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Abstract. The author devised in [Math. USSR–Izv. 31 (1988) 481–
501] a procedure that reduces the problem of classifying systems of
forms and linear mappings to the problem of classifying systems of
linear mappings. We give a brief exposition of this method, review
results that were obtained by using this method (and were published
mainly in Russian), and give examples of classification problems that
can be solved by this method.

1. Introduction

The theory of bilinear forms over C reduces to the theory of matrix
pencils due to the following trivial corollary from Theorem 3 in [30, § 95]:

square complex matrices M and N are congruent if and
only if the pairs (M,MT ) and (N,NT ) are simultaneously
equivalent,

(1)

that is, M = STNS for some nonsingular S if and only if M = PNQ and
MT = PNTQ for some nonsingular P and Q. Roiter [41] extended (1) to
systems of linear mappings and bilinear forms over an algebraically closed
field of characteristic different from 2.

Basing on Roiter’s ideas, the author devised in [45, 46, 47, 49] a proce-
dure (we call it the linearization method) that reduces the problem of clas-
sifying an arbitrary system of linear mappings and bilinear/sesquilinear
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forms over a field or skew field F of characteristic not 2 with involution
(possibly, the identity) to the the problems of classifying

• some system of linear mappings and
• Hermitian forms over finite extensions of the center of F.

The linearization method is presented in Section 2. In particular, it
implies (see Corollary 2.3) that each system of forms and linear mappings
over C, R, or quaternions decomposes into a direct sum of indecomposable
systems uniquely up to isomorphism of summands. Hence, it suffices to
classify only indecomposable systems. Many authors proved this statement
for special classes of systems of forms and linear mappings in the process
of their classification.

In Section 3 we formulate some results obtained by the linearization
method in [45, 46, 47, 49] ([45, 46, 47] are practically unknown since were
published in Russian). We also give examples of classification problems
that were solved or can be solved by this method.

In Section 4 we consider systems of tensors and extend the linearization
method to n-linear forms with n > 2.

In Section 5 we present an analogous method that reduces the problem
of classifying systems of linear and semilinear mappings to the problem of
classifying systems of linear mappings.

2. Linearization method for systems of forms and linear map-
pings

Classification problems for systems of linear mappings can be formu-
lated in terms of quivers (i.e., oriented graphs) and their representations
introduced by Gabriel [11, 13]. This notion was extended in [45] to repre-
sentations of graphs with nonoriented, oriented, and doubly oriented (←→)
edges, which admits to formulate classification problems for systems of
forms and linear mappings. This section contains a brief summary of some
results about representations of such graphs.

We denote by F a field or skew field with involution a 7→ ā, that is, a
bijection F→ F satisfying a+ b = ā+ b̄, ab = b̄ā, and ¯̄a = a for all a, b ∈ F.
All vector spaces over F are assumed to be finite dimensional right vector
spaces. A mapping B : U × V → F on vector spaces U and V over F is
called a sesquilinear form if

B(ua+ u′a′, v) = āB(u, v) + ā′B(u′, v),

B(u, va+ v′a′) = B(u, v)a+B(u, v′)a′
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Linearization method in classification problems of linear algebra 221

for all u, u′ ∈ U , v, v′ ∈ V , and a, a′ ∈ F. This form is bilinear if F is a field
and the involution a 7→ ā is the identity.

A dograph (double ordered graph) is a graph with nonoriented, oriented,
and double oriented edges; for example,

1

2µ

λ
�������
β

++kk
ν

33 3

α

^^>>>>>>>
γee

(2)

We suppose that the vertices of dographs are 1, 2, . . . , n, and that the num-
ber of edges between two vertices can be arbitrary.

A representation A of a dograph P over F is given by assigning to each
vertex i a vector space Ai over F, to each arrow α : i→ j a linear mapping
Aα : Ai → Aj, to each nonoriented edge β : i j (i 6 j) a sesquilinear
form Aβ : Ai×Aj → F, and to each doubly oriented edge γ : i←→ j (i 6 j)
a sesquilinear form Aγ : A∗

i ×A
∗
j → F on the *dual vector spaces. By the

*dual space to a vector space V we mean the space V ∗ of all mappings
ϕ : V → F that are semilinear, this means that

ϕ(ua+ vb) = āϕ(u) + b̄ϕ(v), u, v ∈ V, a, b ∈ F.

For every linear mapping A : U → V , we define the *adjoint mapping
A∗ : V ∗ → U∗ by putting A∗ϕ := ϕA for all ϕ ∈ V ∗.

The vector

dimA := (dimA1, . . . ,dimAn) (3)

is called the dimension of A.

For example, each representation of the dograph (2) is a system

A :

V1

V2Bµ

Bλ
}}}}}}}
Aβ

++kk
Cν

33 V3

Aα

``AAAAAAA
Aγbb

of vector spaces V1, V2, V3 over F, linear mappings Aα : V3 → V1, Aβ : V2 →
V3, Aγ : V3 → V3, and forms Bλ : V1 × V2 → F, Bµ : V2 × V2 → F, Cν : V ∗

2 ×
V ∗

3 → F.
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A morphism f = (f1, . . . , fn) : A → A′ of representations of D is a set
of linear mappings fi : Ai → A

′

i suth that

fjAα = A′

αfi, Aβ(x, y) = A′

β(fix, fjy), Aγ(xfi, yfj) = A′

γ(x, y)

for all edges α : i −→ j, β : i j (i 6 j), and γ : i ←→ j (i 6 j). A mor-
phism f is an isomorphism if all fi are bijections. A morphism or isomor-
phism f : A → A′ is called an endomorphism or isomorphism, respectively,
if A = A′. The composition of two morphisms is a morphism.

The direct sum A ⊕ A′ of representations A and A′ of P is the repre-
sentation consisting of the direct sums of the corresponding vector spaces
and the direct sums of the corresponding linear mappings and forms.

For every dograph D, we denote by D the quiver with involution on the
set of vertices and on the set of arrows obtained from D by replacing

• each vertex i of D by the vertices i and i∗,

• each arrow α : i→ j by the arrows α : i→ j and α∗ : j∗ → i∗,

• each edge β : i j (i 6 j) by β : j → i∗ and β∗ : i→ j∗,

• each edge γ : i←→ j (i 6 j) by γ : j∗ → i and γ∗ : i∗ → j.

For example,

2
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1 ~~ γaa

2
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1

β∗ 88qqqqqqqqqqqqq
1∗

α∗

OO

γoo
γ∗

oo

(4)

Respectively, for each representation M of D over F, we define the
representation M of D by replacing

• each vector space V in M by the pair of spaces V and V ∗,

• each linear mapping A : U → V by the mutually *adjoint mappings
A : U → V and A∗ : V ∗ → U∗,

• each sesquilinear form B : V × U → F by the mutually *adjoint
mappings B : u ∈ U 7→ B(?, u) ∈ V ∗ and B∗ : v ∈ V 7→ B(v, ?) ∈
U∗.

• each sesquilinear form C : V ∗ × U∗ → F by the mutually *adjoint
mappings C : u∗ ∈ U∗ 7→ C(?, u∗) ∈ V ∗∗ = V and C∗ : v∗ ∈ V ∗ 7→

C(v∗, ?) ∈ U.
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For example, for representations of (4) we have

U
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oo
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(5)

For every (usual) representation M of D we define the dual represen-
tation M◦ of D consisting of the vector spacesM◦

v :=M∗
v∗ and the linear

mappings M◦
α :=M∗

α∗ for all vertices v and arrows α of D. For example,
for representations of the quiver D defined in (4),
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The second representation in (5) is selfdual : A◦ = A.

In a similar way, for each morphism f : M → N of representations of
D we construct the dual morphism f◦ : N ◦ →M◦ by putting f◦i := f∗i∗ for

all vertices i of D. An isomorphism f : M ∼→ N of selfdual representations
M and N is called a congruence if f◦ = f−1. Two representations A and
B of a dograph D are isomorphic if and only if the corresponding selfdual
representations A and B of the quiver D are congruent.

A relation on a quiver Q over a field or skew field F is a formal expression
of the form

m
∑

i=1

ciαipi
· · ·αi2αi1 = 0 (6)

in which ci are nonzero elements of the center of F and

u
αi1−−−→ ui2

αi2−−−→ · · ·
αi,pi−1

−−−−→ uipi

αipi−−−→ v

are oriented paths on Q with the same initial vertex u and the same final
vertex v. A path may have length 0 if u = v; it is replaced by 1 in (6).
Therefore, if u = v then (6) may have ‘1’ instead of ‘0’ in its right-hand
side. A representation A of Q satisfies the relation (6) if

m
∑

i=1

ciAαipi
· · · Aαi2

Aαi1
= 0.
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224 Vladimir V. Sergeichuk

By a dograph with relations, we mean a dograph D with a finite set of
relations on its quiver with involution D, and consider only those repre-
sentations A of D for which the corresponding selfdual representations A
of D satisfy these relations. Clearly, if A satisfies the relation (6), then it
satisfies also the adjoint relation

m
∑

i=1

c̄iα
∗

i1α
∗

i2 · · ·α
∗

ipi
= 0. (7)

If D is a dograph with relations, then we consider D as the quiver with
relations whose set of relations consists of the relations of D and the adjoint
relations.

Suppose we know any maximal set ind(D) of nonisomorphic indecom-
posable representations of the quiver D (this means that every indecompos-
able representation of D is isomorphic to exactly one representation from
ind(D)). We define the following sets ind0(D) and ind1(D):

• we replace each representation in ind(D) that is isomorphic to a
selfdual representation by one that is actually selfdual, i.e., has the
form A, and denote the set of these A by ind0(D), and then

• in each of one- or two-element subsets {M,L} ⊂ ind(D) r ind0(D)
satisfyingM◦ ≃ L, we select one representation and denote the set
of selected representations by ind1(D).

(IfM∼M◦, then {M,L} consists of one representation, and we take it.)
We obtain a new set ind(D) partitioned into 3 subsets:

ind(D) =
M M◦ (if M◦ 6≃ M)

A
,
M∈ ind1(D),
A ∈ ind0(D).

(8)

For each representation M of D, we define the representation M+ of
D by puttingM+

i :=Mi ⊕M
∗

i∗ for all vertices i of D and

M+
α :=

[

Mα 0
0 M∗

α∗

]

, M+
β :=

[

0 M∗

β∗

Mβ 0

]

, M+
γ :=

[

0 Mγ

M∗
γ∗ 0

]

for all edges α : i −→ j, β : i j (i 6 j), and γ : i←→ j (i 6 j).

For every representation A of D and for every selfdual automorphism
f = f◦ : A ∼→ A, we denote by Af the representation of D obtained from
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Linearization method in classification problems of linear algebra 225

A by replacing each form Aβ (β : i j, i 6 j) by Afβ := Aβfj and each

form Aγ (γ : i←→ j, i 6 j) by Afγ := f−1
i Aγ .

Let ind(D) be partitioned as in (8), and let A ∈ ind0(D). By [49,
Lemma 1], the set R of noninvertible elements of the endomorphism ring
End(A) is the radical. Therefore, T(A) := End(A)/R is a field or skew
field, on which we define the involution

(f +R)◦ := f◦ +R. (9)

For each nonzero a = a◦ ∈ T(A), we fix a selfdual automorphism fa =
f◦a ∈ a, and define Aa := Afa (one can take fa := (f+f◦)/2 for any f ∈ a).
The set of representations Aa is called the orbit of A.

For each Hermitian form

ϕ(x) = x◦1a1x1 + · · ·+ x◦rarxr, 0 6= ai = a◦i ∈ T(A),

we write
Aϕ(x) := Aa1 ⊕ · · · ⊕ Aar .

The following theorem was proved in [49, Theorem 1].

Theorem 2.1. Over a field or skew field F of characteristic different from
2 with involution a 7→ ā, every representation of a dograph D with relations
is isomorphic to a direct sum

M+
1 ⊕ · · · ⊕M

+
p ⊕A

ϕ1(x)
1 ⊕ · · · ⊕ A

ϕq(x)
q , (10)

where
Mi ∈ ind1(D), Aj ∈ ind0(D),

and Aj 6= Aj′ if j 6= j′. This sum is determined by the original representa-

tion uniquely up to permutation of summands and replacement of A
ϕj(x)
j by

A
ψj(x)
j , where ϕj(x) and ψj(x) are equivalent Hermitian forms over T(Aj)

with involution (9).

Recall that a real closed field is a field whose algebraic closure has degree
2. Theorem 2.1 ensures the following generalization of the law of inertia
for quadratic forms (the corresponding Theorem 2 in [49] is formulated
incorrectly in the case of representations over quaternions).

Theorem 2.2. Let F be either
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226 Vladimir V. Sergeichuk

(i) an algebraically closed field of characteristic different from 2 with
the identity involution, or

(ii) an algebraically closed field with nonidentity involution, or
(iii) a real closed field or the skew field of quaternions over a real closed

field.

Then every representation of a dograph D with relations over F is iso-
morphic to a direct sum, uniquely determined up to permutation of sum-
mands, of representations of the following form (with M ∈ ind1(D) and
A ∈ ind0(D)), respectively:

(i) M+, A,

(ii) M+, A, A−,

(iii) M+,



















A, if T(A) is an algebraically closed field with the
identity involution or a skew field of quaternions
with involution different from the quaternionic
conjugation, and

A,A−, otherwise.

Corollary 2.3. Each system of linear mappings and bilinear/sesquilinear
forms on vector spaces over R, C, and H decomposes into a direct sum of
indecomposable systems uniquely up to isomorphisms of summands.

3. Applications of the linearization method

3.1. Classification problems that were solved by the linearization
method

The problems of classifying representations of the dographs

1 α

1α β α = εα∗, β = δβ∗,

1α 88

β

ll

γ

RR
β = εβ∗ = α∗βα,
γβ = 1, βγ = 1,

(11)

1α 88

β

ll

γ

RR
β = εβ∗, βα = α∗β,
γβ = 1, βγ = 1,

(12)
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Linearization method in classification problems of linear algebra 227

in which ε, δ ∈ {−1, 1} (the edges γ and the relations γβ = 1, βγ = 1
ensure the nonsingularity of the form assigned to β in each representation)
are the problems of classifying, respectively:

• sesquilinear forms, studied in [12, 38, 39, 43, 44, 48],
• pairs of forms, in which the first is ε-Hermitian and the second is
δ-Hermitian, studied in [25, 27, 28, 35, 42, 44, 52, 53, 54, 55] (see
also the bibliography of 225 items in [52]),
• isometric operators on a space with nonsingular ε-Hermitian form,

studied in [1, 2, 25, 26, 29, 40, 44],
• selfadjoint operators on a space with nonsingular ε-Hermitian form,

studied in [1, 2, 21, 22, 26, 34, 35, 36, 40, 44, 55].

An operator A is said to be isometric or selfadjoint with respect to a form
B if B(Au,Av) = B(u, v) or B(Au, v) = B(u,Av) for all u and v.

Each of these problems was considered independently. They were solved
in [49, Theorems 3–6] by a unified method over any field F of characteristic
not 2 up to classification of Hermitian forms over finite extensions of F. This
gives their full solutions over R and C since the classification of Hermitian
forms over their finite extensions is known.

The canonical matrices in [49] are given over any field of characteristic
not 2, and so they are based on the Frobenius canonical form for similarity.
Over C and R one can simplify them basing on the Jordan canonical form
for similarity. In particular, the canonical matrices of sesquilinear/bilinear
forms over C were simplified in [19] as follows.

Two matrices M and N over F are called congruent or *congruent if
M = STNS or M = S∗NS (S∗ := S̄T ) for some nonsingular S. Let

Hn(λ) :=

[

0 In
Jn(λ) 0

]

(λ ∈ C),

Γn :=













0
· ·
·

−1
· ·
·

1 1
−1 −1

1 1 0













, Jn(λ) :=











λ 1 0

λ
. . .
. . . 1

0 λ











(both n-by-n).

For each complex matrix M , let us denote by MR its realification; that is,
the real matrix obtained by replacing every entry a+ bi of M by the 2× 2
block

a −b
b a

(13)
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Theorem 3.1. (a) Every square complex matrix is congruent to a direct
sum, determined uniquely up to permutation of summands, of matrices of
the form

Hn(λ), Γn, Jn(0), (14)

in which λ 6= 0, λ 6= (−1)n+1, and λ is determined up to replacement by
λ−1.

(b) Every square complex matrix is *congruent to a direct sum, deter-
mined uniquely up to permutation of summands, of matrices of the form

Hn(λ), µΓn, Jn(0), (15)

in which |λ| > 1 and |µ| = 1.

(c) Every square real matrix is congruent to a direct sum, determined
uniquely up to permutation of summands, of matrices of the form:

• Hn(a), where a ∈ R, a 6= (−1)n+1, and |a| > 1;
• Hn(a+ bi)R, where a, b ∈ R, b > 0, and a2 + b2 > 1;

• ±Γn,
(

(a+ i)Γn
)

R
, and Jn(0), where 0 6= a ∈ R.

A direct proof of Theorem 3.1(a,b) is given in [20].

3.2. Classification problems that can be solved by the linearization
method

The arrows γ in (11) and (12) are appended with the only purpose:
they ensure the nonsingularity of the forms assigned to β. In similar cases
we will omit γ and replace the relations γβ = 1 and βγ = 1 by |β| 6= 0.
The edges of dographs represent linear mappings and forms. In order to
make relations clearer, we will write them as if the edges are mappings and
forms; they could be easily rewritten in the form (6).

Theorems 2.1 and 2.2 enable to classify representations of the following
dographs D since the classification of representations of the corresponding
quivers D is known:

(i)
r )) r

which gives the problem of classifying pairs consisting of a linear
mapping from one space to another and a sesquilinear form on these
spaces. This problem was solved in [47] (see also Theorem 3.2).
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Linearization method in classification problems of linear algebra 229

(ii)

r λ

α

��

λ(x, y) = ±λ∗(y, x), |λ| 6= 0,

µ(x, y) = ±µ∗(y, x), |µ| 6= 0,

r µ µ(αx,αy) = λ(x, y),

which gives the problem of classifying metric mappings from one
space with indefinite scalar product to another.

(iii)

r

λ

µ

α <<

λ(x, y) = ±λ∗(y, x), |λ| 6= 0,

µ(x, y) = ±µ∗(y, x), |µ| 6= 0,

λ(αx, y) = ±λ(x, αy), µ(αx, y) = ±µ(x, αy),

which gives the problem of classifying linear operators that are
selfadjoint or skew-adjoint with respect to two nonsingular Her-
mitian/skew-Hermitian forms. This problem was studied in [33].

(iv)

r

λ

µ

α <<

λ(x, y) = ±λ∗(y, x), |λ| 6= 0,

µ(x, y) = ±µ∗(y, x), |µ| 6= 0,

λ(αx,αy) = λ(x, y), µ(αx,αy) = µ(x, y),

which gives the problem of classifying linear operators that are iso-
metric with respect to two nonsingular Hermitian/skew-Hermitian
forms.

(v)
r α

((RRRRRR

r λ λ(x, y) = ±λ∗(y, x), |λ| 6= 0,
r β

66llllll

which gives the problem of classifying pairs of subspaces in a space
with indefinite scalar product (if we restrict ourselves to those rep-
resentations A in which the mappings Aα and Aβ are injective).
This problem was studied in [50].
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(vi)
r

α

��

β

��

λ(x, y) = ±λ∗(y, x), |λ| 6= 0,

λ(αx, βy) = ±λ(βx, αy),
r λ

which gives the problem of classifying selfadjoint/skew-adjoint ma-
trix pencils studied in [26, 29].

(vii)
r

α

��

β

��

λ(x, y) = ±λ∗(y, x), |λ| 6= 0,

λ(αx,αy) = λ(βx, βy),
r λ

which gives the problem of classifying isometric matrix pencils stud-
ied in [10, 26, 29].

3.3. Tame and wild classification problems

A quiver is called wild if the problem of classifying its representations
does not contain the problem of classifying pairs of matrices up to simulta-
neous similarity, the other quivers are tame (Drozd’s Tame–Wild Theorem
[9]). The problem of classifying representations of any wild quiver is consid-
ered as hopeless since it contains the problems of classifying representations
of every quiver, every poset, and every finite dimensional algebra, see, for
example, [5].

Theorems 2.1 and 2.2 reduce the problem of classifying representations
of a dograph D to the problem of classifying representations of its quiver
D. So we will say that a dograph D is tame or wild if the quiver D is tame
or, respectively, wild.

The dographs considered in Sections 3.1 and 3.2 are tame.

Examples of wild dographs:

• The dograph

r

α

��

β

NN λ

λ(x, y) = ±λ∗(y, x), |λ| 6= 0,

λ(αx, y) = λ(x, βy), αβ = βα

gives the problem (posed in [14, p. 84]) of classifying normal op-
erators on a space with indefinite scalar product. Its wildness was
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Linearization method in classification problems of linear algebra 231

proved in [47, Theorem 5.5] and in [15]. Of course, special classes
of normal matrices can be classified, see [16, 17, 31, 32].

• The dograph 1α 99 λ with relations λ(x, y) = ±λ∗(y, x) and
either λ(αx,αy) = λ(x, y) or λ(αx, y) = λ(x, αy) gives the prob-
lem of classifying metric or, respectively, selfadjoint linear operators
with respect to scalar product that may be singular. Its wildness
was proved in [47, Theorem 5.4]. Therefore, the condition of non-
singularity in (11) and (12) is essential.

Each problem of classifying systems of linear mappings and forms some
of which are claimed to be Hermitian or skew-Hermitian (symmetric or
skew-symmetric if the involution on F is the identity) can be given by a
dograph D in which every nonoriented or doubly oriented loop λ is either

• unequipped, or
• equipped with ‘+’, which means that there is the relation λ∗ = λ

on D, or
• equipped with ‘−’, then there is the relation λ∗ = −λ,

and there are no other relations on D. Such a dograph will be called
equipped. For example, the problem of classifying pairs of forms, in which
the first is symmetric and the second is skew-symmetric, is given by the
equipped dograph r+ − .

Theorem 3.2 ([47, Theorem 4.1]). An equipped connected dograph D is
tame if and only if it is obtained by orientation of edges

• in one of the Dynkin diagrams
r

lllr r r · · · r r r r r r · · · r r

r

RRR
r

r r r r r r

r r

r r r r r r r r r r r r

(16)

• or in one of the extended Dynkin diagrams
r

RRR
r

lllr r r · · · r r r r r · · · r r

r

lll r

RRR
r

r r r r r r r r

r r

r r r r r r r r r r r r r

(17)
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• or in one of the equipped graphs

r± r r · · · r r r

r± r r · · · r r r ± (18)
r

fffff
r± r r · · · r r r

r

XXXXX

Canonical forms of representations of all dographs obtained by orienta-
tions of the edges in (16)–(18) were given in [47] over any field of character-
istic not 2 up to classification of Hermitian forms. The proof was based on
an analogous result for representations of quivers by Donovan and Freislich
[8] and Nazarova [37].

Corollary 3.3. Let F be an algebraically closed field of characteristic dif-
ferent from 2. The problems of classifying

(i) for each triple (ε1, ε2, ε3) ∈ {1,−1}3, all triples (A1, A2, A3), up
to simultaneous congruence, of n × n matrices over F satisfying
ATi = εiAi,

(ii) local algebras over F with zero cube radical and square radical of
dimension 2,

(iii) local commutative associative algebras over F with zero cube radical
and square radical of dimension 3, and

(iv) Lie algebras over F with central commutator subalgebra of dimen-
sion 3

are wild.

The wildness of (i) follows from Theorem 3.2. It implies the wild-
ness of (iii) (resp., of (iv)) since each associative commutative algebra with
zero cube radical (resp., Lie algebra with central commutator subalgebra
of dimension 3) is given by a triple (A1, A2, A3) of symmetric (resp., skew-
symmetric) matrices determined up to simultaneous congruence and up to
transformations

(A1, A2, A3) 7→
(

3
∑

i=1

c1iAi,

3
∑

i=1

c2iAi,

3
∑

i=1

c3iAi

)

, det[cij ] 6= 0.

The wildness of (ii)–(iv) was proved in [3, 4]. Note that the Lie algebras
(iv) are also Jordan algebras.

São Paulo J.Math.Sci. 1, 2 (2007), 219–240



Linearization method in classification problems of linear algebra 233

3.4. Generalization of Kac’s Theorem

The following generalization of V. Kac’s Theorem [23, 24] about the
sets of dimensions (see (3)) of indecomposable representations of quivers
was proved in [46]. (The positive root system for dographs is defined as for
quivers, independently of the orientation of the edges.)

Theorem 3.4. Let us consider representations of a dograph D without
relations over an algebraically closed field of characteristic not 2.

(i) There exists an indecomposable representation of a dograph D of
dimension d if and only if d is a positive root of D.

(ii) For each positive real root d, there exists a unique up to isomorphism
indecomposable representation of dimension d.

(iii) For each positive imaginary root d, there exist at least two non-
isomorphic indecomposable representations of dimension d. Moreover, for
each natural number n > 2, there exist D and d such that there are exactly
n nonisomorphic indecomposable representations of D of dimension d.

An analogous description of the set of dimensions of indecomposable
Euclidean or unitary representations of a quiver (this means that each ver-
tex is assigned by a Euclidean or unitary space) is given in [51].

4. Systems of tensors as representations of bipartite directed
graphs

Each representation of a dograph is a system of covariant, contravariant,
and mixed tensors of rank 2. To include into consideration systems of
tensors of arbitrary ranks, we may generalize the notion of a dograph and
its representations as follows.

Let G be a bipartite directed graph; that is, a directed graph whose
set of vertices decomposed into two disjoint sets V and T such that no
arrow connects two vertices within the same set. Vertices of V and T are
represented, respectively, by • and ◦. A representation of G over a field F

is given by assigning

– to each vertex v ∈ V, a vector space V over F, and

– to each vertex t ∈ T with p+ q arrows

v1 •
,,YYYYYYYYYY t • w1

· · · · · · ◦
22eeeeeeeeee

,,YYYYYYYYYY · · · · · ·
vp •

22eeeeeeeeee • wq
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(some of the vertices v1, . . . , vp, w1, . . . , wq may coincide), a tensor

T ∈ V ∗

1 ⊗ · · · ⊗ V
∗

p ⊗W1 ⊗ · · · ⊗Wq,

which can be identified with the corresponding linear mapping

T : V1 ⊗ · · · ⊗ Vp −→W1 ⊗ · · · ⊗Wq

(V1 ⊗ · · · ⊗ Vp is F if p = 0).

For example, each representation of the bipartite directed graph

t1 ◦

''
t2 ◦ 22 • v1

rr oo

ww
t3 ◦ 22 • v2oo

(19)

consists of two vector spaces V1 and V2 and three tensors

T1 ∈ V1, T2 ∈ V
∗

1 ⊗ V
∗

1 ⊗ V1, T3 ∈ V
∗

1 ⊗ V
∗

2 ⊗ V2.

Each pair (Λ,M) consisting of a finite dimensional algebra Λ over F

and a module M over Λ defines the following representation of the bipartite
directed graph (19):

T1 = 1Λ ◦

((
T2 ◦ 11 • ΛF

qqoo

vv
T3 ◦ 11 • MF

oo

where ΛF and MF are the underlying vector spaces of Λ and M , T1 is the
identity of Λ, and the tensors

T2 =
∑

λ∗i1 ⊗ λ
∗

i2 ⊗ λi3, T3 =
∑

λ∗i ⊗m
∗

i1 ⊗mi2
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define multiplications in Λ and M :

(λ′, λ′′) 7→
∑

(λ∗i1λ
′)(λ∗i2λ

′′)λi3, (λ,m) 7→
∑

(λ∗i1λ)(m∗

i1m)mi2.

The identities (additivity, distributivity, . . . ) defining the algebra and mod-
ule structures can be written using tensor contractions. This example leads
us to the problem of studying representations of bipartite directed graphs
with relations that are linear combinations of tensor products and contrac-
tions.

Note that the set of representations of each quiver or dograph can be
identified with the set of representations of the corresponding bipartite
directed graph G, in which (p, q) = (1, 1) or, respectively, p + q = 2 for
every vertex t ∈ T .

The following generalization of Sylvester’s Inertia Theorem was proved
in [6] for n-linear forms with n > 2.

Theorem 4.1. If G is a bipartite directed graph in which every vertex t ∈ T
has at least two arrows (that is, each representation consists of tensors of
rank > 2), then every representation of G over R or C decomposes into a
direct sum of indecomposable representations uniquely up to isomorphism
of summands.

Each n-linear form T : V × · · · × V → F defines

• the representation P = (T, V ) of the bipartite directed graph

G : t ◦ ...
• v

ww
gg
rr (n arrows) (20)

and

• the representation P = (T1, . . . , Tn!, V, . . . , V ) with

Ti(v1, . . . , vn) := T (vσi(1), . . . , vσi(n)),
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(here Sn = {σ1, . . . , σn!} is the set of all substitutions on 1, . . . , n)
of the bipartite directed graph

G :

◦t1 •oo

ssggggggggggggggggggggggggggg

||zz
zz

zz
zz

zz
zz

zz
zz

zz
zz

zz
zz

zz
zz

zz
zz

zz
v1

◦t2 •

kkWWWWWWWWWWWWWWWWWWWWWWWWWWWoo

xxrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
v2

...
...

◦tn! •

bbDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

ffLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
oo vn

(21)

The following statement generalizes (1) and is a reformulation of [6,
Theorem 2].

Theorem 4.2. Let G and G be the bipartite directed graphs (20) and (21).

(a) Two representations P and Q of G over C (i.e., two n-linear forms)
are isomorphic if and only if the corresponding representations P and Q of
G are isomorphic.

(b) Let P = P1 ⊕ · · · ⊕ Ps ⊕ 0 and Q = Q1 ⊕ · · · ⊕ Qr ⊕ 0 be two
representations of G over R, in which all summands Pi and Qj are nonzero

and direct-sum-indecomposable. Let the corresponding representations P
and Q of G be isomorphic. Then s = r and, after a suitable reindexing, Pi
is isomorphic to ±Qi.

5. Systems of linear and semilinear mappings

A mapping A from a complex vector space U to a complex vector space
V is called semilinear and is denoted by A : U 99K V if

A(u1 + u2) = Au1 +Au2, A(αu) = ᾱAu

for all u1, u2, u ∈ U and α ∈ C. Each semilinear mapping A : U 99K V
defines the linear mapping A : U → V , where the conjugate vector space V
has the same additive group as V and the multiplication by α ∈ C in V
coincides with the multiplication by ᾱ in V . If Afe is the matrix of A in
some bases {ei} of U and {fj} of V , then the coordinate vector of Au is

Afe[u]e, where [u]e is the coordinate vector of u ∈ U . The matrix of A in
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other bases is R−1AfeS̄, where R and S are the transition matrices (see
[7]).

The following statement by Horn and Merino [18, Theorem 30] resem-
bles (1):

square complex matrices M and N are consimilar if and
only if the pairs (M,M̄ ) and (N, N̄ ) are simultaneously
equivalent.

(22)

(Two complex matrices M and N are called consimilar if M = S̄−1NS for
some nonsingular S.) Therefore, the canonical form problem for matrices
of semilinear operators reduces to the canonical form problem for matrix
pencils.

Let us extend (22) to systems of linear and semilinear mappings in the
same way as (1) was extended in Section 2 to systems of linear mappings
and forms.

A directed graph with usual and dashed arrows will be called a biquiver.
Its representation is given by assigning to each vertex a complex vector
space, to each usual arrow a linear mapping, and to each dashed arrow a
semilinear mapping. For example, a representation

V

U Cgg

W
�

g

A

OO

B

OO�
�

�

v

of the biquiver

u γee
W

�

g

α

OO

β

OO�
�
�
�

(23)

is formed by a linear mapping A : U → V and semilinear mappings
B : U 99K V and C : U 99K U .

For every biquiver Q, we construct the quiver Q with involution by
replacing

• each vertex u by two vertices u, ū,

• each arrow α : u→ v by two arrows α : u→ v, ᾱ : ū→ v̄,

• each dashed arrow β : u 99K v by two arrows β : u→ v̄, β̄ : ū→ v.

Every representation R of Q defines the “self-conjugate” representation R
of Q since each mapping A : U → V defines the linear mapping A : U → V
and each semilinear mapping B : U 99K V defines the linear mappings
B : U → V and B : U → V . For example, the biquiver and its representa-
tion (23) define the following quiverQ with involution and its representation
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R:

v v̄

Q :

u

α

OO β 88rrrrrrrrrrrrr γ // ū

βffLLLLLLLLLLLLL

γ
oo

α

OO V V

R :

U

A

OO B 88rrrrrrrrrrrrr C //
U

BffMMMMMMMMMMMMM

C

oo

A

OO

The following theorem generalizes (22) and reduces the theory of sys-
tems of linear and semilinear mappings to the theory of “self-conjugate”
systems of linear mappings.

Theorem 5.1. Two representations R and R′ of a biquiver Q are iso-
morphic if and only if the representations R and R′ of the quiver Q are
isomorphic.
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