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An introduction to the Aubry-Mather theory

Andrey Biryuk and Diogo A. Gomes

Departamento de Matemática and Center for Mathematical Analysis, Geometry and
Dynamical Systems, IST, Lisboa, Portugal

Abstract. This paper is a self-contained introduction to the Aubry-
Mather theory and its connections with the theory of viscosity solutions
of Hamilton-Jacobi equations. Our starting point is Mañe’s variational
approach using holonomic measures [Mn96]. We present the Legendre-
Fenchel-Rockafellar theorem from convex analysis and discuss the basic
theory of viscosity solutions of first order Hamilton-Jacobi equations.
We apply these tools to study the Aubry-Mather problem following the
ideas in [EG01]. Finally, in the last section, we present a new proof of
the invariance under the Euler-Lagrange flow of the Mather measures
using ideas from calculus of variations.

1. Motivation and the statement of the problem

Let Td be the d-dimensional standard torus. Consider a Lagrangian
L(x, v), L : Td × Rd → R, smooth in both variables, strictly convex in the
velocity v, and coercive, that is,

lim
|v|→∞

inf
x

L(x, v)

|v|
= +∞.

The minimal action principle of classical mechanics asserts that the trajec-
tories x(t) of mechanical systems are critical points or minimizers of the
action ∫ T

0
L(x, ẋ)ds. (1)
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18 Andrey Biryuk and Diogo A. Gomes

These critical points are then solutions to the Euler-Lagrange equations

d

dt
DvL(x, ẋ)−DxL(x, ẋ) = 0. (2)

Mather’s problem is a relaxed version of this variational principle, and
consists in minimizing the action∫

Td×Rd
L(x, v)dµ(x, v) (3)

among a suitable class of probability measures µ(x, v). Originally, in [Mat91],
this minimization was performed over all measures invariant under the
Euler-Lagrange equations (2). However, as realized by [Mn96], it is more
convenient to consider a larger class of measures, the holonomic measures.
It turns out that both problems are equivalent as any holonomic minimizing
measure is automatically invariant under the Euler-Lagrange equations. In
what follows, we will define this class of measures and provide the motiva-
tion for it.

Let x(t) be a trajectory on Td. Define a measure µTx on Td × Rd by
its action on test functions ψ ∈ Cc(Td × Rd), ψ(x, v), (continuous with
compact support) as follows:

〈ψ, µTx 〉 =
1

T

∫ T

0
ψ
(
x(t), ẋ(t)

)
dt.

If x(t) is globally Lipschitz, the family {µTx}T>0 has support contained
in a fixed compact set, and therefore is weakly-∗ compact. Consequently
one can extract a limit measure µx which encodes some of the asymptotic
properties of the trajectory x.

Let ϕ ∈ C1(Td). For ψ(x, v) = v · ∇ϕ(x) we have

〈ψ, µx〉 = lim
T→∞

1

T

∫ T

0
ẋ · ∇ϕ(x)dt = lim

T→∞

ϕ
(
x(T )

)
− ϕ

(
x(0)

)
T

= 0.

Let γ(v) be a continuous function, γ : Rd → R, such that inf γ(v)
1+|v| > 0,

and lim
|v|→∞

γ(v)
1+|v| =∞. A measure µ in Td×Rd is admissible if

∫
Td×Rd γ(v)dµ <

∞. An admissible measure µ on Td × Rd is called holonomic if for all
ϕ ∈ C1(Td) we have ∫

Td×Rd
v · ∇ϕdµ = 0. (4)

Mather’s problem consists in minimizing (3) under all probability mea-
sures that satisfy (4). As pointed out before, however, this problem was

São Paulo J.Math.Sci. 4, 1 (2010), 17–63



An introduction to the Aubry-Mather theory 19

introduced by Mañe in [Mn96] in his study of Mather’s original problem
[Mat91].

Most of the results in this paper are not original or are small adapta-
tions of other proofs. The only relevant exception is the proof that any
holomonic minimizing measure is invariant under the Euler Lagrange flow,
which is original and relies on a simple calculus of variations argument: the
construction of holonomy preserving variations. This invariance result was
first established by Mañe [Mn96] (which, in fact, was not a full proof but
was completed by J. Mather in [Mat]). Another proof was given by Fathi
and Siconolfi [FS04] using quite different ideas.

In the original approach by Mather [Mat91], instead of action minimiz-
ing holonomic measures, the problem was to find minimal action measures
invariant under the Euler-Lagrange flow. This approach has the obvious ad-
vantage that any such minimizing measure is automatically invariant under
the Euler-Lagrange flow. However, properties such as the graph theorem
are harder to prove and, furthermore, this approach does not generalize
easily to more general problems, as is the example of the stochastic Mather
problem studied in [Gom02].

This paper is organized as follows: firstly, in section 2, we establish
the existence of minimizing holonomic measures; in the next section we
present the proof of the classical Legendre-Fenchel-Rockafellar duality the-
orem which is an essential tool to understanding our problem; viscosity
solutions of Hamilton Jacobi equations are the subject of section 4, where
we give a self contained presentation of the all the results that we will need;
next, in section 5, with the tools that were developed in the previous sec-
tions, we will compute the dual of Mather’s problem and identify its value;
then we, in section 6 we revisit the results from [EG01] which establish
regularity for viscosity solutions of Hamilton-Jacobi equations; in section 7
we construct a special class of variations for measures that preserve the ho-
lonomy constraint and that will be needed in the last section to prove that
the Mather measures are invariant under the Euler-Lagrange dynamics.

2. Minimizing measures

In this section we prove the existence of minimizing holonomic measures
and establish that the minimizing measures are supported in a graph. The
existence result is due to Mañe [Mn96]. The graph theorem in the original
formulation is due to Mather [Mat91].

By coercivity, we may assume that the Lagrangian L is positive and
separated away from zero by adding to it, if necessary, a suitable constant.
To be precise, we assume that L > 1. Set γ(v) = infx∈Td L(x, v). LetM be

the set of signed σ-finite Borel measures in Td × Rd with finite γ-weighted
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20 Andrey Biryuk and Diogo A. Gomes

total variation, that is,

M =

{
µ : ‖µ‖ =

∫
Td×Rd

γ(v)d|µ| <∞
}
,

where µ is a signed measure in Td × Rd

Recall, that the total variation measure |µ| is defined as

|µ|(E) = sup
∞∑
i=1

|µ(Ei)|,

where the supremum is taken over all (Borel) partitions {Ei} of the Borel
set E. By definition µ is σ-finite iff |µ| is.

Theorem 1. (Riesz representation) Let µ ∈ M, define Fµ : Cγ0 → R by

Fµ(f) =
∫
fdµ. Then Fµ ∈

(
Cγ0
)′

and the map µ 7→ Fµ is an isometric

isomorphism of M onto
(
Cγ0
)′

.

Proof. For γ ≡ 1 this is the standard Riesz representation theorem, see
[Con90, Chpt 3, Thm 5.7]. The general case follows by an isometry C0 →
Cγ0 , given by the linear operator of multiplication by function f 7→ fγ. �

Applying the Riesz representation theorem, as stated in the previous
theorem, we see that the set M is the dual of the set Cγ0 (Td × Rd) of
continuous functions φ that satisfy

‖φ‖γ = sup
Td×Rd

∣∣∣∣φγ
∣∣∣∣ <∞, lim

|v|→∞

φ(x, v)

γ(v)
→ 0.

We should recall the following fact that any sequence of measures such
that

∫
Td×Rd γd|µn| is bounded admits a subsequence (still denoted by µn)

which converges weakly, that is, there exists a measure µ, such that for all
φ ∈ Cγ0 we have ∫

Td×Rd
φdµn →

∫
Td×Rd

φdµ.

In particular, since 1 ∈ Cγ0 , if each of the measures µn is a probability
measure (i.e. nonegative, with total mass equal to 1) then µ is also a
probability measure.

Theorem 2. There exists a holonomic probability measure µ on Td × Rd
which minimizes ∫

Td×Rd
L(x, v)dµ(x, v).
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An introduction to the Aubry-Mather theory 21

Proof. Consider a minimizing sequence of holonomic probability measures
µn. Clearly, the sequence

∫
Td×Rd L(x, v)dµn is bounded, and so is∫

Td×Rd γ(v)dµn. Therefore, through a subsequence, µn converges in (Cγ0 )′

to a measure µ. The measure µ is necessary a probability measure as each
of µn is. Furthermore, for any ϕ ∈ C1(Td), vDxϕ(x) ∈ Cγ0 . Therefore

0 =

∫
Td×Rd

vDxϕ(x)dµn →
∫
Td×Rd

vDxϕ(x)dµ,

and so µ is holonomic. It remains to prove that it is minimizer. Let Lk(x, v)
be a sequence in Cγ0 increasing pointwise to L. Then∫

Td×Rd
Ldµn ≥

∫
Td×Rd

Lkdµn.

Therefore

inf ≥
∫
Td×Rd

Lkdµ.

Applying Fatou’s lemma to the right hand side of the previous inequality
yields the result. �

Remark. Another proof will be given using the Fenchel-Legendre-Rockafellar
Theorem, Theorem 4.

Theorem 3. Any minimizing measure is supported in the closure of a
graph. That is, there exists a measurable function v : Td → Rd such that

suppµ ∈ cl{x, v ∈ Td × Rd : v = v(x)} .

Proof. Proof is given by contradiction. Let µ(x, v) be a minimizing mea-
sure. Then, by the desintegration of measures result (slicing measures) in
[Eva90, p.14, Thm 10] there exists a probability measure θ in Td and for
θ-almost every x there exists a probability measure η(dv;x) in Rd such
that dµ = θ(dx)η(dv;x). If µ is supported on a graph then there exists a
function v(x) such that η(v;x) = δv(x)(v). Otherwise, define the function
v(x) in the following way

v(x) =

∫
v η(dv;x).

Furthermore, define the measure η̃(dv;x) = δv(x)(v). Then, by the strict
convexity of the Lagrangian we have∫

Rd
L(x, v)η̃(dv;x) <

∫
Rd
L(x, v)η(dv;x),
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22 Andrey Biryuk and Diogo A. Gomes

for all points x in which η̃(dv;x) 6= η(dv;x). Therefore, by integrating
against θ, we conclude that∫

Td×Rd
L(x, v)η̃(dv;x)θ(dx) <

∫
Td×Rd

L(x, v)dµ.

Finally, it remains to show that the measure dµ̃ = η̃(dv;x)θ(dx) is holo-
nomic. But this follows easily from the fact that∫

Rd
vDxϕ(x)η̃(dv;x)

def η̃
= v(x)Dxϕ(x)

def v
=

∫
Rd
vDxϕ(x)η(dv;x).

�

Later we will prove that the function v(x) is uniformly continuous µ-
almost everywhere (in fact Lipschitz) and so the closure of the graph is in
fact a graph.

3. Legendre-Fenchel-Rockafellar duality theorem

In this section, for the convenience of the reader, we give a proof of the
Legendre-Fenchel-Rockafellar duality Theorem which is based on the one
presented in [Vil03].

Let E be a locally convex topological vector space with dual E′. The
duality pairing between E and E′ is denoted by (·, ·). Let h : E →
(−∞,+∞] be a convex function. The Legendre-Fenchel transform h∗ :
E′ → [−∞,+∞] of h is defined by

h∗(y) = sup
x∈E

(
(x, y)− h(x)

)
,

for y ∈ E′. In a similar way, if g : E → [−∞,+∞) is concave we define

g∗(y) = inf
x∈E

(
(x, y)− g(x)

)
.

Theorem 4 (Fenchel-Legendre-Rockafellar). Let E be a locally convex
topological vector space over R with dual E′. Let h : E → (−∞,+∞]
be a convex function and g : E → [−∞,+∞) a concave function. Then,
if there exists a point x0 where both g and h are finite and at least one of
them is continuous,

min
y∈E′

[h∗(y)− g∗(y)] = sup
x∈E

[g(x)− h(x)] . (5)

Remark. It is part of the theorem that the infimum in the left-hand side
above is a minimum.
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Proof. First we show the “>” inequality in (5). Recall that

inf
y∈E′

[h∗(y)− g∗(y)] = inf
y∈E′

sup
x1,x2∈E

[g(x1)− h(x2)− (y, x1 − x2)] .

By choosing x1 = x2 = x we conclude that

inf
y∈E′

[h∗(y)− g∗(y)] ≥ sup
x∈E

[g(x)− h(x)] .

The opposite inequality is more involved and requires the use of Hahn-
Banach’s theorem. Let

λ = sup
x∈E

[g(x)− h(x)] .

If λ = +∞ there is nothing to prove, thus we may assume λ < +∞. We
just need to show that there exists y ∈ E′ such that for all x1 and x2 we
have

g(x1)− h(x2)− (y, x1 − x2) ≤ λ, (6)

since then, by taking the supremum over x1 and x2 yields

h∗(y)− g∗(y) ≤ λ.
From λ > g(x) − h(x) it follows g(x) ≤ λ + h(x). Hence the following
convex subsets of E × R:

C1 =
{

(x1, t1) ∈ E × R : t1 < g(x1)
}

and
C2 =

{
(x2, t2) ∈ E × R : λ+ h(x2) < t2

}
.

are disjoint. Let x0 as in the statement of the theorem. We will assume
that g is continuous at x0 (for the case in which h is the continuous function
the argument is similar). Since (x0, g(x0)− 1) ∈ C1 and g is continuous at
x0, C1 has non empty interior. Therefore, see [KF75, Chpt 4, sect 14.5],
the sets C1 and C2 can be separated by a nonzero linear function, i.e., there
exists a nonzero vector z = (w,α) ∈ E′ × R such that

inf
c1∈C1

(z, c1) ≤ sup
c2∈C2

(z, c2),

that is, for any x1 such that g(x1) > −∞ and for any x2 s.t. h(x2) < +∞
we have

(w, x1) + αt1 ≤ (w, x2) + αt2,

whenever t1 < g(x1) and λ+ h(x2) < t2.

Note that α can not be zero. Otherwise by using x2 = x0 and taking
x1 in a neighborhood of x0 where g is finite we deduce that w is also
zero. Therefore α > 0, otherwise, by taking t1 → −∞ we would obtain a
contradiction. Dividing w by α and letting y = −w

α , we would obtain

−(y, x1) + g(x1) ≤ −(y, x2) + h(x2) + λ.
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This is equivalent to (6) and thus we completed the proof. �

Remark. The condition of continuity at x0 can be relaxed to the condi-
tion of “Gâteaux continuity” or directional continuity, that is the function
t 7→ f(x0 + tx) is continuous at t = 0 for any x ∈ E. Here f stands for
either h or g.

4. Viscosity Solutions

In this section we present some basic results on viscosity solutions and
its connections with optimal control problems. Most of these results are
standard and can be found, for instance in [Eva98], [BCD97] or [FS93].

Let α > 0. The infinite horizon optimal control problem consists in
minimizing

uα(x) = inf
x:x(0)=x

∫ 0

−∞
eαsL(x, ẋ)ds, (7)

among all globally Lipschitz trajectories x with initial condition x(0) =
x. Let T ∈ R. A similar problem, the initial value problem, consists in
minimizing

V (x, t) = inf
x:x(t)=x

∫ t

−T
L(x, ẋ)ds+ ψ(x(−T )), (8)

for t ≥ −T , among all globally Lipschitz trajectories x with initial condition
x(t) = x. Both problems will be useful in the sequel.

Proposition 5. For any α > 0 the function uα satisfies the dynamic pro-
gramming principle, that is, for any T > 0,

uα(x) = inf
x:x(0)=x

(∫ 0

−T
eαsL(x, ẋ)ds+ e−αTuα

(
x(−T )

))
. (9)

Similarly, V also satisfies

V (x, t) = inf
x:x(t)=x

(∫ t

−t̃
L(x, ẋ)dt+ V

(
x(−t̃),−t̃

))
, (10)

for all −T ≤ −t̃ ≤ t.
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Proof. We will establish (9), the proof of (10) is similar. Clearly, for any
trajectory x(·),∫ 0

−∞
eαsL(x, ẋ)ds =

∫ 0

−T
eαsL(x, ẋ)dt +

∫ −T
−∞

eαsL(x, ẋ)ds

=

∫ 0

−T
eαsL(x, ẋ)ds +

e−αT
∫ 0

−∞
eαsL

(
x(s− T ), ẋ(s− T )

)
ds

≥
∫ 0

−T
eαsL(x, ẋ)ds + e−αTuα

(
x(−T )

)
.

Thus by taking the infimum we obtain that

uα(x) ≥ inf
x:x(0)=x

(∫ 0

−T
eαsL(x, ẋ)ds+ e−αTuα

(
x(−T )

))
.

To obtain the other inequality, fix x, fix ε > 0 and consider a trajectory
x such that x(0) = x and

inf
x:x(0)=x

(∫ 0

−T
eαsL(x, ẋ)ds+ e−αTuα

(
x(−T )

))
≥∫ 0

−T
eαsL(x, ẋ)ds+ e−αTuα

(
x(−T )

)
− ε.

Let y be a trajectory such that y(0) = x(−T ) and

uα
(
x(−T )

)
≥
∫ 0

−∞
eαsL(y, ẏ)ds− ε.

Denote by z the concatenation of these two trajectories:

z(t) =

{
x(t) if t ≥ −T
y(t+ T ) if t ≤ −T.

Then

uα(x) ≤
∫ 0

−∞
eαsL(z, ż)ds ≤

∫ 0

−T
eαsL(z, ż)ds+ e−αTuα

(
z(−T )

)
+ ε

≤ inf
x:x(0)=x

(∫ 0

−T
eαsL(x, ẋ)ds+ e−αTuα

(
x(−T )

))
+ 2ε.

Thus, by sending ε→ 0 we obtain the opposite inequality. �

Proposition 6. Both infima in proposition 5 are in fact minima.
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Proof. This follows from the compactness of the torus and a standard cal-
culus of variations argument. �

We recall that the Hamiltonian H is the Legendre transform of L given
by

H(p, x) = sup
v

(
p · v − L(x, v)

)
.

If L is strictly convex and coercive in v then so is H(p, x) as a function of
p. Furthermore, for p = DvL(x, v) we have

v = DpH(p, x), (11)

and

DxL(x, v) = −DxH(p, x). (12)

The proof of these identities can be found in [Eva98].

Proposition 7. Let ϕ(x) be a smooth function with bounded first and sec-
ond derivatives. Suppose α ≥ 0. Denote by Φ(x, t) the unique classical
solution to the time dependent Hamilton-Jacobi equation

Φt + αΦ +H(DxΦ, x) = 0 (13)

on the time interval [−T, 0], with initial data Φ(x,−T ) = ϕ(x). This so-
lution exists for small time T , by the method of characteristics. Then, for
all t ≥ −T ,

eαtΦ(x, t) = inf
x:x(t)=x

(∫ t

−T
eαsL(x(s), ẋ(s))ds+ e−αTϕ

(
x(−T )

))
.

Proof. Observe that for any Lipschitz trajectory x we have

−eαtΦ(x(t), t) + e−αTϕ(x(−T )) = −
∫ t

−T

d

ds
(eαsΦ(x(s), s)) ds

= −
∫ t

−T
(αeαsΦ(x(s), s) + eαsDxΦ(x(s), s) · ẋ + eαsΦs(x(s), s)) ds.

Adding
∫ t
−T e

αsL(x(s), ẋ(s))ds+ eαtΦ(x(t), t) to the above equality and
taking the infimum over all trajectories x, we obtain

inf
x:x(t)=x

(∫ t

−T
eαsL(x(s), ẋ(s))ds+ e−αTϕ

(
x(−T )

))
= eαtΦ(x(t), t)+
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inf
x:x(t)=x

(∫ t

−T
eαs
(
−αΦ(x(s), s)− Φs(x(s), s)

)
+ eαs

(
L(x(s), ẋ(s))−

DxΦ(x(s), s) · ẋ
)
ds

)
.

Now recall that −H(p, x) ≤ L(x, v)− p · v, therefore

inf
x:x(t)=x

(∫ t

−T
eαsL(x(s), ẋ(s))ds+ e−αTϕ

(
x(−T )

))
≥ eαtΦ(x(t), t)+

inf
x:x(t)=x

(∫ t

−T
eαs
(
−αΦ(x(s), s)− Φs(x(s), s)−H(DxΦ(x(s), s),x(s))

)
ds

)
= eαtΦ(x(t), t).

Now consider the trajectory x given by solving the following differential
equation

ẋ(s) = DpH(DxΦ(x(s), s),x(s))

with initial condition x(t) = x. Then, since for v = DpH(p, x) we have
−H(p, x) = L(x, v)− p · v, we conclude that

inf
x:x(t)=x

(∫ t

−T
eαsL(x(s), ẋ(s))ds+ e−αTϕ

(
x(−T )

))
≤ eαtΦ(x(t), t)+∫ t

−T
eαs
(
−αΦ

(
x(s), s

)
− Φs

(
x(s), s

)
−H

(
DxΦ(x(s), s),x(s)

))
ds =

eαtΦ(x(t), t),

which ends the proof. �

In what follows n stands for d or d+ 1. So we can treat both space and
time-space situation.

Let F : Rn×R×Rn → R, F (p, z, x), be a continuous function. A bounded
uniformly continuous function u is a viscosity solution to the Hamilton-
Jacobi equation

F (Du, u, x) = 0, (14)

if for any C∞ function ϕ : Rn → R, ϕ(x), and any point x0 which lo-
cally maximizes (respectively minimizes) the difference u−ϕ, the following
inequality holds:

F (Dϕ(x0), u(x0), x0) ≤ 0 (resp. ≥ 0). (15)

Note that for time dependent equations the definition also makes sense by
taking F (DV, V, x) = −Vt + αV +H(DxV, x).

By using the following trick we may assume without loss of generality
that the maximum or minimum in the definition are strict: if u − ϕ has
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a maximum (resp. minimum) at a point x0 then let ϕ̃(x) = ϕ(x) − |x −
x0|2 (resp. +) then u − ϕ̃ has a strict maximum (resp. minimum) at x0,
furthermore the first derivative of ϕ̃ agrees with the derivative of ϕ at x0.

In fact, although the definition of viscosity solution requires C∞ test
functions ϕ, the viscosity inequalities (15) also hold for C1 functions as the
next lemma shows.

Lemma 8. If u is a viscosity solution of (14) then for any C1 function
ϕ : Rn → R, ϕ(x), and any point x0 which is a strict local minimum
(respectively maximum) of the difference u− ϕ the inequalities (15) hold.

Proof. Let ηε be a standard mollifier, and consider the function ϕε = ϕ∗ηε.
Since ϕε → ϕ uniformly as ε → 0, for ε sufficiently small there exists a
point xε which is a local minimum of u− ϕε, and xε → x. By the viscosity
property

F (Dϕε(xε), u(xε), xε) ≤ 0 (resp. ≥ 0).

Since Dϕε → Dϕ uniformly, by passing to the limit we have the desired
result. �

Before proceeding, we need to recall some definitions. The superdiffer-
ential D+

x ψ(x) of a function ψ at the point x is the set of values p ∈ Rn
such that

lim sup
|v|→0

ψ(x+ v)− ψ(x)− p · v
|v|

≤ 0.

Similarly, the subdifferential D−x ψ(x) of ψ at the point x is the set of values
p such that

lim inf
|v|→0

ψ(x+ v)− ψ(x)− p · v
|v|

≥ 0.

From this definition it follows that both D±x ψ(x) are convex sets (possibly
empty).

Proposition 9. If D−x ψ(x), D+
x ψ(x) 6= ∅ then D−x ψ(x) = D+

x ψ(x) = {p},
a single point in Rn, and ψ is differentiable at x with Dxψ = p. Conversely,
if ψ is differentiable at x then

D−x ψ(x) = D+
x ψ(x) = {Dxψ(x)}.

Proof. First we claim that if D−x ψ(x) and D+
x ψ(x) are both non-empty

they must coincide and have a single element denoted by p. Indeed, for any
p− ∈ D−x ψ(x) and p+ ∈ D+

x ψ(x)

lim inf
|v|→0

ψ(x+ v)− ψ(x)− p− · v
|v|

≥ 0
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lim sup
|v|→0

ψ(x+ v)− ψ(x)− p+ · v
|v|

≤ 0.

By subtraction we conclude

lim inf
|v|→0

(p+ − p−) · v
|v|

≥ 0.

In particular, by choosing v = −ε p
+−p−
|p−−p+| , we get

−|p− − p+| ≥ 0,

which implies p− = p+ ≡ p. This (unique) element p satisfies

lim
|v|→0

ψ(x+ v)− ψ(x)− p · v
|v|

= 0,

and so Dxψ = p.

To prove the converse, we just have to observe that if ψ is differentiable
then we have ψ(x+ v) = ψ(x) +Dxψ(x) · v + o(v). �

Proposition 10. Let ψ be continuous. Then, if p ∈ D+
x ψ(x0) (resp. p ∈

D−x ψ(x0)) there exists a C1 function φ such that ψ(x) − φ(x) has a strict
local maximum (resp. minimum) at x0 and p = Dxφ(x0). Conversely,
if φ is a C1 function such that ψ(x) − φ(x) has a local maximum (resp.
minimum) at x0 then p = Dxφ(x0) ∈ D+

x ψ(x0) (resp. D−x ψ(x0)).

Proof. By subtracting p · (x− x0) + ψ(x0) to ψ we may assume ψ(x0) = 0
and p = 0. By changing coordinates we can take x0 = 0. Then 0 ∈ D+

x ψ(0)
and so

lim sup
x→0

ψ(x)

|x|
≤ 0.

Hence there exists a continuous function ρ(x), with ρ(0) = 0 such that

ψ(x) ≤ |x|ρ(x).

Let η(r) = max|x|≤r{ρ(x)}. This function is continuous, non-decreasing
and η(0) = 0. Define

φ(x) =

∫ 2|x|

|x|
η(r)dr + |x|2.

Note that φ is C1 and φ(0) = Dxφ(0) = 0. Moreover, for x 6= 0,

ψ(x)− φ(x) ≤ |x|ρ(x)−
∫ 2|x|

|x|
η(r)dr − |x|2 < 0.

Thus ψ − φ has a strict local maximum at 0.
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Conversely, suppose ψ(x) − φ(x) has a local maximum at 0. Without
loss of generality we may assume ψ(0) − φ(0) = 0, and so φ(0) = 0. Then
ψ(x)− φ(x) ≤ 0 or equivalently

ψ(x) ≤ p · (x− x0) + (φ(x)− p · (x− x0)).

Thus, by choosing p = Dxφ(x0), and using the fact that

lim
x→x0

φ(x)− p · (x− x0)

|x− x0|
= 0,

we conclude that Dxφ(x0) ∈ D+
x ψ(x0). The case of a minimum is similar.

�

From the previous proposition we conclude that a function u is a viscosity
solution of F (Du, u, x) = 0 if and only if for all x and any p ∈ D+u(x) (resp.
p ∈ D−u(x)) we have F (p, u(x), x) ≤ 0 (resp. ≥ 0).

Proposition 11. Let u be a viscosity solution of F (Du, u, x) = 0. Then u
solves the equation at all points of differentiability.

Proof. It suffices to observe that at any point x of differentiability of u,
by Proposition 9, {Du(x)} = D+u(x) = D−u(x), and therefore by the
previous remark F (Du, u, x) = 0. �

Theorem 12. Let uα be the value function of the infinite horizon dis-
counted cost problem (7). Then uα is a viscosity solution to

αuα +H(Duα, x) = 0.

Similarly, let V be a solution to the initial value problem (8). Then V is a
viscosity solution of

Vt +H(DxV, x) = 0.

Proof. We present the proof only for the discounted cost infinite horizon as
the other case is similar, and we refer the reader to [Eva98], for instance.
Let ϕ : Td → R, ϕ(x), be a C∞ function, and let x0 ∈ argmin(uα − ϕ). By
adding a suitable constant to ϕ we may assume that u(x0) − ϕ(x0) = 0,
and u(x)− ϕ(x) ≥ 0 at all other points.

We must show that

αϕ(x0) +H(Dxϕ(x0), x0) ≥ 0,

that is, there exists v ∈ Rd such that

αϕ(x0) + v ·Dxϕ(x0)− L(x0, v) ≥ 0.

By contradiction assume that there exists θ > 0 such that

αϕ(x0) + v ·Dxϕ(x0)− L(x0, v) < −θ,
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for all v. Because the mapping v 7→ L is superlinear and ϕ is C1, there
exists a R > 0 and r1 > 0 such that for all x ∈ Br1(x0) and all v ∈ Bc

R(0) =

Rd \BR(0) we have

αϕ(x) + v ·Dxϕ(x)− L(x, v) < −θ
2
.

By continuity, for some 0 < r < r1 and all x ∈ Br(x0) we have

αϕ(x) + v ·Dxϕ(x)− L(x, v) < −θ
2
,

for all v ∈ BR(0).

Therefore for any trajectory x with x(0) = x0 and any T ≥ 0 such that
the trajectory x stays near x0 on [−T, 0], i.e., x(t) ∈ Br(x0) for t ∈ [−T, 0]
we have

e−αTu(x(−T ))− u(x0) ≥ e−αTϕ(x(−T ))− ϕ(x0)

= −
∫ 0

−T
eαt
(
αϕ(x(t)) + ẋ(t) ·Dxϕ(x(t))

)
dt

≥ θ

2

∫ 0

−T
eαtdt−

∫ 0

−T
eαtL(x, ẋ)dt.

This yields

u(x0) ≤ −θ
2

∫ 0

−T
eαtdt+

∫ 0

−T
eαtL(x, ẋ)dt+ e−αTu(x(−T ))

Since the infimum in (9) is, in fact, a minimum we can choose a time interval
[−T ∗, 0] and a trajectory x∗ that minimizes (9):

u(x0) =

∫ 0

−T ∗
eαtL(x∗, ẋ∗)dt+ e−αTu(x∗(−T ∗)).

A minimizing trajectory on [−T ∗, 0] also minimizes on any sub interval: for
any T ∈ (0, T ∗) we have

u(x0) =

∫ 0

−T
eαtL(x∗, ẋ∗)dt+ e−αTu(x∗(−T )).

Taking T small enough we can insure that x∗ stays near x0 on [−T, 0]. This
yields a contradiction.

Now consider x0 ∈ argmax(uα−ϕ). Again, by adding a suitable constant
to ϕ we may assume that u(x0) − ϕ(x0) = 0, and u(x) − ϕ(x) ≤ 0 at all
other points.

We must show that

αϕ(x0) +H(Dxϕ(x0), x0) ≤ 0,
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that is, for all v ∈ Rd we have

αϕ(x0) + v ·Dxϕ(x0)− L(x0, v) ≤ 0.

By contradiction assume that there exists θ > 0 such that for some v̄

αϕ(x0) + v̄ ·Dxϕ(x0)− L(x0, v̄) > θ.

By continuity, for some r > 0 and all x ∈ Br(x0) we have

αϕ(x) + v̄ ·Dxϕ(x)− L(x, v̄) >
θ

2
.

The trajectory x, with x(0) = x0, ẋ = v̄ stays near x0 for t ∈ [−T, 0],
provided T > 0 is sufficiently small. Therefore

e−αTu(x(−T ))− u(x0) ≤ e−αTϕ(x(−T ))− ϕ(x0)

= −
∫ 0

−T
eαt
(
αϕ(x(t)) + ẋ(t) ·Dxϕ(x(t))

)
dt

≤ −θ
2

∫ 0

−T
eαtdt−

∫ 0

−T
eαtL(x, ẋ)dt.

This yields

u(x0) ≥ θ

2

∫ 0

−T
eαtdt+

∫ 0

−T
eαtL(x, ẋ)dt+ e−αTu(x(−T )) .

But since by (9)

u(x0) ≤
∫ 0

−T
eαtL(x, ẋ)dt+ e−αTu(x(−T )),

this yields the contradiction θ
2

1−e−αT
α ≤ 0 with T > 0. �

Theorem 13. Let uα be a viscosity solution to

αuα +H(Duα, x) = 0.

Then αuα is uniformly bounded and uα is Lipschitz, uniformly in α.

Proof. First let xM be the point where uα(x) has a global maximum, and
xm a point of global minimum. Then, by the viscosity property, i.e., the
definition of the viscosity solution, we have

αuα(xM ) +H(0, xM ) ≤ 0, αuα(xm) +H(0, xm) ≥ 0,

which yields that αuα is uniformly bounded.

Now we establish the Lipschitz bound. Observe that if uα is Lipschitz,
then there exists M > 0 such that

uα(x)− uα(y) ≤M |x− y|,
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for all x, y. By contradiction, assume that for every M > 0 there exists x
and y such that

uα(x)− uα(y) > M |x− y|.
Let ϕ(x) = uα(y) +M |x− y|. Then uα(x)−ϕ(x) has a maximum at some
point x 6= y. Therefore

αuα(x) +H
(
M x−y
|x−y| , x

)
≤ 0,

which by the coercivity of H yields a contradiction if M is sufficiently
large. �

Theorem 14. (Stability theorem for viscosity solutions) Assume that for
α > 0 function uα is a viscosity solution for Hα(u,Du, x) = 0. Let Hα →
H uniformly on compact sets, and uα → u uniformly. Then u is a viscosity
solution for H(u,Du, x) = 0.

Proof. Suppose u − ϕ has a strict local maximum (resp. minimum) at a
point x0. Then there exists xα → x such that uα−ϕ has a local maximum
(resp. minimum) at xα. Then

Hα(uα(xα), Dϕ(xα), xα) ≤ 0 (resp. ≥ 0).

Letting α→ 0 finishes the proof. �

As demonstrated in context of homogenization of Hamilton-Jacobi equa-
tions, in the classic but unpublished paper by Lions, Papanicolaou and
Varadhan [LPV88], it is possible to construct, using the previous result,
viscosity solutions to the stationary Hamilton-Jacobi equation

H(Du, x) = H. (16)

Theorem 15 (Lions, Papanicolao, Varadhan). There exists a number H
and a function u(x), Zd periodic in x, that solves (16) in the viscosity sense.

Proof. Since uα−minuα is periodic, equicontinuous, and uniformly bounded,
it converges, up to subsequences, to a function u. Moreover uα ≤ C

α , thus
αuα converges uniformly, up to subsequences, to a constant, which we de-
note by −H. Then, the stability theorem for viscosity solutions, theorem
14, implies that u is a viscosity solution of

H(Du, x) = H.

�

Theorem 16. Let u : Td → R be a viscosity solution to

H(Du, x) = C.

Then u is Lipschitz, and the Lipschitz constant does not depend on u.
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Proof. First observe that from the fact that u = u − 0 achieves maximum
and minimum in Td we have

min
x∈Td

H(0, x) ≤ C ≤ max
x∈Td

H(0, x).

Then, it is enough to argue as in the proof of Theorem 13. �

To establish uniqueness of viscosity solutions we need the following lemma:

Lemma 17. Let V be a viscosity solution of

Vt +H(DxV, x) = 0

in [−T, 0] × Rn and φ a C1 function. If V − φ has a maximum (resp.
minimum) at (x0, t0) ∈ Rd × (−T, 0] then

φt(x0, t0) +H(Dxφ(x0, t0), x0) ≤ 0 (resp. ≥ 0) at (x0, t0). (17)

Remark: The important point is that the inequality is valid even for some
non-interior points (t0 = 0).

Proof. Only the case t0 = 0 requires proof since in the other case the max-
imum is interior and then the viscosity property (the definition of viscosity
solution) yields the inequality. Consider

φ̃ = φ− ε

t
.

Then V − φ̃ has an interior local maximum at (xε, tε) with tε < 0. Further-
more, (xε, tε)→ (x0, 0), as ε→ 0. At the point (xε, tε) we have

φt(xε, tε) +
ε

t2ε
+H(Dxφ(xε, tε), xε) ≤ 0,

that is, since ε
t2ε
≥ 0,

φt(x0, 0) +H(Dxφ(x0, 0), x0) ≤ 0.

Analogously we obtain the opposite inequality, using φ̃ = φ+ ε
t . �

Next we prove the uniqueness of viscosity solutions:

Theorem 18 (Uniqueness). Suppose H satisfies

|H(p, x)−H(q, x)| ≤ C(|p|+ |q|)|p− q|
|H(p, x)−H(p, y)| ≤ C|x− y|(C +H(p, x))

Then the value function given by (8) is the unique viscosity solution to the
Hamilton-Jacobi equation

Vt +H(DxV, x) = 0

that satisfies V (x,−T ) = ψ(x).
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Proof. Let V and Ṽ be two viscosity solutions with

sup
−T≤t≤0

V − Ṽ = σ > 0.

For 0 < ε, λ < 1 we define

ψ(x, y, t, s) = V (x, t)−Ṽ (y, s)−λ(t+s+2T )− 1

ε2
(|x−y|2+|t−s|2)−ε(|x|2+|y|2).

When ε, λ are sufficiently small we have

maxψ(x, y, t, s) = ψ(xε,λ, yε,λ, tε,λ, sε,λ) >
σ

2
.

Since ψ(xε,λ, yε,λ, tε,λ, sε,λ) ≥ ψ(0, 0,−T,−T ), and both V and Ṽ are bounded,
we have

|xε,λ − yε,λ|2 + |tε,λ − sε,λ|2 ≤ Cε2

and

ε(|xε,λ|2 + |yε,λ|2) ≤ C.

From these estimates and the fact that V and Ṽ are continuous, it then
follows that

|xε,λ − yε,λ|2 + |tε,λ − sε,λ|2

ε2
= o(1),

as ε→ 0.

Denote by ω and ω̃ the modulus of continuity of V and Ṽ . Then

σ

2
≤ V (xε,λ, tε,λ)− Ṽ (yε,λ, sε,λ)

= V (xε,λ, tε,λ)− V (xε,λ,−T ) + V (xε,λ,−T )− Ṽ (xε,λ,−T )+

+ Ṽ (xε,λ,−T )− Ṽ (xε,λ, sε,λ) + Ṽ (xε,λ, sε,λ)− Ṽ (yε,λ, sε,λ) ≤
≤ ω(T + tε,λ) + ω̃(T + sε,λ) + ω̃(o(ε)).

Therefore, if ε is sufficiently small T + tε,λ > µ > 0, uniformly in ε.

Let φ be given by

φ(x, t) = Ṽ (yε,λ, sε,λ) + λ(2T + t+ sε,λ)+

+
1

ε2
(|x− yε,λ|2 + |t− sε,λ|2) + ε(|x|2 + |yε,λ|2).

Then, the difference

V (x, t)− φ(x, t)

achieves a maximum at (xε,λ, tε,λ).
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Similarly, for φ̃ given by

φ̃(y, s) = V (xε,λ, tε,λ)− λ(2T + tε,λ + s)−

− 1

ε2
(|xε,λ − y|2 + |tε,λ − s|2)− ε(|xε,λ|2 + |y|2),

the difference

Ṽ (y, s)− φ̃(y, s)

has a minimum at (yε,λ, sε,λ).

Therefore

φt(xε,λ, tε,λ) +H(Dxφ(xε,λ, tε,λ), xε,λ) ≤ 0,

and

φ̃s(yε,λ, sε,λ) +H(Dyφ̃(yε,λ, sε,λ), yε,λ) ≥ 0.

Simplifying, we have

λ+ 2
tε,λ − sε,λ

ε2
+H(2

xε,λ − yε,λ
ε2

+ 2εxε,λ, xε,λ) ≤ 0, (18)

and

− λ+ 2
tε,λ − sε,λ

ε2
+H(2

xε,λ − yε,λ
ε2

− 2εyε,λ, yε,λ) ≥ 0. (19)

From (18) we gather that

H(2
xε,λ − yε,λ

ε2
+ 2εxε,λ, xε,λ) ≤ −λ+

o(1)

ε
. (20)

By subtracting (18) to (19) we have

2λ ≤ H(2
xε,λ − yε,λ

ε2
− 2εyε,λ, yε,λ)−H(2

xε,λ − yε,λ
ε2

+ 2εxε,λ, xε,λ)

≤ H(2
xε,λ − yε,λ

ε2
− 2εyε,λ, yε,λ)−H(2

xε,λ − yε,λ
ε2

− 2εyε,λ, xε,λ)

+H(2
xε,λ − yε,λ

ε2
− 2εyε,λ, xε,λ)−H(2

xε,λ − yε,λ
ε2

+ 2εxε,λ, xε,λ)

≤
(
C + CH(2

xε,λ − yε,λ
ε2

+ 2εxε,λ, xε,λ)

)
|xε,λ − yε,λ|

+ Cε

(∣∣∣∣2xε,λ − yε,λε2
+ 2εxε,λ

∣∣∣∣+

∣∣∣∣2xε,λ − yε,λε2
− 2εyε,λ

∣∣∣∣) |xε,λ − yε,λ|
≤
(
o(1)

ε
+ C

)
(|xε,λ − yε,λ|+ |tε,λ − sε,λ|) ,

when ε→ 0, which is a contradiction. �
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A function u is semiconcave if there exists a constant C such that

u(x+ y)− 2u(x) + u(x− y) ≤ C|y|2.
We assume that L(x, v) satisfies the following estimate

L(x+θy, v+ηy)−2L(x, v)+L(x−θy, v−ηy) ≤ (C+CL(x, v))(θ2 +η2)|y|2.
(21)

Proposition 19. Consider the solution V to the initial value problem (8).
Then V is semiconcave in x for each fixed time t.

Proof. We will do the proof for t = 0. Fix ε > 0. Let x be a trajectory
such that

V (x, 0) ≥
∫ 0

−T
L(x, ẋ)ds+ ψ(x(−T ))− ε.

Then we have ∫ 0

−T
L(x, ẋ)ds ≤ C,

for some constant uniformly bounded as ε→ 0.

Clearly

V (x± y, 0) ≤
∫ 0

−T
L(x± y s+ T

T
, ẋ± y

T
)ds+ ψ(x(−T )).

Therefore
V (x+ y, 0)− 2V (x, 0) + V (x− y, 0) ≤

ε+

∫ 0

−T
L(x + y

s+ T

T
, ẋ +

y

T
)− 2L(x, ẋ) + L(x− yT + s

T
, ẋ− y

T
) ≤

C(1 +

∫ 0

−T
L(x, ẋ)ds)|y|2 ≤ C|y|2.

�

Proposition 20. Let u be a viscosity solution of H(Dxu, x) = 0. Then u
is semiconcave.

Proof. Consider the Hamilton-Jacobi equation.

Vt +H(DxV, x) = 0 (22)

with V (x,−T ) = u(x). Then V (x, t) = u(x) is a viscosity solution to (22).
By the uniqueness result for viscosity solutions we have that V = u is the
value function for the initial value problem (8) with ψ = u. But then the
previous proposition implies semiconcavity. �

Corollary 21. Let u : T1 → R be a viscosity solution of (16). Then Du
satisfies the following jump condition: Dxu(x−)−Dxu(x+) > 0.
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Proof. Since f(x) = u−C|x|2 is concave, the derivative of f is decreasing.
This implies that f ′ cannot have jump discontinuities upwards. �

Theorem 22. Let H be convex in p. Let u be a viscosity sub-solution of
H(Du, x) = C and let uε = u ∗ ηε be a standard smoothing. Then:

H(Duε(x), x) 6 C +O(ε), (23)

where O(ε) = sup
∣∣∂H
∂x

∣∣ ∫
Rd |y|ηε(y)dy.

Proof. Since the viscosity solutions of H(Du, x) = C are uniformly Lips-
chitz, we may assume for the purpose of this proof that ∂H

∂x is bounded.

For any x ∈ Td and any p, y ∈ Rd we have |H(p, x − y) − H(p, x)| 6
|y| sup |DxH|.

C >
∫
ηε(y)H(Du(x− y), x− y)dy >

∫
ηε(y)H(Du(x− y), x)dy −O(ε).

Now, Jensen’s inequality yields∫
ηε(y)H(Du(x− y), x)dy > H

(∫
ηε(y)Du(x− y)dy, x

)
= H(Duε(x), x),

which completes the proof. �

For the unbounded case, x ∈ Rd, the problem H(Du, x) = C (might)
have a viscosity solution (or even a regular solution) for infinitely many C’s.
Indeed, Let H(p) = |p|2, then for any P ∈ Rd the function u(x) = P · x
solves H(Du) = |P |2, i.e., C = |P |2. However for the case x ∈ Td the above
number C is unique. We will give an elementary proof of the uniqueness of
the number H.

Theorem 23. Let H be convex in p, Zd-periodic in x and ∂H
∂x is bounded.

Let C be a real number, such that H(Du, x) = C has a viscosity solution
u. Then

C = inf
ϕ:smooth

sup
x∈Td

H(Dϕ(x), x).

Proof. Let u be a viscosity solution. Inequality (23) implies

inf
ϕ:smooth

sup
x∈Td

H(Dϕ(x), x) 6 C.

To show the opposite inequality we take any smooth function ϕ(x). Due to
periodicity, the set of points where u− ϕ achieves a local minimum is non
empty. For example, one could consider a point of global minimum. Let
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xϕ be a local minimum point for u−ϕ. The definition of viscosity solution
implies H(Dϕ(xϕ), xϕ) > C. Thus, for any smooth function ϕ(x), we have

sup
x
H(Dϕ(x), x) > C.

Taking infimum over ϕ completes the proof. �

The Theorem does not assert uniqueness of the viscosity solution u. In-
deed, as the next examples illustrate, such viscosity solutions are not unique
even up to constants, see for instance [Con95] for a detailed discussion and
additional examples.

Example 1. A simple example in which there is no uniqueness of solution
is the following: let ψ : Td → R be an arbitrary C1 function, and consider
the Hamilton-Jacobi equation:

Du(Du−Dψ) = 0.

Clearly this equation admits two solutions, u = 0 and u = ψ (modulo
constants). J

Example 2. Let P ∈ R. Consider the Hamiltonian

HP (p, x) =
|P + p|2

2
− cos 2πx.

For P = 0 this corresponds to a one-dimensional pendulum with mass and
length normalized to unity. We will look for explicit the solutions of

|P +Dxu|2

2
− cos 2πx = H(P ). (24)

Proposition 24. Any solution (u,H(P )) of (24) satisfies

u(P, x) =

∫ x

0
−P + s(y)

√
2(H(P ) + cos 2πy) dy + u(P, 0), (25)

where |s(y)| = 1, with H(P ) = 1 for |P | ≤ 4
π and

P = ±
∫ 1

0

√
2(H(P ) + cos 2πy) dy, (26)

otherwise.

Proof. For a.e. x ∈ T1, the solution u(x) satisfies

(P +Dxu)2

2
= H(P ) + cos 2πx.

This implies H(P ) ≥ 1 and so,

Dxu = −P ±
√

2(H(P ) + cos 2πx), a.e. x ∈ R.
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Thus (25) holds, for |s(y)| = 1.

By Corollary 21 the only possible discontinuities in the derivative of u
are the ones that satisfy Dxu(x−)−Dxu(x+) > 0. Therefore s can change
sign from 1 to −1 at any point but jumps from −1 to 1 can happen only

when
√

2(H(P ) + cos 2πx) = 0.

If we require 1-periodicity there are two cases:

(i) if H(P ) > 1 the solution is C1 since
√

2(H(P ) + cos 2πy) is never

zero. In this case P and H(P ) satisfy (26). It is easy to check that
this equation has a solution H(P ) whenever

|P | ≥
∫ 1

0

√
2(1 + cos 2πy)dy,

that is, whenever |P | > 4
π .

(ii) Otherwise, when |P | ≤ 4π−1, H(P ) = 1 and s(x) can have a dis-
continuity. Indeed, s(x) jumps from −1 to 1 when x = 1

2 + k, with
k ∈ Z, and there is a point x0 defined by the equation∫ 1

0
s(y)

√
2(1 + cos 2πy)dy = P,

in which s(x) jumps from 1 to −1.

�

This example also shows that (24) does not have a unique solution. In-
deed, since cos 2πx is also 2-periodic, we may look for 2-periodic solutions.
In this case we find out that for |P | small, there are two points in which
the derivative can be discontinuous and we can choose freely one of them
because the only constraint is periodicity. Note, however, that the value
of H is uniquely determined and is the same whether we look for 1 or 2
periodic solutions. J

5. Duality

Let

M+
1 =

{
µ ∈M :

∫
Td×Rd

dµ = 1, µ ≥ 0
}

be the subset of the probability measures among all γ-weighted (signed)
measures. In this section we show using Fenchel-Legendre-Rockafellar’s
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theorem that

inf
µ∈M+

1

sup
ϕ∈C1(Td)

∫ (
L(x, v)−v∇ϕ

)
dµ = sup

ϕ∈C1(Td)

inf
µ∈M+

1

∫ (
L(x, v)−v∇ϕ

)
dµ.

(27)

We define the set of holonomic measures as follows:

Mhol =
{
µ ∈M :

∫
Td×Rd

v ·Dxϕ(x)dµ = 0, ∀ϕ ∈ C1(Td)
}
.

Consider the set

C =
{
ψ ∈ Cγ0 (Td × Rd) : ψ(x, v) = v ·Dxϕ(x), for some ϕ ∈ C1(Td)

}
.

(28)
We observe that

Mhol =
{
µ ∈M :

∫
Td×Rd

ψ dµ = 0, ∀ψ ∈ C
}
.

Since ϕ 7→ vDxϕ is a linear mapping, C is a convex set. Using the fact that

inf
µ∈M+

1

∫ (
L(x, v)− v · ∇ϕ

)
dµ = min

x,v

(
L(x, v)− v · ∇ϕ

)
,

we observe that the R.H.S. of (27) can be written as

sup
ϕ∈C1(Td)

inf
µ∈M+

1

∫ (
L(x, v)− v · ∇ϕ

)
dµ = sup

ψ(x,v)
f(ψ),

where f : Cγ0 (Td × Rd)→ R is given by

f(ψ) =

{
minx,v

(
L(x, v) + ψ(x, v)

)
, if ψ ∈ C,

−∞, otherwise.

and we can further decompose f as f(ψ) = g(ψ)− h(ψ), where

g(ψ) = min
x,v

(
L(x, v) + ψ(x, v)

)
,

and

h(ψ) =

{
0, if ψ ∈ C,
+∞, otherwise.

Proposition 25. The function h is convex. The function g is concave and
continuous.

Proof. Since C is a convex set, the function h is convex. The function g
is concave as it is the infimum of affine functions. It remains to show the
continuity of g.
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Let ψn → ψ in Cγ0 . Then ‖ψn‖γ and ‖ψ‖γ are uniformly bounded by
some constant C. The growth condition in v for the function L implies the
existence of R > 0 such that

min
Td×Rd

(L+ ψ̂) = min
Td×BR

(L+ ψ̂),

for all ψ̂ in Cγ0 (Td × Rd) with ‖ψ̂‖γ < C. Here BR is the ball in Rd of the
radius R centered at the origin. In BR, ψn → ψ uniformly, therefore

min
Td×Rd

(L+ ψn)→ min
Td×Rd

(L+ ψ).

�

Proposition 26. We have

h∗(µ) =

{
0, if µ ∈Mhol

+∞ otherwise,

and

g∗(µ) =

{
−
∫
Ldµ if µ ∈M+

1

−∞ otherwise.

Proof. By Proposition 25 the function h is convex. Therefore, using the
definition of the Legendre-Fenchel transform for convex functions and then
the definition of h we have

h∗(µ) = sup
ψ∈Cγ0 (Td×Rd)

(∫
ψdµ− h(ψ)

)
= sup

ψ∈C

∫
ψdµ.

If µ ∈Mhol then
∫
ψdµ = 0, for all ψ ∈ C. Hence h∗(µ) = 0 if µ ∈Mhol.

If µ 6∈ Mhol then there exists φ̂ ∈ C such that
∫
φ̂dµ 6= 0. Thus

h∗(µ) = sup
ψ∈C

∫
ψdµ ≥ sup

α∈R
α

∫
φ̂dµ = +∞.

By Proposition 25 the function g is concave. Therefore, by the definition
of the Legendre-Fenchel transform for concave functions, we have

g∗(µ) = inf
ψ∈Cγ0 (Td×Rd)

(∫
ψdµ− g(ψ)

)
.

First we prove that if µ is not a non-negative measure then g∗(µ) = −∞.
Indeed, take ψ1 > 0 such that

∫
ψ1dµ < 0. Then, for ψn = nψ1, we have∫

ψndµ→ −∞ as n→∞. Observing that g(ψ) is positive, if ψ > 0 (since
L > 1), we have

g∗(µ) 6 inf
n

{∫
ψndµ− g(ψn)

}
= −∞.
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Now, and for the rest of the proof, assume that µ > 0. We will show
that

g∗(µ) 6 −
∫
Ldµ+ inf

ψ∈Cγ0 (Td×Rd)

(∫
ψdµ−minψ

)
. (29)

Note that (29) implies g∗(µ) ≤ −
∫
Ldµ by taking ψ = 0.

To establish (29), let Ln be a sequence of functions in Cγ0 (Td × Rd)
increasing pointwise to L. Any function φ in Cγ0 (Td × Rd) can be written
as φ = ψ − Ln, for some ψ also in Cγ0 (Td × Rd). Thus

g∗(µ) = inf
ψ∈Cγ0 (Td×Rd)

(∫
(ψ − Ln)dµ− g(ψ − Ln)

)
=

−
∫
Lndµ+ inf

ψ∈Cγ0 (Td×Rd)

(∫
ψdµ−min

x,v
(ψ + L− Ln)

)
.

Since L− Ln > 0 we obtain

g∗(µ) 6 −
∫
Lndµ+ inf

ψ∈Cγ0 (Td×Rd)

(∫
ψdµ−minψ

)
.

By the Monotone Convergence Theorem
∫
Lndµ→

∫
Ldµ and we arrive at

(29).

If
∫
Ldµ = +∞ then g∗(µ) = −∞. On the other hand, if

∫
dµ 6= 1 then

inf
ψ∈Cγ0 (Td×Rd)

(∫
ψdµ−minψ

)
≤ inf

α∈R
α

(∫
dµ− 1

)
= −∞,

by choosing ψ = α, constant. Thus, if the mass of µ is not one, then (29)
implies g∗(µ) = −∞.

If
∫
Ldµ <∞ then adding and subtracting this term from the definition

of g∗(µ) we can write

g∗(µ) = −
∫
Ldµ+ inf

ψ∈Cγ0 (Td×Rd)

(∫
(L+ ψ)dµ−min

x,v
(L+ ψ)

)
.

Additionally, if
∫
dµ = 1, then we have

∫
(L+ ψ)dµ > min(L+ ψ) for each

ψ. Therefore g∗(µ) ≥ −
∫
Ldµ. �

Observe that

inf
µ∈M

(h∗(µ)− g∗(µ)) = inf
µ∈M+

1 ∩Mhol

∫
Ldµ = L.H.S. of (27) .
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We are now in position to apply the Legendre-Fenchel-Rockafellar duality
theorem with E = Cγ0 , E′ =M and g and h as above. Applying it we arrive
at (27).

5.1. Closeness remarks. In this sub section we show that M+
1 , Mhol,

and C are not only convex sets, but also they are closed sets.

Proposition 27. Both M+
1 and Mhol are closed subsets of M. The set C

is closed in Cγ0 (Td × Rd).

Proof. The set M+
1 is the intersection of a cone of nonnegative measures

(which is closed) with a kernel of a linear continuous function onM. The set
Mhol is an intersection of kernels of a family of linear continuous functions
on M.

Now we will prove that C is closed in Cγ0 (Td × Rd). Let ψn(x, v) =
v · ∇ϕn(x) be a sequence in C, ϕn ∈ C1(Td). Assume that the sequence ψn
converges in Cγ0 (Td × Rd) to a function ψ∞. We have to prove that there
is a function ϕ∞ ∈ C1(Td) such that

ψ∞ = v · ∇ϕ∞ . (30)

For any k = 1, . . . , d and n ∈ N define

ξn,k(x) = ψn(x, v̂k)

where v̂k is the unit vector in kth direction. We have ξn,k = ∂
∂xk

ϕn. The

sequence of the continuous vector fields

{ξn,1, ξn,2, . . . , ξn,d}∞n=1

satisfies the following two properties:

(1) the vector field the integral over every closed loop in Td is zero for
any n (because ξn,k = ∂

∂xk
ϕn);

(2) it converges uniformly as n→∞.

Therefore the limit {ξ∞,1, ξ∞,2, . . . , ξ∞,d} is a continuous vector field such

that the integral over every closed loop in Td is zero and ψ∞(x, v) = v ·
ξ∞(x). Fix x0 ∈ Td. The function

ϕ∞(x) =

∫ x

x0

ξ∞

is well defined, is C1 and satisfies (30). �

As a Corollary we have that h is a convex lower semicontinuous function.
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5.2. First application of duality. Using the fact that

sup
µ∈M+

1

∫ (
v · ∇ϕ(x)− L(x, v)

)
dµ = sup

x
sup
v

(
v · ∇ϕ(x)− L(x, v)

)
=

sup
x
H(∇ϕ(x), x),

inf
µ∈M+

1 ∩Mhol

∫
L(x, v)dµ(x, v) = inf

µ∈M+
1

sup
ϕ:smooth

∫ (
L(x, v)−v·∇ϕ(x)

)
dµ(x, v),

and the fact that inf
(
−(. . .)

)
= − sup(. . .) we see that (27) can be restated

as

inf
µ∈M+

1 ∩Mhol

∫
L(x, v)dµ(x, v) = − inf

ϕ
sup
x
H(∇ϕ(x), x) (31)

Definition. H = − inf
µ∈M+

1 ∩Mhol

∫
L(x, v)dµ(x, v).

Theorem 28. C = H is the unique number, for which the equation

H(Du, x) = C (32)

admits a periodic viscosity solution.

Remark. Recall, however, that the viscosity solutions to (32) are not
unique, as was discussed in the previous section.

Proof. Apply Theorem 23 and (31). �

Remark. The inequality supxH(Dϕ(x), x) > H for any smooth function
ϕ is elementary. Indeed,

sup
x
H(Dϕ(x), x) = sup

µ:prob

∫
x,v
H(Dϕ(x), x)dµ >

sup
µ:prob

holonomy

∫
x,v
H(Dϕ(x), x)dµ(x, v).

Using the inequality H(Dϕ(x), x) > v ·Dϕ(x)− L(x, v) we are done.

Remark. inf
ϕ:smooth

sup
x
H(Dϕ(x), x) 6 H.

Take any viscosity solution u of H(Du, x) = H (it exists by Thm 28).
Let uε be, as before, a standard smoothing. Applying Theorem 22 above
we have H(Duε(x), x) 6 H + o(ε).

Theorem 29. The graph from Theorem 3 can be chosen to be bounded.
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Proof. Let u = u(x) be a viscosity solution of H(Du, x) = H. From The-
orem 22 we have : Duε is uniformly bounded for ε ∈ (0, 1), that is there
exists K such that

|Duε| < K.

We also have L(x, v)− v ·Duε > −H(Duε(x), x) > −H − o(ε). Let µ be a
minimizing measure. We have:

−H =

∫
L(x, v)− v ·Duεdµ > inf

µ∈M+
1

∫
L(x, v)− v ·Duεdµ > −H − o(ε).

Let M = sup{|v| : L(x, v)−|v|K−maxx L(x, 0) 6 0}, then v(x) is bounded
by M . Indeed, assuming the contrary we have, that some positive mass of
the measure µ is in {x, v : |v| > M + δ}. If we collapse (project) this part
of measure to v = 0, then we obtain loss in action which is separated away
from zero, and would be large than o(ε), provided ε is small enough. �

6. Regularity

In this section we present (with small adaptations) the regularity results
for viscosity solutions in the support of the Mather measures by [EG01].
We should point out that the proofs of Theorems 31–37 presented here
appeared in [EG01]. For the setting of this survey, we had to add an
elementary lemma, Lemma 30, for the presentation to be self-contained, as
our definition of Mather measures differs from the one used in [EG01].

Lemma 30. Let µ be a minimizing holonomic measure. Then∫
Td×Rd

DxL(x, v)dµ = 0.

Proof. Let h ∈ Rd, consider the measure µh on Td × Rd given by∫
Td×Rd

φ(x, v)dµh =

∫
Td×Rd

φ(x+ h, v)dµ,

for all continuous and compactly supported function φ : Td × Rd → R.
Clearly, for every h, µh is holonomic. Since µ is minimizing, it follows

d

dε

∫
L(x+ εh, v)dµ

∣∣∣∣
ε=0

= 0,

that is, ∫
Td×Rd

DxL(x, v)hdµ = 0.

Since h ∈ R is arbitrary, the statement of the Lemma follows. �
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It will be convenient to define the measure µ̃ on Td × Rd as the push
forward measure of the measure µ with respect to the one to one map
(v, x) 7→ (p, x), where p = DvL(v, x). In other words we define the measure
µ̃ on Td × Rd to be∫

Td×Rd
φ(x, p)dµ̃ =

∫
Td×Rd

φ(x,DvL(x, v))dµ.

We also define projection µ̄ in Td of a measure µ in Td × Rd as∫
Td
ϕ(x)dµ̄(x) =

∫
Td×Rd

ϕ(x)dµ(x, v).

Note that, in similar way, µ̄ is also the projection of the measure µ̃. Observe
that for any smooth function ϕ(x) we have that µ̃ satisfies the following
version of the holonomy condition:∫

Td×Rd
DpH(p, x)Dxϕ(x)dµ̃ = 0,

because we can use identity (11) if p = Dv(x, v).

Theorem 31. Let u be any viscosity solution of (16), and let µ be any
minimizing holonomic measure. Then µ̄-almost everywhere, Dxu(x) exists
and p = Dxu(x), µ̃-almost everywhere.

Proof. Let u be any viscosity solution of (16). Let ηε be a standard mollifier,
uε = ηε ∗ u. By strict uniform convexity there exists γ > 0 such that for
any p, q ∈ Rd and any x ∈ Td we have

H(p, x) > H(q, x) +DpH(q, x)(p− q) +
γ

2
|p− q|2.

By Theorem 16, any viscosity solution of (16), and in particular u, is Lip-
schitz.

Recall that, by Rademacher’s theorem [Eva98], a locally Lipschitz func-
tion is differentiable Lebesgue almost everywhere. Using p = Dxu(y) and
q = Dxu

ε(x), conclude that for every point x and for Lebesgue almost every
point y:

H(Dxu(y), x) ≥ H(Dxu
ε(x), x) +DpH(Dxu

ε(x), x)(Dxu(y)−Dxu
ε(x)) +

γ

2
|Dxu

ε(x)−Dxu(y)|2.

Multiplying the previous identity by ηε(x− y) and integrating over Rd in y
yields

H(Dxu
ε(x), x) +

γ

2

∫
Rd
ηε(x− y)|Dxu

ε(x)−Dxu(y)|2dy ≤
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∫
Rd
ηε(x− y)H(Dxu(y), x)dy ≤ H +O(ε).

Let

βε(x) =
γ

2

∫
Rd
ηε(x− y)|Dxu

ε(x)−Dxu(y)|2dy.

Now observe that
γ

2

∫
Td×Rd

|Dxu
ε(x)− p|2dµ̃ ≤∫

Td×Rd
[H(Dxu

ε(x), x)−H(p, x)−DpH(p, x)(Dxu
ε(x)− p)] dµ̃ ≤∫

Td×Rd
H(Dxu

ε(x), x)dµ̃−H,

because ∫
Td×Rd

DpH(x, p)Dxu
ε(x) = 0,

and
pDpH(x, p)−H(x, p) = L(x,DpH(x, p)),

and
∫
Td×Rd L(x,DpH(x, p))dµ̃ = −H. Therefore,

γ

2

∫
Td×Rd

|Dxu
ε(x)− p|2dµ̃+

∫
Td
βε(x)dµ̄ ≤ O(ε).

Thus, for µ̄-almost every point x, βε(x) → 0. Therefore, µ̄-almost every
point is a point of approximate continuity of Dxu (see [EG92], p. 49).
Since u is semiconcave (Proposition 20), it is differentiable at points of
approximate continuity. Furthermore

Dxu
ε → Dxu

pointwise, µ̄-almost everywhere, and so Dxu is µ̄ measurable. Also we have

p = Du(x), µ̃− almost everywhere.

�

By looking at the proof the previous theorem we can also state the fol-
lowing useful result:

Corollary 32. Let ηε be a standard mollifier, uε = ηε ∗ u. Then∫
Td
|Dxu

ε −Dxu|2dµ̄ ≤ Cε,

as ε→ 0.

As a Corollary we formulate an equivalent form of Theorem 31.
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Corollary 33. Let u be any viscosity solution of (16), and let µ be any
minimizing holonomic measure. Then µ-almost everywhere, Dxu(x) exists
and

DvL(v, x) = Dxu(x) µ− almost everywhere. (33)

and

DxL(v, x) = −DxH(Dxu(x), x) µ− almost everywhere. (34)

Proof. First we observe that the measure µ̃ is the push forward measure of
the measure µ with respect to the one to one map (v, x) 7→ (p, x), where
p = DvL(v, x). Therefore an µ̃ – almost everywhere identity

F1(p, x) = F2(p, x) (p, x)-µ̃ almost everywhere

implies the µ – almost everywhere identity

F1(DvL(v, x), x) = F2(DvL(v, x), x) (v, x)-µ almost everywhere.

Thus (33) follows directly from Theorem 31.

Using (33) and the identity DxL(v, x) = −DxH(DvL(v, x), x), we arrive
at (34). �

We observe that from the previous corollary it also follows∫
Td
DpH(Dx, x)Dxudµ̄ = 0.

Indeed,∫
Td
DpH(Dxu, x)Dxudµ̄ =

∫
Td
DpH(Dx, x)Dxu

εdµ̄ +∫
Td
DpH(Dxu, x) (Dxu−Dxu

ε) dµ̄.

We have ∫
Td
DpH(Dx, x)Dxu

εdµ̄ = 0.

To handle the second term, fix δ > 0. Then∣∣∣∣∫
Td
DpH(Dxu, x) (Dxu−Dxu

ε)

∣∣∣∣ ≤ δ

∫
Td
|DpH(Dxu, x)|2dµ̄ +

1

δ

∫
Td
|Dxu−Dxu

ε|2 dµ̄.

Note that since u is Lipschitz the term DpH(Dxu, x) is bounded, and so is∫
Td |DpH(Dxu, x)|2dµ̄. Send ε→ 0, and then let δ → 0.
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Theorem 34. Let u be any viscosity solution of (16), and let µ be any
minimizing holonomic measure. Then∫

Td
|Dxu(x+ h)−Dxu(x)|2dµ̄ ≤ C|h|2.

Proof. Applying Theorem 22 we have

H(Dxu
ε(x+ h), x+ h) ≤ H + Cε.

By Theorem 31 the derivative Dxu(x) exists µ̄ almost everywhere. By
proposition 11 viscosity solution satisfies equation (16) in classical sense
at all points of differentiability. Thus H(Dxu(x), x) = H for µ̄ almost all
points x. Now observe that

Cε ≥ H(Dxu
ε(x+ h), x+ h)−H(Dxu(x), x)

= H(Dxu
ε(x+ h), x+ h)−H(Dxu

ε(x+ h), x) +H(Dxu
ε(x+ h), x)−

H(Dxu(x), x)

The term

H(Dxu
ε(x+ h), x+ h)−H(Dxu

ε(x+ h), x) =

DxH(Dxu
ε(x+ h), x)h+O(h2) =

DxH(Dxu(x), x)h+O(h2 + h|Dxu
ε(x+ h)−Dxu(x)|) ≥

DxH(Dxu(x), x)h+O(h2)− γ

4
|Dxu

ε(x+ h)−Dxu(x)|2.

Therefore, for µ̄ almost every x, we have

H(Dxu
ε(x+ h), x)−H(Dxu, x) ≤ Cε−DxH(Dxu(x), x)h +

γ

4
|Dxu

ε(x+ h)−Dxu(x)|2 + Ch2.

Since

H(Dxu
ε(x+ h), x)−H(Dxu, x) ≥ γ

2
|Dxu

ε(x+ h)−Dxu(x)|2 +

DpH(Dxu, x)(Dxu
ε(x+ h)−Dxu(x))

we have

γ

4

∫
|Dxu

ε(x+ h)−Dxu(x)|2dµ̄ ≤ Cε+ C|h|2 −
∫
DxH(Dxu(x), x)hdµ̄.

By (34) and Lemma 30 it follows∫
DxH(Dxu(x), x)hdµ̄ = −

∫
DxL(v, x)hdµ = 0.
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As ε → 0, through a suitable subsequence (since Dxu
ε(x + h) is bounded

in L2
µ̄), we may assume that Dxu

ε(x+ h) ⇀ ξ(x) in L2
µ̄, for some function

ξ ∈ L2
µ̄, and ∫

|ξ −Dxu|2dµ̄ ≤ C|h|2.

Finally, we claim that ξ(x) = Dxu(x + h) for µ̄ almost all x. This fol-
lows from Theorem 31 and the fact that for µ̄ almost all x we have ξ(x) ∈
D−x u(x + h), where D−x stands for the subdifferential. To see this, ob-
serve that by Proposition 20 u is semiconcave, therefore uε are uniformly
semiconcave, that is

uε(y + h) ≤ uε(x+ h) +Dxu
ε(x+ h)(y − x) + C|y − x|2,

where C is independent of ε. Fixing y and integrating against a non-
negative function ϕ(x) ∈ L2

µ̄ yields∫
Td

(
uε(y + h)− uε(x+ h)−Dxu

ε(x+ h)(y − x)− C|y − x|2
)
ϕ(x)dµ̄ ≤ 0

By passing to the limit we have that

u(y+h) ≤ u(x+h)+ξ(x)(y−x)+C|y−x|2 for all y and µ̄-almost all x,

that is, ξ(x) ∈ D−x u(x+ h) for µ̄-almost all x. �

Lemma 35. Let u be any viscosity solution of (16), and let µ be any
minimizing holonomic measure. Let ψ : Td ×R→ R be a smooth function.
Then ∫

Td
DpH(Dxu, x)Dx [ψ(x, u(x))] dµ̄ = 0

Proof. Clearly we have∫
Td
DpH(Dxu, x)Dx [ψ(x, uε(x))] dµ̄ = 0.

By the uniform convergence of uε to u, and L2
µ̄ convergence of Dxu

ε to Dxu,
see Corollary 32, we get the result. �

Theorem 36. Let u be any viscosity solution of (16), and let µ be any
minimizing holonomic measure. Then, for µ̄ almost every x and all h ∈ Rd,

|u(x+ h)− 2u(x) + u(x− h)| ≤ C|h|2.

Proof. Let h 6= 0 and define

ũ(x) = u(x+ h), û(x) = u(x− h).
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Consider the mollified functions ũε, ûε, where we take

0 < ε ≤ η|h|2, (35)

for small η > 0. We have

H(Dũε, x+ h) ≤ H + Cε, H(Dûε, x− h) ≤ H + Cε.

For µ̄-almost every point x, (for which Du(x) exists and therefore
H(Du(x), x) = H) we have

H(Dũε, x)− 2H(Du, x) +H(Dûε, x) 6

2Cε+H(Dũε, x)−H(Dũε, x+ h) +H(Dûε, x)−H(Dûε, x− h).

Hence
γ

2
(|Dũε −Du|2 + |Dûε −Du|2) +DpH(Du, x) · (Dũε − 2Du+Dûε)

6 C(ε+ |h|2) + (DxH(Dûε, x)−DxH(Dũε, x)) · h.

Using the inequality∣∣(DxH(p, x)−DxH(q, x)
)
·h
∣∣ 6 ∥∥∥ ∂2H∂p∂x

∥∥∥ |p− q| |h| 6 γ
4 |p−q|

2+ 1
γ

∥∥∥ ∂2H∂p∂x

∥∥∥2
|h|2 ,

where
∥∥∥ ∂2H∂p∂x

∥∥∥ = sup
p,x

sup
|z|=1,|h|=1

∑
i,j

∣∣∣zjhi ∂2H
∂pj∂xi

(p, x)
∣∣∣, we arrive at

γ

4
(|Dũε −Du|2 + |Dûε −Du|2) +DpH(Du, x) · (Dũε − 2Du+Dûε) 6

C(ε+ |h|2).

Fix now a smooth, nondecreasing, function Φ : R → R, and write φ :=

Φ′ > 0. Multiply the last inequality above by φ
(
ũε−2u+ûε

|h|2

)
, and integrate

with respect to µ̄:

γ

4

∫
Td

(|Dũε −Du|2 + |Dûε −Du|2)φ

(
ũε − 2u+ ûε

|h|2

)
dµ̄ (36)

+

∫
Td
DpH(Du, x) · (Dũε − 2Du+Dûε)φ(· · · ) dµ̄

6 C(ε+ |h|2)

∫
Td
φ(· · · ) dµ̄.

Now the second term on the left hand side of (36) equals

|h|2
∫
Rd

∫
Td
DpH(p, x) ·Dx

[
Φ

(
ũε − 2u+ ûε

|h|2

)]
dµ̄ (37)
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and thus, by Lemma 35 it vanishes. So now dropping the above term from
(36) and rewriting, we deduce∫

Td
|Duε(x+ h)−Duε(x− h)|2φ

(
uε(x+ h)− 2u(x) + uε(x− h)

|h|2

)
dµ̄

(38)

6 C(ε+ |h|2)

∫
Td
φ

(
uε(x+ h)− 2u(x) + uε(x− h)

|h|2

)
dµ̄.

We confront now a technical problem, as (38) entails a mixture of first-
order difference quotients for Duε and second-order difference quotients for
u, uε. We can however relate these expressions, since u is semiconcave.

To see this, first of all define

Eε := {x ∈ supp(µ) | uε(x+ h)− 2u(x) + uε(x− h) 6 −κ|h|2}, (39)

the large constant κ > 0 to be fixed below. The functions

ū(x) := u(x)− α

2
|x|2, ūε(x) := uε(x)− α

2
|x|2 (40)

are concave. Also a point x ∈ supp(µ̄) belongs to Eε if and only if

ūε(x+ h)− 2ū(x) + ūε(x− h) 6 −(κ+ α)|h|2. (41)

Set

f ε(s) := ūε
(
x+ s

h

|h|

)
(−|h| 6 s 6 |h|). (42)

Then f is concave, and

ūε(x+ h)− 2ūε(x) + ūε(x− h) = f ε(|h|)− 2f ε(0) + f ε(−|h|)

=

∫ |h|
−|h|

f ε
′′
(x)(|h| − |s|) ds

> |h|
∫ |h|
−|h|

f ε
′′
(s) ds (since f ε

′′
6 0)

= |h|
[
f ε
′
(|h|)− f ε′(−|h|)

]
= (Dūε(x+ h)−Dūε(x− h)) · h.

Consequently, if x ∈ Eε, this inequality and (41) together imply

2|ūε(x)− ū(x)|+ |Dūε(x+ h)−Dūε(x− h)||h| > (κ+ α)|h|2.
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Now |ūε(x) − ū(x)| 6 Cε on Td, since u is Lipschitz continuous. We may
therefore take η in (35) small enough to deduce from the foregoing that

|Dūε(x+ h)−Dūε(x− h)| > (
κ

2
+ α)|h|. (43)

But then

|Duε(x+ h)−Duε(x− h)| > (
κ

2
− α)|h|. (44)

Return now to (38). Taking κ > 2α and

φ(z) =

{
1 if z 6 −κ
0 if z > −κ.

The inequality (38) was derived for smooth functions φ. However, by re-
placing φ in (38) by a sequence φn of smooth functions increasing pointwise
to φ, and using the monotone convergence theorem, we conclude that (38)
holds for this function φ. Then we discover from (38) that

(
κ

2
− α)2|h|2µ̄(Eε) 6 C(ε+ |h|2)µ̄(Eε).

We fix κ so large that

(
κ

2
− α)2 > C + 1,

to deduce

(|h|2 − Cε)µ̄(Eε) 6 0.

Thus µ̄(Eε) = 0 if η in (35) is small enough, and this means

uε(x+ h)− 2u(x) + uε(x− h) > −κ|h|2

for µ̄-almost every point x. Now let ε→ 0:

u(x+ h)− 2u(x) + u(x− h) > −κ|h|2

µ̄-almost everywhere Since

u(x+ h)− 2u(x) + u(x− h) 6 α|h|2

owing to the semiconcavity, we have

|u(x+ h)− 2u(x) + u(x− h)| ≤ C|h|2

for µ̄-almost every point x. As u is continuous, the same inequality obtains
for all x ∈ supp(µ̄). �

Now we state and prove the main result of this section.
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Theorem 37. Let u be any viscosity solution of (16), and let µ be any
minimizing holonomic measure. Then for µ̄-almost every x, Dxu(x) exists
and for Lebesgue almost every y

|Dxu(x)−Dxu(y)| ≤ C|x− y|. (45)

Proof. First we show that

|u(y)− u(x)− (y − x) ·Dxu(x)| 6 C|x− y|2. (46)

Fix y ∈ Rd and take any point x ∈ supp(µ̄) at which u is differentiable.

According to Theorem 36 with h := y − x, we have

|u(y)− 2u(x) + u(2x− y)| 6 C|x− y|2. (47)

By semiconcavity, we have

u(y)− u(x)−Du(x) · (y − x) 6 C|x− y|2, (48)

and also

u(2x− y)− u(x)−Du(x) · (2x− y − x) 6 C|x− y|2. (49)

Use (49) in (47):

u(y)− u(x)−Du(x) · (y − x) > −C|x− y|2.
This and (48) establish (46).

Estimate (45) follows from (46), as follows. Take x, y as above. Let z be
a point to be selected later, with |x− z| 6 2|x− y|. The semiconcavity of
u implies that

u(z) 6 u(y) +Du(y) · (z − y) + C|z − y|2. (50)

Also,
u(z) = u(x) +Du(x) · (z − x) +O(|x− z|2),

u(y) = u(x) +Du(x) · (y − x) +O(|x− y|2),

according to (46). Insert these indentities into (50) and simplify:

(Du(x)−Du(y)) · (z − y) 6 C|x− y|2.
Now take

z := y + |x− y| Du(x)−Du(y)

|Du(x)−Du(y)|
to deduce (45).

Now take any point x ∈ supp(µ̄), and fix y. There exist points xk ∈
supp(µ̄) (k = 1, . . . ) such that xk → x and u is differentiable at xk. Ac-
cording to estimate (46)

|u(y)− u(xk)−Du(xk) · (y − xk)| 6 C|xk − y|2 (k = 1, . . . ).
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The constant C does not depend on k or y. Now let k → ∞. Owing to
(45) we see that {Du(xk)} converges to some vector η, for which

|u(y)− u(x)− η · (y − x)| 6 C|x− y|2.

Consequently u is differentiable at x and Du(x) = η. �

It follows from Theorem 37 that function v defined by Theorem 3 is
Lipschitz on a set of full measure µ̄. Indeed, by substituting the L.H.S. and
the R.H.S. of (33) into Hp(p, x) = Hp(p, x) in place of p’s and using (11)
we have

v(x) = DpH(Du(x), x) µ̄ almost everywhere.

We can then extend v as a Lipschitz function to the support of µ, which is
contained in the closure of this set of full measure. Note that any Lipschitz
function ϕ defined on a closed set K can be extended to a globally defined
Lipschitz function ϕ̂ in the following way: without loss of generality assume
that Lip(ϕ) = 1; define

ϕ̂(x) = inf
y∈K

ϕ(y) + 2d(x, y).

An easy exercise then shows that ϕ̂ = ϕ in K and that ϕ̂ is Lipschitz.
Therefore we may assume that v is globally defined and Lipschitz.

7. Holonomy variations

In this section we study a class of variations that preserve the holonomy
constraint. These variations will be used in the last section of this paper
to establish the invariance under the Euler-Lagrange flow of minimizing
holonomic measures.

Let ξ : Td → Rd, ξ(x) be a C1 vector field on Td. Let Φ(t, x) be the flow
by ξ, i.e.,

Φ(0, x) = x, and ∂
∂tΦ(t, x) = ξ

(
Φ(t, x)

)
.

Consider the prolongation of ξ to Td × Rd, which is the vector field on
Td × Rd given by

ẋk(x, v) = ξk(x) , v̇k(x, v) = vi
∂ξk
∂xi

(x) . (51)

Lemma 38. The flow of (51) is given by

Xk(t, x, v) = Φk(t, x) , Vk(t, x, v) = vs
∂Φk

∂xs
(t, x). (52)
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Proof. Since the X-part of the flow coincides with the Φ-flow, it only re-
mains to show that

V (0, x, v) = v , and ∂
∂tV (t, x, v) = v̇

(
X(t, x, v), V (t, x, v)

)
.

The first statement (V (0, x, v) = v) is clear since the map x 7→ Φ(0, x) is
the identity map. The second statement can be rewritten as

∂
∂tVk(t, x, v) = Vi(t, x, v)

∂ξk
∂xi Φ(t,x)

.

A simple computations yields

∂
∂tVk(t, x, v) = vs

∂
∂xs

(
∂
∂tΦk(t, x)

)
= vs

∂
∂xs

(
ξk
(
Φ(t, x)

))
=

vs
∂ξk
∂xi Φ(t,x)

∂Φi

∂xs (t,x)

= Vi(t, x, v)
∂ξk
∂xi Φ(t,x)

,

which is the desired identity. �

For any real number t and any function ψ(x, v), define a new function
ψt as follows

ψt(x, v) = ψ
(
X(t, x, v), V (t, x, v)

)
. (53)

Thus the flow (52) generates the flow on space of functions ψ(x, v) given
by (53).

Lemma 39. The set C, defined in (28), is invariant under the flow given
by (53).

Proof. Let g ∈ C1(Td) be such that ψ(x, v) = vi
∂
∂xi
g(x). Let gt denote the

flow by Φ of the function g, i.e., gt(x) = g
(
Φ(t, x)

)
. We claim that for any

real number t we have

ψt(x, v) = vi
∂

∂xi
gt(x),

where ψt is given by (53). Indeed,

ψt(x, v) = Vk(t, x, v)
∂g

∂xk X(t,x,v)

= vs
∂g

∂xk Φ(t,x)

∂Φk

∂xs (t,x)

=

vs
∂

∂xs

(
g
(
Φ(t, x)

))
= vs

∂

∂xs
gt(x),

and so the Lemma is proven. �
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The flow on functions (53) generates the flow on measures: (t, µ) 7→ µt,
where ∫

ψdµt =

∫
ψtdµ. (54)

Lemma 40. The flow (54) preserves the holonomy constraint.

Proof. Let µ be a holonomic measure. We have to prove that µt is also a
holonomic, i.e.,

∫
ψdµt = 0 for any ψ ∈ C. This is clear since the flow (53)

preserves the set C. �

Theorem 41. Let µ be a minimizing measure for the action (3), subject
to the holonomy constraint. Then for any C1 vector field ξ : Td → Rd we
have ∫

∂L

∂xs
ξs +

∂L

∂vs
vk

∂
∂xk

ξsdµ = 0. (55)

Proof. Let µt be the flow generated from µ by (54). Relation (55) expesses
the fact d

dt

(∫
L(x, v)dµt

)
t=0

= 0. �

8. Invariance

In this section we present a new proof of the invariance under the Euler-
Lagrange flow of minimal holonomic measures.

Lemma 42. Let µ be a measure on a manifold M . Let χ be a smooth vector
field on M . The measure µ is invariant with respect to the flow generated by
the vector field χ iff for any smooth compactly supported function ξ : M → R
we have ∫

M
∇ξ · χdµ = 0.

Proof. Let Φt be the flow, generated by the vector field χ. Then if µ is
invariant under Φt, for any smooth compactly supported function ξ(x) and
any t > 0 we have ∫

ξ
(
Φt(x)

)
− ξ(x)dµ = 0.

By differentiating with respect to t, and setting t = 0, we obtain the “only
if” part of the theorem.

To establish the converse, we have to prove that for any t the measure
µt is well-defined as

µt(S) = µ
(
(Φt)

−1(S)
)
.

and coincides with µ.
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By the Riesz representation theorem it is sufficient to check that the
identity ∫

ξdµ =

∫
ξdµt

holds for any continuous function ξ (vanishing at ∞). Any continuous
function can be uniformly approximated by smooth functions. Therefore it
is sufficient to prove the above identity for smooth functions ξ with compact
support.

Assume, without loss of generality, that ξ(x) is a C2-smooth function.
Fix t > 0. We have to prove that∫

ξ
(
Φt(x)

)
− ξ(x)dµ = 0.

We have∫
ξ
(
Φt(x)

)
− ξ(x)dµ =

N−1∑
k=0

∫
ξ
(
Φt(k+1)/N (x)

)
− ξ
(
Φtk/N (x)

)
dµ =

N−1∑
k=0

∫
ξk
(
Φt/N (x)

)
− ξk(x)dµ ,

where ξk(x) = ξ
(
Φtk/N (x)

)
N−1∑
k=0

∫
ξk
(
Φt/N (x)

)
− ξk(x)dµ =

N−1∑
k=0

∫
∇ξk(x) ·

(
Φt/N (x)− x

)
+O( t

N2 )dµ =

=
N−1∑
k=0

∫
∇ξk(x) ·

(
t
Nχ(x) +O( t

N2 )
)

+O( t
N2 )dµ =

t
N

N−1∑
k=0

∫
∇ξk(x) · χ(x)dµ+O( t

N ) = O( t
N ).

Taking the limit N →∞ we complete the proof. �

Now turn to the case where the manifold M is Td×Rd with coordinates
(x, v). In what follows ( )−1

js denotes the j, s entry of the inverse matrix. We
will only use this notation for symmetric matrices, thus, this notation will
not lead to any ambiguity. Before stating and proving the main Theorem
of this section, we will prove an auxiliary lemma.
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Lemma 43. Let µ be a minimal holonomic measure. Let vε(x) be any
smooth function. Let φ(x, v) be any smooth compactly supported function.
Then∫

vk
∂φ

∂xk

(
x, vε(x)

)
+

∂φ

∂vj

(
x, vε(x)

)(∂2L

∂2v

)−1

js

(
x, vε(x)

)( ∂L
∂xs

(x, v)− vk
∂2L

∂xk∂vs

(
x, vε(x)

))
dµ =∫

vk
∂

∂xk

(
φ
(
x, vε(x)

))
dµ−

∫
vk

∂

∂xk

( ∂L
∂vs

(
x, vε(x)

)
Ẋε
s

)
dµ+∫

vk

( ∂L
∂vs

(
x, vε(x)

)
− ∂L

∂vs
(x, v)

) ∂

∂xk

(
Ẋε
s

)
dµ, (56)

where Ẋε
s is a function of x only (does not depend on v), and is defined as

follows:

Ẋε
s(x) =

∂φ

∂vj

(
x, vε(x)

)(∂2L

∂2v

)−1

js

(
x, vε(x)

)
.

Remark. We will only use this lemma for the case when vε is the stan-
dard smoothing of the function v(x), that is, vε = ηε ∗ v, where ηε is a
standard mollifier. The function v(x) is the function whose graph contains
the support of µ, given in Theorem 3. This explains the notation vε.

Proof. This Lemma is based on Theorem 41. In this proof and bellow vε

stands for the function vε(x). We have:

vk
∂φ

∂xk

(
x, vε(x)

)
= vk

∂

∂xk

(
φ
(
x, vε(x)

))
− vk

∂φ

∂vj

(
x, vε(x)

) ∂vεj
∂xk

(x).

Rewrite the last term:

vk
∂φ

∂vj
(x, vε(x))

∂vεj
∂xk

(x) = vk
∂φ
∂vj

(x, vε)
(
∂2L
∂2v

)−1

js
(x, vε) ∂2L

∂vs∂vq
(x, vε)

∂vεq
∂xk

(x)

= vkẊ
ε
s(x) ∂2L

∂vs∂vq
(x, vε)

∂vεq
∂xk

(x).

Plug these two lines into (56). And therefore we reduce (56) to∫
Ẋε
s(x)

(
∂L

∂xs
(x, v)− vk

( ∂2L

∂xk∂vs
(x, vε) +

∂2L

∂vs∂vq
(x, vε)

∂vεq
∂xk

))
dµ =

−
∫
vk

∂

∂xk

( ∂L
∂vs

(x, vε)Ẋε
s

)
dµ+

∫
vk

( ∂L
∂vs

(x, vε)− ∂L
∂vs

(x, v)
) ∂

∂xk

(
Ẋε
s

)
dµ.

(57)
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Using the chain rule in the LHS and the Leibniz rule in the RHS we further
reduce (57) to ∫

Ẋε
s

(
∂L

∂xs
(x, v)− vk

∂

∂xk

( ∂L
∂vs

(x, vε)
))

dµ =

−
∫
vkẊ

ε
s

∂

∂xk

( ∂L
∂vs

(x, vε)
)
dµ−

∫
vk
∂L

∂vs
(x, v)

∂

∂xk

(
Ẋε
s

)
dµ.

Noting the cancellation of the term
∫
vkẊ

ε
s
∂
∂xk

(
∂L
∂vs

(x, vε)
)
dµ, we see that

the last identity is equivalent to (55) with ξs(x) = Ẋε
s(x). �

Theorem 44. Let µ be a minimizing holonomic measure. Then µ is in-
variant under the Euler-Lagrange flow.

Proof. By Lemma 42 we have to prove that for any smooth compactly
supported function φ(x, v)∫

vk
∂φ

∂xk
+
∂φ

∂vj

(
∂2L

∂2v

)−1

js

[
∂L

∂xs
− vk

∂2L

∂xk∂vs

]
dµ = 0, (58)

where ( )−1
js stands for the j, s entry of the inverse matrix.

The idea of the proof is first to rewrite (58) in an equivalent form and
then apply an approximation argument. Since µ is supported by the graph
v = v(x) we will change the x, v arguments with x,v(x) for the following

four types of functions ∂φ
∂xk

, ∂φ
∂vj

,
(
∂2L
∂2v

)−1

js
, and ∂2L

∂xk∂vs
, occuring in (58):∫

vk
∂φ

∂xk

(
x,v(x)

)
+

∂φ

∂vj

(
x,v(x)

)(∂2L

∂2v

)−1

js

(
x,v(x)

)( ∂L
∂xs

(x, v)− vk
∂2L

∂xk∂vs

(
x,v(x)

))
dµ = 0.

(59)

To complete the proof of the theorem, we use Lemma 43. The first and
second integrals in the RHS of (56) are zero due to the holonomy constraint.
The third integral in the RHS of (56) tends to zero as ε → 0, because

|vε(x)− v(x)| < cε and therefore |vε(x)− v| < cε µ-a.e., and because Ẋε
s is

uniformly Lipschitz and hence ∂xkẊ
ε
s is uniformly bounded. Therefore the

LHS of (56) tends to zero as ε→ 0.
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But the LHS of (56) also tends to the LHS of (59) as ε → 0. Indeed,
since v(x) is a Lipschitz vector field we have

vε(x)→ v(x) (uniformly) and
∂vε(x)

∂x
is uniformly bounded.

Moreover for any smooth function Ψ(x, v) we have

Ψ
(
x, vε(x)

)
→ Ψ

(
x,v(x)

)
(uniformly)

and
∂

∂x

(
Ψ
(
x, vε(x)

))
is uniformly bounded.

Also note that for µ almost all (x, v) we have v = v(x). Therefore the
Theorem is proven. �
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