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Liapunov Stability and the ring of P -adic integers
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Abstract. It is well-known that stable Cantor sets are topologically
conjugate to adding machines. In this work we show are also conjugate
to an algebraic object, the ring of P−adic integers with respect to
group tramnslation. This ring is closely related to the field of p-adic
numbers; connections and distintions are explored. The inverse limit
construction provides a purely dynamical proof of an algebraic result:
the classification of adding machines, or P−adic integers, up to group
isomorphism.

1. Introduction

Although well-known from other contexts, namely harmonic analysis on
compact groups [6], adding machines occur naturally in dynamical systems.
In symbolic dynamics, they arise as factors of subshifts of finite type. In
‘real-world’ dynamical systems, it is well-known that the dynamics of the
logistic map at the limit point of period-doubling (known as Feigenbaum
map) is topologically conjugate to a 2−adic adding machine on the corre-
sponding invariant Cantor set. In fact the universality of the logistic map
within the family of S-unimodal maps ensures that this dynamical adding
machine is, in this sense, typical. Adding machines also appear naturally in
dynamics via sections of (continuous- or discrete-time) solenoidal attractors
[1].

More recent and possibly less well-known is the connection between dy-
namical (Liapunov) stability and adding machines in discrete maps [3, 4].
Under appropriate but extremely general assumptions about the phase
space X (which includes the case of manifolds of any dimension, or even
infinite-dimensional) invariant transitive sets, quotiented out by connected
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components, are either finite and ciclically permuted or Cantor sets on
which the induced map is topologically transitive (see 3.1). If in addition
the original invariant set was Liapunov stable, then this map is an adding
machine. So one sees that the occurrence of adding machines in the Feigen-
baum map or in solenoidal attractors is not at all accidental; in either case
the corresponding adding machine is forced by stability.

An interesting question of a somewhat algebraic flavor naturally arises.
It is a kind of ‘folklore’ result that the 2 − adic adding machine is topo-
logically conjugate to the operation of ‘addition with carry’ on the group
of 2−adic integers; see e.g. [7]. One can generalize this construction to
p-adic adding machines and p-adic (for prime p) numbers in the obvious
way. The group of 2-adic, or p-adic, integers extends without difficulty to
the field of p-adic numbers, and no problems arise. However, adding ma-
chines arising from dynamics do not in general have the same base p at
each level. What should then be the general algebraic object associated to
a dynamical adding machine?

This paper is devoted to this construction, and is to be considered an
announcement of results. It is expository by its very nature; formal proofs
are omitted and shall be given elsewhere. The results we describe were
obtained in joint work with H. Lopes.

2. p-adic numbers and the ring of P -adic integers

In this section we shall very quickly review the properties of p-adic num-
bers and see how some of their properties may be used to construct a
generalization which we call P -adic integers (where P will be a sequence of
primes). Excellent references for this material are Gouvêa [5] and Koblitz
[8]. For divisibity reasons, in what follows p must be a prime number; the
construction would collapse otherwise.

Given an integer x ∈ Z and a prime number p, there exists a unique
expansion

x =
∑

i≥0

aip
i, 0 ≤ ai ≤ p − 1. (2.1)

This expansion may be constructed by the usual congruence method,
and addition is defined by the operation of “carry to the right”. If we allow
the index i to run through the negative integers we have the corresponding
expansions for x ∈ Q. That these (p−adic) expansions are well-defined for
x ∈ Q is a consequence of the following facts.

Definition 2.1. Let K be an ordered group. A valuation [10] in K is a

function v : K → R such that

(1) v(0) = ∞;
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(2) v(ab) = v(a) + v(b);
(3) v(a + b) ≥ min{v(a), v(b)}.

The p-adic valuation on Z is defined as follows. Given a nonzero integer
n ∈ Z, n 6= 0, vp(n) is the only positive integer satisfying

n = pvp(n)n′ with p 6 | n′.

If n = 0, we define vp(0) = ∞.

The p-adic valuation extends uniquely to Q. Moreover, it induces an
absolute value on Q via

|x|p = p−vp(x)

which in turn induces in the natural way a metric on Q on which the
expansion (2.1) is convergent for every x ∈ Q. The absolute value and
metric thus defined on Q are, however, non-archimedean.

As happens with the usual metric, the field Q is not complete with respect
to the p−adic metric. The standard procedure of completion leads to a field
which is not algebraically closed; algebraic closure of this bigger field leads
to another field which now fails to be complete. However, a new topological
completion preserves the algebraic closure, and the field thus constructed,
sometimes referred to as Cp [8], is what is referred as the field of p-adic
numbers, where the p−adic analog of complex analysis takes place.

We mention these facts to stress the parallels but also the differences
with adding machines. It is more or less clear that, in the case of the
2 − adic adding machine, an isomorphism may be constructed with the 2-
adic integers, the dynamics being given by “adding one with carry” (that
is, 2-adic addition). However, it is also clear from § 1 that p−adic num-
bers cannot describe all adding machines generated from dynamics: in the
expansion in (2.1) the base p is by construction the same at each level,
whereas in dynamical adding machines this is not true in general. In fact,
the adding machine of the Feigenbaum map is isomorphic to the 2−adic
numbers precisely because it corresponds to the limit of period doubling.

On the other hand, there are definite limitations on possible construc-
tions, the most striking of which is Ostrowski’s theorem [5, 8], which states
that any non-trivial absolute value on Q is either equivalent to the standard
absolute value or to some p−adic absolute value. So whatever the adequate
algebraic construction, Ostrowski’s theorem forbids some norm structure to
extend to Q.

The crux of the matter is to allow the analog expansions of (2.1) to have
a variable base. To this end, we fix a sequence of primes P = (p1, p2, . . .),

and define Pk =
∏k
i=1

pi. An integer x ∈ Z may be uniquely expanded in
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base P as

x = a0 + a1P1 + a2P2 + . . . + akPk + . . . = a0 +

∞∑

i=1

aiPi, (2.2)

with ai ∈ Z, 0 ≤ ai < pi+1, i = 0, 1, . . .. Again no difficulties arise since
this expansion only entails congruence relationships. We define the group
operation, as previously, as “addition with carry to the right”.

It is easy to show that the relevant algebraic structure of the integers
with this operation is that of a ring, and the correponding additive group
is profinite, since it is the inverse limit group the inverse limit system cor-
responding to the sequence of (compatible) finite groups {ZPi

}. It then
follows from the general theory [9] that this ring of P -adic integers is com-
pact, Hausdorff and totally disconnected in the induced topology.

In general, no valuation function exists in the ring of P−adic integers
since this would contradict Ostrowski’s theorem. However, one may prove
that the following weaker structure does exist.

Definition 2.2. Consider the function qP : Z−{0} → R defined as follows:
for each n ∈ Z − {0}, qP (n) is the only positive integer such that

n = PqP (n)n
′ where PqP (n) 6 | n′.

The function qP (.) is called a quasivaluation. It is not hard to show it
satisfies the following properties:

Lemma 2.3. For all x, y ∈ Z,

(1) qP (x) = +∞ if and only if x = 0;
(2) qP (x) = qP (−x);
(3) qP (x + y) ≥ min{qP (x), qP (y)}.

Observe that properties (i) and (iii) are identical to the correspond-
ing properties of a valuation; however, property (ii) of a quasivaluation is
strictly weaker than the corresponding one for a valuation. In particular, a
valuation is a quasivaluation.

It now follows that the P−adic analog of the p−adic distance may be
naturally defined, even though no absolute value exists:

Definition 2.4. Let x, y ∈ Z. Define the P -adic distance, dP (x, y) as

dP (x, y) = P−1

qP (x−y). (2.3)

It is undestood that if qP (x − y) = 0 then P0 = 1.

It is not hard to show that indeed dP is a metric in the ring ZP of P−adic
integers compatible with its topology. It follows that ZP is perfect in this
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metric. Thus, ZP is a compact, totally disconnected, perfect metric space,
and is therefore a Cantor set.

Two remarks are in order. In the first place, the construction of p-
adic numbers may be considered as a special case of the construction just
described. In the case of p−adic numbers, P = (p, p, p, · · · ) and the P−adic
metric defined in 2.3 is precisely the old p−adic metric. In the second place,
observe that for p−adic integers it is the existence of a valuation that allows
the extension of the metric to the field Q, and thus the construction of
p−adic numbers. For the ring of P−adic integers no such construction is
possible: the weaker properties of the quasivaluation do not allow for an
extension of the P -adic metric to Q.

Fortunately, from the point of view of dynamics this fact is irrelevant:
we will show below that general stable adding machines are topologically
conjugate to a ring ZP with respect to group addition (in fact only the
additive group structure is required).

3. Liapunov stability, adding machines and P−adic integers

In this section we shall describe our main results. We must first recall
some previous results and definitions.

Let X be a locally compact, locally connected metric space and f : X →
X a continuous map. Let A be a compact forward-invariant set. The
connected components of A induce an equivalence relation such that the
diagram

A
f

//

π

��

A

π

��

K
f̃

// K

commutes (π is the projection on K and f̃ a the induced map). We then
have (see [3]):

Theorem 3.1. In the above conditions, either

(1) K is finite and f̃ is a cyclic permutation;

(2) K is a Cantor set and f̃ is topologically transitive on K.

If A is further required to be (Liapunov) stable, then the map f̃ is much
more restricted: it must be an adding machine [3, 4]. This theorem is
proved constructively; we shall not formulate it explicitly since it will be a
special case of our main result, Theorem 3.2. Let us for the moment define
symbolic adding machines formally.
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Let P = (p1, p2, . . .) be a sequence of primes. Denote by

Σ
P

=

∞∏

n=1

{0, 1, . . . , pn − 1}

the space of one-sided sequences i = (in)n≥1 such that 0 ≤ in < pn endo-
wed with the product topology. Σ

P
is homeomorphic to the Cantor set.We

define the base P adding machine to be the map α
P

: Σ
P
→ Σ

P
given by

α
P

(i1, i2, . . .) =

=





(0, . . . , 0︸ ︷︷ ︸
l−1

, il + 1, il+1, . . .), if il < pl − 1 and ij = pj − 1 for j < l

(0, . . . , 0, . . .)if ij = pj − 1 for all j.

We should note that, at this point, restriction of P to be a sequence
of primes is really unnecessary. However, it will be useful in the sequel
to consider adding machines in which the sequence base P is composed by
primes; we shall refer to it as a prime adding machine. The adding machine
map is easily shown to be topologically transitive (indeed minimal – every
orbit is dense in Σ

P
).

We can then prove constructively the following result:

Theorem 3.2. Let X be a locally compact, locally connected metric space,
f : X → X be a continuous map and A be a compact, invariant transi-
tive set. Suppose A is Liapunov stable and has infinitely many connected
components. Then f̃ : K → K is topologically conjugate to a prime adding
machine α

P
: Σ

P
→ Σ

P
.

The proof of theorem 3.2 is constructive and hinges critically on the con-
dition of Liapunov stability. The stability condition allows us to construct
a cover C of K by clopen sets whose inverse images are forward-invariant
and such that the diagram

C1

ψ1

��

C2

δ1oo

ψ2

��

. . .oo Cn−1
oo

ψn−1

��

Cn
δn−1
oo

ψn

��

Cn+1

δnoo

ψn+1

��

. . .oo

S1 S2
θ1

oo . . .oo Sn−1
oo Sn

θn−1

oo Sn+1
θn

oo . . .oo

is commutative, and so are the inverse limit maps. The connection with
P−adic numbers is that base P adding machines and P -adic integers are
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also related by a commutative diagram:

S1

φ1

��

S2

θ1oo

φ2

��

. . .oo Sn−1
oo

φn−1

��

Sn
θn−1

oo

φn

��

Sn+1

θnoo

φn+1

��

. . .oo

ZP1
ZP2γ1

oo . . .oo ZPn−1
oo ZPnγn−1

oo ZPn+1γn

oo . . .oo

Finally, since all connecting maps are homeomorphisms, it follows that the
diagram for the inverse limit maps

C∞
f̃
∞

//

Ψ

��

C∞
Ψ

��

S∞
α
∞ //

Φ

��

S∞

Φ

��

ZP F
// ZP

is commutative. The proof thus shows simultaneously that base P adding
machines are topologically conjugate to (the additive group of) P -adic in-
tegers and that the dynamics on stable Cantor sets are conjugate to both.

The proof shows in fact a stronger result than stated in 3.2. To formulate
it we need a few definitions.

Let P be the set of primes. Given a prime sequence P = (p1, p2, p3, · · · ),
define the multiplicity function of P mP as follows:

mP (p) =

{
n if p appears n times in the sequence P
∞ if p appears infinitely often in the sequence P .

The proof of theorem 3.2 is constructive and at each step is based on
arbitrary choices. Different choices at each step lead us to different prime
adding machines, so the prime adding machine whose existence is asserted
in 3.2 far from unique. However, these distinct prime adding machines do
have the same multiplicity function! Theorem 3.2 associates to a dynamical
system not a unique adding machine but an equivalence class of adding

machines: if (K, f̃ ) is topologically conjugate to two different prime adding
machines, then obviously these are conjugate between themselves. Since
they have the same multiplicity function, this means that mP is a complete
invariant for the conjugacy classes of adding machines (the other sense of
the implication is trivial). We thus have the following classification theorem
for adding machines.
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Theorem 3.3. Let P e P ′ be prime sequences. Then αP e αP ′ are topo-
logically conjugate if and only if they have the same multiplicity function.

It is interesting to note that the classification theorem appears recur-
rently in the literature [1, 2, 3] with several different proofs, ranging from
the algebraic to the spectral. Note that from 3.2 the classification theorem
is deduced, almost as an afterthought, from purely dynamical considera-
tions.

4. Concluding remarks

First of all we should note that the construction of P−adic integers and
P−adic adding machines is made with prime sequences for convenience
reasons only. Nothing essential (not even in the proofs) would be lost
in working with a non-prime sequence. This choice is motivated by two
reasons: in the first place, it makes more transparent the parallel with
p−adic numbers; in the second place, the classification theorem 3.3 becomes
particularly simple to state. But everything would be essentially the same
with non-prime sequences (see, e.g., [6]).

One of the most significant parts of the results just presented is the fact
the classification theorem, which may be thought as a group isomorphism
result (it is easy to see that in this case group isomorphism and topolgical
conjugacy coincide), has been given a purely dynamical proof.
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[5] F. Gouvêa, p-adic Numbers: An Introduction, Springer-Verlag, Universitext,

1991.
[6] E. Hewitt, K. Ross, Abstract Harmonic Analysis I, Springer-Verlag, Mathema-

tischen Wissenschaften 115, 1963.
[7] A. Katok, B. Hasselblatt, Modern theory of dynamical systems, C.U.P. Enciclo-

pedia of Mathematics and its applications 54, 1995.
[8] N. Koblitz, p−adic numbers, p−adic analysis and zeta functions, Springer-Verlag,

GTM 58, 2nd edition, 1984.
[9] L. Ribes, P. Zalesskii, Profinite Groups, Springer-Verlag, Modern Surveys in

Mathematics 40, 2000.
[10] B. van der Waerden Algebra, vol II, Springer-Verlag, 1991.

São Paulo J.Math.Sci. 2, 1 (2008), 77–84


