any w € X* b(wl0™®) = b(w}b,(10°°}). The section by, is one
of the three generators, for which we have a(10°°) == 010%, 5(10%) = 10*°
and ¢(10%°) = 110%.

On the other hand, the length of the non-zero prefix along the orbit
cannot stabilize, because in this case the orbit must be finite and we must
have 5¥(010°) = 010°, for some k > 1. But this is impossible since
5(010°°) = 0110° and thus the length of the non-zero prefix of b*(010°)
must be at least 3. Thus the orbit is infinite and & has infinite order.

Since b = (¢, b}, Gsy is not contracting.

858: For Ggss, we have a = a(c,a), b = (¢,b) and ¢ = (b,a}.
The element ab~! = o(1,b ) is the adding machine.
Using the same approach as for Ggs7 one can show that ¢ has infinite

order. Namely the length of the non-zero prefix of the forward orbit of 10%
under c is nondecreasing, which then iraplies that this orbit is not finite.

Since b = (¢, b), (Fgsg is not contracting.

870: Baumslag-Solitar group BS(1,3). For Gz, we have a = o(c,b),
b= (a,c), and c = (b,a).

The automaton satisfies the conditions of Proposition 1. Thus, ab has
infinite order in G, which implies that bc = (ab, ca}, a? = (bc, cb) also have
infinite order. Hence, we can claim the same for a and b = (a,¢).

Furthermore, the element g = b~ la = o(l,a”'b) = o1, 171} also
has infinite order (it is conjugate of the adding machine). Since a"te =
o(1,c2a) = 1 we have ¢ = ab~la and G = (a,b) = {u,b). Let us check
- that b~tub = pd. Since b71ub = o(c 'a,a"2bc) and pd = o{p™t, p7?) all
we need to check is that a—2bc = a~1ba~1b, i.e. e tbcb~lab™! = 1. The last
is correct since a~1beblab~1 = (1,b"laba~'bc™!) and b~laba~thc! is &
conjugate of the inverse of o~ Ybch~ ab~1. Thus, since b and p have infinite
order, Ggro = BS(1, 3).

See [BS06) for realizations of BS(1, 3) and other Baumslag-Solitar groups
by automata.
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878: Cy x IMG(1 ~ %). For Ggrs, we have a = o(b,b), b = (b,c) and
c¢=(b,a). _

Denote 2 = bc and y = ca. All generators have order 2, and therefore the
subgroup H = (z,y) is a normal subgroup of index 2 in Ggrs. Moreover
Ggrs = Gy x H, where Cy is generated by ¢ and the action of Co on H
is given by ¢ = 27! and y° = y~!. We have z = (1,ca) = (1,y) and
y = o(ab,1) = o(y~'z71,1). Exchanging the letters 0 and 1 leads to an
isomorphic copy of H defined by « = (y,1) and y = o(1,3 2" 1), which is
the iterated monodromy group ITMG(1 - ;15), according to [BN06]. Thus,
Gg-yg &= Cg [ IMG(I - zly)

929, _See G2351.
942: For Ggq2, we have a = o{c,b), b = (¢,b) and c = (¢, a).

It is known [GZ01] that the group L = {d’, b’} defined by

o = o(db)
¥ = (%)

is the lamplighter group Z ! Cy (compare to (8)). Consider the subtree
Y* of X* consisting of all words over the alphabet ¥ = {01,11}. The
element’ @ swaps the letters of Y and b fixes them. Since ag; = by = a,
a11 = by = b, the tree Y* is invariant under the action of & = {a,b) and
the action of H on Y™ coincides with the action of the lamplighter group
L={a" V') on X* (with the identification 0 <> 01, 1 < 11). Therefore the
map ¢ : H — L given by e — o/, b+ b’ extends to a homomorphism. We
claim that this homomorphism has trivial kernel. Indeed, let w = w(a, b)
be a group word representing an element of the kernel of ‘¢. Since the word
w{a', &) represents the identity in L the total exponent of a in w must be
even and the total exponent ¢ of both ¢ and b in w must be 0. But in that
case the element g = w(a, b} fixes the top two levels of the tree X* and has
decomposition

g = (ce? *’ CE, *)1

- where the 's denote words over a and b representing the identity in H (these
words correspond to the first level sections of w(a/, ') in L). Therefore g = 1
and the kernel of ¢ is trivial. .

Thus, the lamplighter group is a subgroup of Gogo.
968. For Gggg, we have e = ¢(b,b), b= (¢,¢) and ¢ = {(c,a).

This group contains Z° as a subgroup of index 16. It is contracting with
nucleus consisting of 73 elements, whose self-similar closure consists of 77
elements. All generators have order 2.
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Let z = (ac)?, y = bcha, and consider the subgroup K = (z,y). Direct
computations show that z and y commute (zy = o(bchacach,ba) and yz =
o(cacabe, ba)). Conjugating by v = (by,av) leads to the self-similar copy
K’ of K generated by o’ = ()7, (¢')!) and ¢’ = o(z', '), where 2’ = =7
and 3’ = y7. Since ()2 = (z'y,z'y), the virtual endomorphism of K is
given by the matrix

0
a=( 2 )

The eigenvalues A = Zlf + i 77 of this matrix are not algebraic integers,
hence, according to [NS04|, the group K’ is free abelian of rank 2, and so
is K.

Since all generators have order 2, the subgroup H = {ab, bc) has index
2 in Gggg. The stabilizer Stg(2) of the second level has index 8 in H.
Moreover, the quotient group is isomorphic to the dihedral group Dy {since
ab acts on the second level by permuting 00 «— 10 and 01 « 11, while
be acts by permuting 10 < 11). The stabilizer Stg(2), conjugated by the
element g = (b, ¢, b, 1}, is generated by

[t L Ll

= (( 6}2)9 = (bec)g = (11 L v ¥ ):
ga = ((bc}2 bag = (achcba)? = (y, o 1, 1 ),
g3 = ((ab) )"“9 = (cbabac)? = t, z z, 1 ),
g4 = ((ab)?)? = (abab)d = (1, =, 1, =7 )
= ((ab)2\(bc) ¥ = (abcbabacba)d = (z., 1, 1, =71 )
= ({ab)z)bc(bc) 9 = (abcacbabacacha) = (z, 1, = 1 ).

Therefore, all g; commute and g = gsgsgy *- If H,?:l g;* =1, then all sec-
tions must be trivial, hence, ™3y = g3 FTMY"2 = NIy = gTatNEyT —
1. But K is free abelian, whence n; = 0, ¢ = 1,...,5. Thus, Styz(2) is a
free abelian group of rank 5.

2205=G775. Ca & IMG( z+1)2). For Gagps, we have a = o(c,¢), b =
o(b,a) and ¢ = (a,a). See Grgs for an isomorphism.
© 2212: Klein bottle group, {a,b | a = b?), contains Z? as subgroup of index

2. For Ga212, we have a = o(a, c), b = o(c,a) and ¢ = (a,a).

Since ac= o(a?, ca) and ca = J(a ac), the generators a and ¢ commute

Further, a?c = (ca?,aca) = (a’c,a’c), which shows that ¢ = a"%, and
therefore & = o(a,a™2) and b = o{a~2,a). Since a? = (a‘l,a_l) the
element o has infinite order and so does ¢ = ab~! = (a®,4¢73). Finally,
since 2* = bla = (¢73,a3) = x7!, we have Gay2 = (z,a | 2% = 1) and
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Gao12 is the Klein bottle group. Going back to the generating set consisting
of @ and b, we get the presentation Gagyp = (a,b | a® = b?).

2240: Free group of rank 3. The automaton generating this group first
appeared in [Ale83]. It is proved in [VVO5] that Gaggg is a free group of
rank 3 with basis {a, b, c}. This is the smallest example of a free nonabelian
group among all automata over a 2-letter alphabet (see Theorem 4).

2277: Cy X {Z x Z). For Gagry, we have a = o{c,¢), b = o(a,a), ¢ = (b, a).

All generators have order 2. Let z = ¢b and y = ab and let H = {z,y).
Then z = o(1,y!) and y = (xy~t,zy~Y). It is easy to check that = and
y commute and that H is self-replicating. The matrix of the associated
virtual endomorphism is given by

A= (—9/2 —11) :

Since the eigenvalues -+ 1{ are not algebraic integers, according to [NS04]
H 1s free abelian of rank 2.

The subgroup H is normal of index 2 in Gaary because the generatofs of
Gaarr are of order 2. Thus Gagrr = (H, b) = Cp & (Z x Z), where the action
of Ca = (b} on H is by inversion of the generators.

2369. For Gaggy we have a = o(b,a), b = o(¢,a) and ¢ = (¢, 0).
For any vertex v € X*, we have a,1 = a, a0 = b and gz = ¢, for
n > 0. Therefore, for any vertex w € X*, a(wl0%®) = a(w1)110% and the

forward orbit of 10°° under & is infinite, because the length of the non-zero
prefix grows by 2 with each application of . Thus e has infinite order.

Since a® = (ab, ba), the element ab also has infinite order. Furthermore,
ab = {ac, ba} and ba = (ab, ca). Thus, Giazg9 is not contracting.

2851=(Ggog. For Gags; we have a = o(a,1), b= o(b,a), ¢ = {¢,c}) = 1.
The element a is conjugate of the adding machine (in fact it is its in-

verse). Since ba~! = (a, ba~1}, the order of ba ! is infinite and Gogs; is not
contracting.

The group Gags; is a regular weakly branch group over G since it is
‘self-replicating and [a?, b] = ([a,b], 1).

The subsemigroup (g, b} is free. Indeed, let w be a nonempty word in
{a,b}*. If w =1 in Gags1, then w contains both ¢ and b, because they both
have infinite order. Suppose the length of w is minimal among all nonempty -
words over {a,b} representing the identity element in Gogs;. Then one of
the projections of w will be shorter than w, nonempty, and will represent
the identity in Gags1, which contradicts the minimality assumption. Thus
w # 1 in Gagsi, for any nonempty word in {a,b}*.
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Now let w and v be two words in {a, b}* with minimal sum jw|+ || such
that w = v in Gags;. Suppose w ends in @ and v ends in b. Then

(1) if w ends in @® then wp is a word that is shorter than w ending in
a, while v is a word not longer than v ending in b. Since wg = vg
in Gagsy and |wo] + |vo! < |wl| + v, we have a contradiction.

{2} if w ends in be then w; is a word shorter than w ending in b, while
v; is a word not longer than v ending in a. Since w; = v; in Gags
and un!+ jv1] < |w| + |v], we have a contradiction.

(3) if w = a then v; = 1 in G and v; is a nonempty word, which is
impossible, as already proved above.

Thus G has exponential growth. On the other hand, the orbital Schreier
graph I'(C,000...) has intermediate growth (see [BH05, BCSN]).

The group Gagsy coincides with Gopg as subgroup of Aut(X*). Indeed,
Gagsy = (™! = o(1,a71),b7la = (b7 1a,a!)) = Gogg. Therefore all prop-
erties proved for Gags; above hold also for Ggag.

2853: IMG ((;—3)2). For Gagsa, we have a = o(c,c), b = o(b,a) and
c={¢c) =L

It is proved in {BNO06] that IMG ( ﬁﬁ)z) is generated by a = ¢(1,5)
and 8 = (o—'8~l,a). We have then fo = o{a,a'). Conjugate the
right hand side of the wreath recursion by (1,a) to obtain a copy of
IMG ((ﬁ__j—i)z) given by 8 = (o=, a), fa = ¢ and a = (o™}, fa)
(this is equivalent to conjugating by v = (v, ey) in Aut(X™)).

This shows that Gogsz is isomorphic to IMG ( %_T_—}f) via the isomor-

phism ¢ + fa and b +— a. Moreover, they are conjugate by the element
§ = (81, 8,), where §; = o(4, ) (this is the automorphism of the tree chang-
ing all letters which stand on even places).

Consequently, the limit space of Giygss is the Julia set of the rational map

Zl—>(§€;§-2

The group Gagss is contained in Grys as a subgroup of index 2 (see
Grrs). Tt contains the torsion free subgroup H mentioned in the discussion
of Giyzs as subgroup of index 2 and is a weakly branch group over H 7 Al
Schreler graphs on the boundary of the tree have polynomial growth of

" degree 2. Diameters of Schreier graphs on the levels grow as V2" (see [BN]
for details). '
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