A Class of Topological Foliations on S^2 That Are Topologically Equivalent to Polynomial Vector fields

Carlos Gutierrez¹

Abstract. Let \mathcal{F} be an oriented topological foliation on $S^2 = \{(x, y, z) \in \mathbb{R}^3; x^2 + y^2 + z^2 = 1\}$ having only a finite number of singularities. If \mathcal{F} has only a finite number of closed orbits and satisfies one additional condition, then it is shown that \mathcal{F} is topologically equivalent to (the foliation induced by) a polynomial vector field.

1. Introduction

In this note we extend the main result of Schecter-Singer [4] from the C^1 -class to the C^0 -class. While the statement of our result is a little more general than that of [4], when we restrict to the C^1 -class, the proofs given in [4] apply to the situation stated here (see Remark 2.1 below). Besides extending to the C^0 -topology, we wanted to present, in a concise way, this very nice result of Schecter-Singer whose complete statement takes the first 16 pages of the referred article. We must say that this work depends on the results and arguments given in [4].

Two (one-dimensional) oriented topological foliations \mathcal{F}_1 and \mathcal{F}_2 , with or without singularities, defined on 2-manifolds M_1 and M_2 , respectively, with corresponding set of singularities $S_1 \subset M_1$ and $S_2 \subset M_2$ are called topologically equivalent if there is a homeomorphism $h: M_1 \to M_2$ that takes S_1 onto S_2 and sends orbits (i.e. leaves) of \mathcal{F}_1 onto orbits of \mathcal{F}_2 , preserving the direction of the orbits.

¹Partially supported by FAPESP Grant 03/03107-9 and by CNPq Grants #470957/2006-9 and #306328/2006-2, Brazil.

²⁹

In this paper, we consider a class of oriented topological foliation, with singularities, on S^2 that are topologically equivalent to (the foliations induced by) polynomial vector fields. Here $S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$. "Vector field on S^2 " always means a tangent vector field to S^2 ; a polynomial vector field on S^2 is, in addition, one each of whose coordinates is a polynomial in x, y, z.

Isolated singularities p and q of oriented topological foliations \mathcal{F}_1 and \mathcal{F}_2 on 2-manifolds M and N are called *topologically equivalent* if there are neighborhoods U and V of p and q such that $\mathcal{F}_1|_U$ is topologically equivalent to $\mathcal{F}_2|_V$ via a homeomorphism that takes p to q.

Orient S^2 by its unit outer normal vector field. In this paper, an isolated singularity p of an oriented topological foliation \mathcal{F} on S^2 is said to be of finite type if (i) it is not topologically equivalent to a node; (ii) the local phase portrait of p is the union of finitely many hyperbolic, elliptic and parabolic sectors in the sense of [1, page 315]; in particular the elliptic sectors have no hyperbolic parts and the hyperbolic sectors have no elliptic parts ([3, Chapter VII – page 161]).

2. Singularities of finite type

Let p be an isolated singularity of an oriented topological foliation of finite type \mathcal{F} on S^2 . Then p has arbitrarily small *canonical neighborhoods* homeomorphic to compact discs whose boundaries are circles having the least possible number of tangencies with the foliation \mathcal{F} . In all figures, Cwill denote one of these circles [1, pp. 313-314], [3, Chapter VII – page 161]; see Fig. 1.

The restrictions of \mathcal{F} to any two canonical neighborhoods of p are topologically equivalent. There is a familiar division of any canonical neighborhood of p into a finite number of elliptic, hyperbolic, and parabolic sectors [1, Chap. 8]; see Fig. 1. If γ is an orbit of \mathcal{F} , we shall denote by $\gamma(t)$ an arbitrary parametrization of γ , with t varying in \mathbb{R} and such that, for increasing t, $\gamma(t)$ moves in conformity with the orientation of \mathcal{F} . The definitions below do no depend on the particular parametrization $\gamma(t)$ of γ . An α -(resp. ω -)separatrix at p is a semiorbit $\gamma(t)$ of \mathcal{F} that approaches p as $t \to -\infty$ (resp. as $t \to \infty$) and that bounds a hyperbolic sector at p. We shall use the shorter expression separatrix to refer to an orbit of \mathcal{F} that includes an α - or ω - separatrix at any singularity. If $\gamma = \gamma(t)$ is the orbit of \mathcal{F} that passes through p at t = 0, then q belongs to the α -limit set (resp. ω -limit set) of p if and only if there is a sequence $t_n \to -\infty$ (resp. $t_n \to \infty$) such that $||\gamma(t_n) - q|| \to 0$. A limit set K is the α - or ω -limit set of some

point; a limit set is always a compact connected union of orbits. Moreover, if \mathcal{F} has only a finite number of singularities and closed orbits, then by the Poincaré Bendixson Theorem, each limit set of \mathcal{F} is either a singularity or a single closed orbit or else a compact connected union of singularities and orbits that are α -separatrices at one end and ω -separatrices at the other. A limit set of the latter type is called a *separatrix cycle*. If Γ is an attracting separatrix cycle (resp. a repelling separatrix cycle), there exists an open cylinder A such that $A \cap \Gamma = \emptyset$, $\Gamma \subset \overline{A}$, and for all $p \in A$, the ω -limit set of p is Γ (resp. the α -limit set of p is Γ).

FIGURE 1. E=elliptic sector, H=hyperbolic sector, P=parabolic sector, σ =separatrix.

Let $S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$. Given an subinterval I of $[0, \infty)$ we shall denote by

$$I \cdot S^1 = \{(ax, ay) : a \in I, (x, y) \in S^1\}$$

The set $1 \cdot S^1$ will be simply denoted by S^1 . An oriented topological foliation \mathcal{F} over $(0,2) \cdot S^1$ is said to be of type 1 (and degree $s \in \mathbb{N} \setminus \{0\}$) if (i) the terms of the sequence $\{p_k = (\cos(2\pi(k-1)/s), \sin(2\pi(k-1)/s)) : k = 1, 2, \ldots, s\}$ of S^1 make up the set S of singularities of \mathcal{F} ; (ii) every such singularity p_k is topologically equivalent to either a hyperbolic saddle or to a node, and (iii) $S^1 \setminus S$ is made up of (full) orbits of \mathcal{F} . We shall say that (p_1, p_2, \ldots, p_s) is the sequence of singularities of \mathcal{F} .

Let \mathcal{F} be an oriented topological foliation on S^2 . If p is an isolated singularity of finite type, there exists an open neighborhood V of p and a type one foliation \mathcal{F}_1 on $(0,2) \cdot S^1$ such that, for some $\varepsilon > 0$, $\mathcal{F}_1|_{(1,1+\varepsilon)\cdot S^1}$ is

topologically equivalent to $\mathcal{F}|_{V\setminus\{p\}}$. Since $\mathcal{F}_1|_{S^1}$ is a one-dimensional oriented foliation having only attracting and repelling singularities, it (and so \mathcal{F}_1) has an even number *s* of singularities. The foliation \mathcal{F}_1 will be said to be a topological blown up of *p*. Let (p_1, p_2, \ldots, p_s) be the sequence of singularities of \mathcal{F}_1 . The saddle-node sequence of $(\mathcal{F}_1, (p_1, p_2, \cdots, p_s))$, is the sequence of *s* symbols from the set $\{S_\alpha, S_\omega, N_\alpha, N_\omega\}$. The *j*th symbol is determined by the behavior of \mathcal{F}_1 in $[1, 2) \cdot S^1$ near p_j . The *j*th symbol of the saddle-node sequence is

- S_{α} (resp. S_{ω}) if there are two hyperbolic sectors of \mathcal{F}_1 at p_j in $[1,2) \cdot S^1$, bounded by S^1 and an α (resp. ω -) separatrix at p_j ;
- N_α (resp. N_ω) if a neighborhood of p_j in [1,2). S¹ is the union of negative (resp. positive) semiorbits of F₁ that converge to p_j.

The saddle-node sequence of $(\mathcal{F}_1, (p_1, p_2, \cdots, p_s))$, will be said to be a saddle-node sequence of p. The saddle-node cycle of a singularity is just the saddle-node sequence thought of as a cycle: the first term in the sequence follows the last. In the following lemma, which is immediate, if δ denotes α (resp. denotes ω), then δ^* will denote ω (resp. will denote α).

LEMMA 2.1. Let \mathfrak{F} be a topological foliation on S^2 having an isolated singularity p of finite type. Let \mathfrak{F}_1 be a topological blown up of p and let (p_1, p_2, \ldots, p_s) be the sequence of singularities of \mathfrak{F}_1 . Let $\Sigma = (\sigma_1, \sigma_2, \cdots, \sigma_s)$, be the saddle-node sequence of $(\mathfrak{F}_1, (p_1, p_2, \cdots, p_s))$. Then, the first symbol in a saddle-node cycle $\Sigma = (\sigma_1, \sigma_2, \cdots, \sigma_s)$, of a finite type singularity p, can be taken to be S_α or N_ω . Moreover, for $\delta \in \{\alpha, \omega\}$,

- (1) S_{δ} (resp. N_{δ}) is always followed by S_{δ^*} or N_{δ} (resp. by S_{δ} or N_{δ^*}).
- (2) Each pair of consecutive terms σ_i, σ_{i+1} of the form S_{δ}, S_{δ^*} corresponds to exactly one hyperbolic sector $\text{Sec}(\sigma_i, \sigma_{i+1})$ of p. See Fig. 2.
- (3) Each pair of consecutive terms σ_i, σ_{i+1} of the form N_{δ}, N_{δ^*} corresponds to exactly one elliptic sector $\operatorname{Sec}(\sigma_i, \sigma_{i+1})$ of p;
- (4) Let $\sigma_{i+1}, \dots, \sigma_{i+k}$ be a subsequence of Σ such that (i) $\sigma_{i+1}, \sigma_{i+k} \in \{S_{\delta^*}, N_{\delta^*}\}$ and, (ii) every term $\sigma_{i+2}, \dots, \sigma_{i+k-1}$ belongs to $\{S_{\delta}, N_{\delta}\}$ (and so $S'_{\delta}s$ and $N'_{\delta}s$ alternate). Then

(4.1) if $k \geq 3$ is odd and $\operatorname{Sec}(\sigma_{i+1}, \sigma_{i+2})$, $\operatorname{Sec}(\sigma_{i+k-1}, \sigma_{i+k})$ are elliptic then $\sigma_{i+1}, \dots, \sigma_{i+k}$ corresponds to exactly one parabolic sector $\operatorname{Sec}(\sigma_{i+1}, \dots, \sigma_{i+k})$ separating the referred two elliptic sectors. See Fig. 3.

(4.2) if $k \ge 4$ is even and one between $\operatorname{Sec}(\sigma_{i+1}, \sigma_{i+2})$, $\operatorname{Sec}(\sigma_{i+k-1}, \sigma_{i+k})$ is elliptic and the other hyperbolic, then $\sigma_{i+1}, \cdots \sigma_{i+k}$ corresponds to exactly one parabolic sector $\operatorname{Sec}(\sigma_{i+1}, \cdots \sigma_{i+k})$ separating the referred two sectors. See Fig. 4.

(4.3) if $k \geq 5$ is odd and $\operatorname{Sec}(\sigma_{i+1}, \sigma_{i+2})$, $\operatorname{Sec}(\sigma_{i+k-1}, \sigma_{i+k})$ are hyperbolic then $\sigma_{i+1}, \dots, \sigma_{i+k}$ corresponds to exactly one parabolic sector $\operatorname{Sec}(\sigma_{i+1}, \dots, \sigma_{i+k})$ separating the referred two hyperbolic sectors. See Fig. 5.

(5) The topological blown up \mathcal{F}_1 of p can be taken so that, for any parabolic sector P of p, and modulo the restrictions imposed by (4) above, we may select the length k of the subsequence $\sigma_{i+1}, \cdots \sigma_{i+k}$ of Σ which satisfies $P = \text{Sec}(\sigma_{i+1}, \cdots \sigma_{i+k})$.

São Paulo J.Math.Sci. 2, 1 (2008), 29-35

We shall say that the topological blown up \mathcal{F}_1 of the singularity p as above is *tight* if the subsequences of Σ associated to parabolic sectors have lengths 3,4 and 5 according as they correspond to the situations considered in (4.1), (4.2) and (4.3), respectively.

Let \mathcal{F} be a oriented topological foliation on S^2 having finitely many singularities, each of which is either of finite type or topologically equivalent to a node. Let $\{p_1, p_2, \dots, p_s\}$ be the singularities of \mathcal{F} of finite type. For each such singularity p_i , we consider a topological blown up \mathcal{F}_i of p_i and construct a corresponding saddle-node sequence $\Sigma_i = \sigma_{i1}\sigma_{i2}, \dots, \sigma_{im_i}$ as above. Set $d_i = (m_i + 2)/2$. Each separatrix cycle K of \mathcal{F} corresponds to a cycle C_K of some of the σ_{ij} . Any σ_{ij} in such a cycle is an S_α or an S_ω . Let \mathcal{L} denote the set of all σ_{ij} such that $\sigma_{ij} \in \{S_\alpha, S_\omega\}$ and $\sigma_{ij+di-1} \in \{S_\alpha, S_\omega\}$. Here the second subscript is mod m_i . We say $(\mathcal{F}, (\mathcal{F}_1, \mathcal{F}_2, \dots, \mathcal{F}_s))$ satisfies the separatrix cycle condition provided there is a function $f(\sigma_{ij})$ from \mathcal{L} to the positive reals such that

- (F1) $f(\sigma_{ij}) = f(\sigma_{ij+d_i-1})$ if $d_i 1$ is even; $f(\sigma_{ij}) = [f(\sigma_{ij+d_i-1})]^{-1}$ if $d_i 1$ is odd.
- (F2) For every one-sided limit set K of \mathcal{F} that is a separatrix cycle, either (1) all σ_{ij} in C_K are in \mathcal{L} and $\prod_{\sigma_{ij} \in C_K} f(\sigma_{ij}) > 1$ (resp. < 1) if K is attracting (resp. repelling); or
 - (2) some σ_{ij} in C_K are not in \mathcal{L} ; if K is attracting (resp. repelling), all such σ_{ij} are S_{α} 's (resp. S_{ω} 's).

Our main result is

THEOREM 2.1. Let \mathcal{F} be a one-dimensional oriented topological foliation on S^2 such that

- (H1) it has only a finite number of closed orbits and it has finitely many singularities; every singularity is either of finite type or topologically equivalent to a node;
- (H2) if p_1, p_2, \dots, p_s , are the finite type singularities of \mathfrak{F} , then, for every such p_i there exists a topological blown up \mathfrak{F}_i of p_i such that $(\mathfrak{F}, (\mathfrak{F}_1, \mathfrak{F}_2, \dots, \mathfrak{F}_s))$ satisfies the separatrix cycle condition.

Then \mathfrak{F} is topologically equivalent to a polynomial vector field.

Remark 2.1. S. Schecter and M. F. Singer state and prove the above theorem in the case that \mathcal{F} is induced by a C^1 -vector field and every \mathcal{F}_i is a tight blown up of p_i . Nevertheless, within the C^1 -class, their proof applies to the situation stated here. This fact was observed in [4, Example 3 – page 423].

The proof of the following proposition follows immediately from the Smoothing Theorem and the Smoothing Corollary of [2].

Proposition 2.1. Let \mathcal{F} be a continuous one dimensional orientable foliation with singularities on the 2-sphere S^2 . If the set of singularities of \mathcal{F} is compact, then there exists a C^{∞} vector field X on S^2 which is topologically equivalent to \mathcal{F} .

Proof of Theorem 2.1. It follows from Proposition 2.1 that the exists a smooth vector field Y topologically equivalent to \mathcal{F} .

By Schecter-Singer main result [4] (see Remark 2.1) Y is topologically equivalent to a polynomial vector field \Box

References

- [1] A. A. Andronov et al., *Qualitative Theory of Second Order Dynamical Systems*. John Wiley and Sons. Inc., New York, (1973).
- C. Gutierrez. Smoothing continuous flows on two-manifolds and recurrences. Ergod. Th. and Dyn. Sys. (1986), 6, 17-44
- [3] P. Hartman. Ordinary Differential Equations. John Wiley and Sons. Inc. (1964).
- [4] Stephen Schecter and Michael F. Singer. A Class of Vectorfields on S² That Are Topologically Equivalent to Polynomial Vectorfields. Journal of Differential Equations 57, 406-435 (1985)