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A Class of Topological Foliations on S2

That Are Topologically Equivalent to Polynomial
Vector fields

Carlos Gutierrez1

Abstract. Let F be an oriented topological foliation on
S2 = {(x, y, z) ∈ R

3; x2 + y2 + z2 = 1} having only a finite number of
singularities. If F has only a finite number of closed orbits and satis-
fies one additional condition, then it is shown that F is topologically
equivalent to (the foliation induced by) a polynomial vector field.

1. Introduction

In this note we extend the main result of Schecter-Singer [4] from the

C1-class to the C0-class. While the statement of our result is a little more
general than that of [4], when we restrict to the C1-class, the proofs given
in [4] apply to the situation stated here (see Remark 2.1 below). Besides

extending to the C0−topology, we wanted to present, in a concise way, this
very nice result of Schecter-Singer whose complete statement takes the first
16 pages of the referred article. We must say that this work depends on
the results and arguments given in [4].

Two (one-dimensional) oriented topological foliations F1 and F2, with
or without singularities, defined on 2–manifolds M1 and M2, respectively,
with corresponding set of singularities S1 ⊂ M1 and S2 ⊂ M2 are called
topologically equivalent if there is a homeomorphism h : M1 → M2 that
takes S1 onto S2 and sends orbits (i.e. leaves) of F1 onto orbits of F2,
preserving the direction of the orbits.

1Partially supported by FAPESP Grant 03/03107-9 and by CNPq Grants
#470957/2006–9 and #306328/2006–2, Brazil.
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In this paper, we consider a class of oriented topological foliation, with
singularities, on S2 that are topologically equivalent to (the foliations in-

duced by) polynomial vector fields. Here S2 = {(x, y, z) ∈ R
3 : x2 + y2 +

z2 = 1}. “Vector field on S2” always means a tangent vector field to S2; a

polynomial vector field on S2 is, in addition, one each of whose coordinates
is a polynomial in x, y, z.

Isolated singularities p and q of oriented topological foliations F1 and
F2 on 2–manifolds M and N ate called topologically equivalent if there are
neighborhoods U and V of p and q such that F1|U is topologically equivalent
to F2|V via a homeomorphism that takes p to q.

Orient S2 by its unit outer normal vector field. In this paper, an isolated
singularity p of an oriented topological foliation F on S2 is said to be of
finite type if (i) it is not topologically equivalent to a node; (ii) the
local phase portrait of p is the union of finitely many hyperbolic, elliptic
and parabolic sectors in the sense of [1, page 315]; in particular the elliptic
sectors have no hyperbolic parts and the hyperbolic sectors have no elliptic
parts ([3, Chapter VII – page 161]).

2. Singularities of finite type

Let p be an isolated singularity of an oriented topological foliation of
finite type F on S2. Then p has arbitrarily small canonical neighborhoods
homeomorphic to compact discs whose boundaries are circles having the
least possible number of tangencies with the foliation F. In all figures, C
will denote one of these circles [1, pp. 313-314], [3, Chapter VII – page
161]; see Fig. 1.

The restrictions of F to any two canonical neighborhoods of p are topo-
logically equivalent. There is a familiar division of any canonical neighbor-
hood of p into a finite number of elliptic, hyperbolic, and parabolic sectors
[1, Chap. 8]; see Fig. 1. If γ is an orbit of F, we shall denote by γ(t)
an arbitrary parametrization of γ, with t varying in R and such that, for
increasing t, γ(t) moves in conformity with the orientation of F. The def-
initions below do no depend on the particular parametrization γ(t) of γ.
An α-(resp. ω-)separatrix at p is a semiorbit γ(t) of F that approaches p
as t → −∞ (resp. as t → ∞) and that bounds a hyperbolic sector at p.
We shall use the shorter expression separatrix to refer to an orbit of F that
includes an α- or ω- separatrix at any singularity. If γ = γ(t) is the orbit
of F that passes through p at t = 0, then q belongs to the α-limit set (resp.
ω-limit set) of p if and only if there is a sequence tn → −∞ (resp. tn → ∞)
such that ||γ(tn) − q|| → 0. A limit set K is the α- or ω-limit set of some
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point; a limit set is always a compact connected union of orbits. Moreover,
if F has only a finite number of singularities and closed orbits, then by the
Poincaré Bendixson Theorem, each limit set of F is either a singularity or
a single closed orbit or else a compact connected union of singularities and
orbits that are α-separatrices at one end and ω-separatrices at the other. A
limit set of the latter type is called a separatrix cycle. If Γ is an attracting
separatrix cycle (resp. a repelling separatrix cycle), there exists an open

cylinder A such that A ∩ Γ = ∅, Γ ⊂ A, and for all p ∈ A, the ω−limit set
of p is Γ (resp. the α−limit set of p is Γ).
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Figure 1. E=elliptic sector, H=hyperbolic sector, P=parabolic
sector, σ=separatrix.

Let S1 = {(x, y) ∈ R
2 : x2 + y2 = 1}. Given an subinterval I of [0,∞)

we shall denote by

I � S1 = {(ax, ay) : a ∈ I, (x, y) ∈ S1}
The set 1�S1 will be simply denoted by S1. An oriented topological foliation
F over (0, 2) � S1 is said to be of type 1 (and degree s ∈ N \ {0}) if (i) the
terms of the sequence {pk = (cos(2π(k − 1)/s), sin(2π(k − 1)/s)) : k =

1, 2, . . . , s} of S1 make up the set S of singularities of F; (ii) every such
singularity pk is topologically equivalent to either a hyperbolic saddle or to
a node, and (iii) S1 \S is made up of (full) orbits of F. We shall say that
(p1, p2, . . . , ps) is the sequence of singularities of F.

Let F be an oriented topological foliation on S2. If p is an isolated singu-
larity of finite type, there exists an open neighborhood V of p and a type
one foliation F1 on (0, 2) � S1 such that, for some ε > 0, F1|(1,1+ε)�S1 is
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topologically equivalent to F|V \{p}. Since F1|S1 is a one–dimensional ori-

ented foliation having only attracting and repelling singularities, it ( and
so F1) has an even number s of singularities. The foliation F1 will be said
to be a topological blown up of p. Let (p1, p2, . . . , ps) be the sequence of
singularities of F1. The saddle-node sequence of (F1, (p1, p2, · · · , ps)), is the
sequence of s symbols from the set {Sα, Sω, Nα, Nω}. The jth symbol is

determined by the behavior of F1 in [1, 2) � S1 near pj. The jth symbol of
the saddle-node sequence is

• Sα (resp. Sω) if there are two hyperbolic sectors of F1 at pj in

[1, 2) · S1, bounded by S1 and an α- (resp. ω-) separatrix at pj ;

• Nα (resp. Nω) if a neighborhood of pj in [1, 2) � S1 is the union of
negative (resp. positive) semiorbits of F1 that converge to pj .

The saddle-node sequence of (F1, (p1, p2, · · · , ps)), will be said to be a
saddle-node sequence of p. The saddle-node cycle of a singularity is just the
saddle-node sequence thought of as a cycle: the first term in the sequence
follows the last. In the following lemma, which is immediate, if δ denotes
α (resp. denotes ω), then δ∗ will denote ω (resp. will denote α).

Lemma 2.1. Let F be a topological foliation on S2 having an isolated sin-
gularity p of finite type. Let F1 be a topological blown up of p and let
(p1, p2, . . . , ps) be the sequence of singularities of F1. Let
Σ = (σ1, σ2, · · · , σs), be the saddle-node sequence of (F1, (p1, p2, · · · , ps)).
Then, the first symbol in a saddle-node cycle Σ = (σ1, σ2, · · · , σs), of a finite
type singularity p, can be taken to be Sα or Nω. Moreover, for δ ∈ {α, ω},

(1) Sδ (resp. Nδ) is always followed by Sδ∗ or Nδ (resp. by Sδ or Nδ∗).
(2) Each pair of consecutive terms σi, σi+1 of the form Sδ, Sδ∗ corre-

sponds to exactly one hyperbolic sector Sec(σi, σi+1) of p. See Fig. 2.
(3) Each pair of consecutive terms σi, σi+1 of the form Nδ, Nδ∗ corre-

sponds to exactly one elliptic sector Sec(σi, σi+1) of p;
(4) Let σi+1, · · · σi+k be a subsequence of Σ such that (i) σi+1, σi+k ∈

{Sδ∗ , Nδ∗} and, (ii) every term σi+2, · · · σi+k−1 belongs to {Sδ, Nδ}
(and so S′

δs and N ′
δs alternate). Then

(4.1) if k ≥ 3 is odd and Sec(σi+1, σi+2), Sec(σi+k−1, σi+k) are el-
liptic then σi+1, · · · σi+k corresponds to exactly one parabolic sector
Sec(σi+1, · · · σi+k) separating the refereed two elliptic sectors. See
Fig. 3.

(4.2) if k ≥ 4 is even and one between Sec(σi+1, σi+2),
Sec(σi+k−1, σi+k) is elliptic and the other hyperbolic, then
σi+1, · · · σi+k corresponds to exactly one parabolic sector
Sec(σi+1, · · · σi+k) separating the referred two sectors. See Fig. 4.
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(4.3) if k ≥ 5 is odd and Sec(σi+1, σi+2), Sec(σi+k−1, σi+k) are hy-
perbolic then σi+1, · · · σi+k corresponds to exactly one parabolic sec-
tor Sec(σi+1, · · · σi+k) separating the referred two hyperbolic sectors.
See Fig. 5.

(5) The topological blown up F1 of p can be taken so that, for any par-
abolic sector P of p, and modulo the restrictions imposed by (4)
above, we may select the length k of the subsequence σi+1, · · · σi+k

of Σ which satisfies P = Sec(σi+1, · · · σi+k).
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We shall say that the topological blown up F1 of the singularity p as
above is tight if the subsequences of Σ associated to parabolic sectors have
lengths 3,4 and 5 according as they correspond to the situations considered
in (4.1), (4.2) and (4.3), respectively.

Let F be a oriented topological foliation on S2 having finitely many
singularities, each of which is either of finite type or topologically equivalent
to a node. Let {p1, p2, · · · , ps} be the singularities of F of finite type. For
each such singularity pi, we consider a topological blown up Fi of pi and
construct a corresponding saddle–node sequence Σi = σi1σi2, . . . , σimi

as
above. Set di = (mi + 2)/2. Each separatrix cycle K of F corresponds to a
cycle CK of some of the σij. Any σij in such a cycle is an Sα or an Sω. Let
L denote the set of all σij such that σij ∈ {Sα, Sω} and σij+di−1 ∈ {Sα, Sω}.
Here the second subscript is mod mi. We say (F, (F1,F2, · · · ,Fs)) satisfies
the separatrix cycle condition provided there is a function f(σij) from L

to the positive reals such that

(F1) f(σij) = f(σij+di−1) if di − 1 is even; f(σij) = [f(σij+di−1)]
−1 if

di − 1 is odd.
(F2) For every one-sided limit set K of F that is a separatrix cycle, either

(1) all σij in CK are in L and
∏

σij∈CK
f(σij) > 1 (resp. < 1) if

K is attracting (resp. repelling); or
(2) some σij in CK are not in L; if K is attracting (resp. repelling),

all such σij are Sα’s (resp. Sω’s).
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Our main result is

Theorem 2.1. Let F be a one-dimensional oriented topological foliation on
S2 such that

(H1) it has only a finite number of closed orbits and it has finitely many
singularities; every singularity is either of finite type or topologically
equivalent to a node;

(H2) if p1, p2, · · · , ps, are the finite type singularities of F, then, for every
such pi there exists a topological blown up Fi of pi such that
(F, (F1,F2, · · · ,Fs)) satisfies the separatrix cycle condition.

Then F is topologically equivalent to a polynomial vector field.

Remark 2.1. S. Schecter and M. F. Singer state and prove the above
theorem in the case that F is induced by a C1-vector field and every Fi is a
tight blown up of pi. Nevertheless, within the C1-class, their proof applies
to the situation stated here. This fact was observed in [4, Example 3 – page
423].

The proof of the following proposition follows immediately from the
Smoothing Theorem and the Smoothing Corollary of [2].

Proposition 2.1. Let F be a continuous one dimensional orientable folia-
tion with singularities on the 2-sphere S2. If the set of singularities of F is
compact, then there exists a C∞ vector field X on S2 which is topologically
equivalent to F.

Proof of Theorem 2.1. It follows from Proposition 2.1 that the exists a
smooth vector field Y topologically equivalent to F.

By Schecter-Singer main result [4] (see Remark 2.1) Y is topologically
equivalent to a polynomial vector field �
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