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Abstract. A sufficient condition for the existence and uniqueness of
a continuous solution of the integral equation

f(x) = G(x, h1(x) +

∫

D

K1(x, y)H1(y, f(y))dy, h2(x)

+

∫

D∩(−∞,x]

K2(x, y)H2(y, f(y))dy)

is established under regularity conditions on the functions G, h1, h2,
H1, H2, and on the kernels K1 and K2 where D is a subset of IRn and
(−∞, x], x ∈ IRn, is a simplified notation for the interval
∏n

i=1(−∞, xi] ⊂ IRn.
Keywords: Existence and uniqueness of solution, integral equation,
Volterra integral equation, Fredholm integral equation, Hammerstein
integral equation, positive solutions, fixed point theorem.

1. Introduction

The non linear integral equation f(x) =
∫ b

a
K(x, y)H(y, f(y))dy has been

studied by R.Iglish [1], A.Hammerstein, [2], M.Golomb, [3] and C.L.Dolph
[4]. Under restrictive conditions on the kernel and controlling the non lin-
earity of the function H, they succeeded in finding sufficient conditions
either to existence and uniqueness of a solution or solely to the exis-
tence of solutions to this integral equation. Non linearities of the type
H(y, f(y)) = 1/y lead to singular integral equations. The integral equa-

tion f(x)
∫

1

0
f(y)K(x, y)dy = 1 that arises in the theory of communication

systems was studied in [5] by P. Nowosad where the existence and unique-
ness of continuous positive real solutions was established for positive semi-
definite symmetric non-negative kernels, K(x, y), 0 ≤ x, y ≤ 1, such that
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∫

1

0
K(x, y)dy ≥ δ > 0. An extension of this result was obtained by S. Karlin

and L. Nirenberg in [6]. In their work they prove the existence of contin-

uous positive solutions of the equation f(x)
∫

1

0
f(y)αK(x, y)dy = 1 where

α is a fixed positive parameter and K(x, y) is a non-negative continuous

function on [0, 1]2 such that K(x, x) > 0 for all x ∈ [0, 1]. They also showed
the uniqueness of continuous positive solutions in case the parameter α be-
longs to (0, 1]. The Schauder fixed point theorem was used to derive the
existence of solutions. Further extensions of P. Nowosad ’s result can be
found in [7] where positive solutions are established for the integral equation

f(x) = g(x) +
∫

1

0
K(x, y)

(

1

(f(y))α + h(f(y))
)

dy, α > 0, x ∈ [0, 1]. An exis-

tence theorem of integrable solutions to the integral equation f(x) = g(x)+

λ
∫

D
K(x, y)H(y, f(y))dy where D ⊂ IRn is a compact set and g,K, and H

are functions with values in finite dimensional Banach spaces is obtained
by G.Emmanuele in [8]. Conditions for the existence of nonzero solutions
of integral equations of the the form f(x) =

∫

D
K(x, y)H(y, f(y))dy , D

compact subset of IRn, where K is a real valued function that changes sign
and may be discontinuous, and H satisfies Caratheodory conditions, are
presented by G.Infante and J.R.L.Webb in [9]. The existence of integrable
solutions to the non linear integral equation of Hammerstein - Volterra

type f(x, t) =
∫

1

0
K(x, y)H(y, f(y, t))dy +

∫ t

0
F (t, z)f(x, z)dz is obtained

by M.A.Abdou, W.G.El-Sayed, and E.I.Deebs in [10]. Also of interest are
monotone solutions to integral equations. In [11], J.Banas , J. Caballero,
J.Rocha, and K. Sadaragani established the existence of nondecreasing con-
tinuous solutions on a bounded and closed interval I to the nonlinear in-
tegral equation of Volterra type f(x) = a(x) + (Tf)(x)

∫ x

0
v(x, y, f(y))dy,

y ∈ I, under a set of conditions on the functions a, v, and on the continuous
operator T : C(I) → C(I). A similar result is presented by W.G.El-Sayed
and B.Rzepka in [12] for the quadratic integral equation of Urysohn type

with the form f(x) = a(x) + H(x, f(x))
∫

1

0
u(x, y, f(y))dy, y ∈ I. Due

to plenty of practical applications, numerical methods for solving integral
equations are of great interest. Recently, S.Yousefi and M.Razzaghi, [13]
and K.Maleknejad and H.Derili, [14] applied wavelet methods to obtain
numerical solutions to Volterra - Fredholm and Hammerstein type integral
equations. In this short article we study the integral equation:

f(x) = G(x, h1(x) +

∫

D

K1(x, y)H1(y, f(y))dy, h2(x)

+

∫

D∩(−∞,x]

K2(x, y)H2(y, f(y))dy)
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A mixed Hammerstein integral equation 147

where f : D ⊂ IRn → A is a function with values in a complete normed
finite dimensional algebra A, Ki : D2 → A, hi : D → A, Hi : D×Im(G)→
A, for i ∈ {1, 2} and G : D ×R1 ×R2 → A, R1,R2 ⊂ A satisfy regularity
conditions. Throughout this work we denote the IRn interval

∏n
i=1

(ai, bi]
by (a, b] where a = (a1, ..., an), b = (b1, ..., bn) ∈ IRn. Also, ai ∧ bi will
denote min{ai, bi} and ai ∨ bi equals max{ai, bi}. For vectors this is done
componentwise: a∧ b = (a1∧ b1, ..., an∧ bn) and a∨ b = (a1∨ b1, ..., an∨ bn).
It is not required neither that the algebra contains a unit element nor that,
in case it has one, that its norm be one. These are common requirements
to call A a Banach algebra. Being (A,+, ·,×, ‖ ‖) an algebra over a field
K endowed with an absolute value | |, we suppress the notational use of .
and × and use xy and αx instead of x×y and α.x respectively. We assume
that for all x, y ∈ A, ‖xy‖ ≤ ‖x‖‖y‖. We use the notation B[x, r] to mean
the closed ball centered at x with radius r in a metric space.

In section 2 we present the main result: an existence and uniqueness of
solution theorem based only on Banach’s fixed point theorem. In section
3 some related results and corollaries are obtained, and, in section 4, we
conclude this work with some examples and final remarks.

2. Main results

The following elementary lemma is used in the proof of Theorem 2.2.

Lemma 2.1. Let (IRn,Λ, `) be IRn endowed with Lebesgue measure and

σ-algebra, A ∈ Λ, f : A → IR+ such that
∫

A
fd` < ∞ and k ∈ IN. Then,

for all Lebesgue measurable sets C ⊂
⋃k

i=1
Ci where, for all i, 1 ≤ i ≤ k,

Ci = Hi × {xi + tni : 0 ≤ t ≤ δi}, Hi a hyperplane, xi ∈ Hi and ni one of
its unitary normals, we have

∫

C

fd`→ 0 as max{δi : 1 ≤ i ≤ k} → 0.

Proof : If A is bounded this is a direct consequence of the fact that,
for C ⊂ A, we have lim`(C)→0

∫

C
fd` = 0 whenever

∫

A
fd` < ∞. In case

A is not bounded, observe that for all ε > 0 there exists r > 0 such
that

∫

IR
n\[−r,r]n

fd` < ε/2 and , taking into account that `(C ∩ [−r, r]n) <

k max{δi : 1 ≤ i ≤ k}(2r√n)n−1, we guarantee that for all ε > 0 there
exists δ > 0 such that if max{δi : 1 ≤ i ≤ k} < δ then

∫

C∩[−r,r]n
fd` < ε/2,

and, consequently, we conclude that

∀ ε > 0 ∃ δ > 0 max{δi : 1 ≤ i ≤ k} < δ −→
∫

C

fd` < ε.
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Our main result, an application of the fixed point theorem for contraction
mappings, is the following:

Theorem 2.1. Let D be a compact subset of IRn, A be a finite dimensional
complete normed algebra, Ki : D2 → A, hi : D → A, Hi : D ×A → A, for
i ∈ {1, 2}, and G : D ×A2 → A be functions such that:

(1) ∀i ∈ {1, 2} ∀x ∈ D limz→x

∫

D
‖Ki(z, y)−Ki(x, y)‖dy = 0.

(2) ∀i ∈ {1, 2} ‖
∫

D
‖Ki(x, y)‖dy‖∞ <∞.

(3) ∀i ∈ {1, 2} sup{‖Hi(x, z)‖ : x ∈ D, z ∈ Im(G)} <∞
(4) ∀i ∈ {1, 2} ∃ ιi ιi ≥ 0 ∀z ∈ D ∀x, y ∈ Im(G)
‖Hi(z, x)−Hi(z, y)‖ ≤ ιi‖x− y‖.

(5) G is continuous in D × (Im(h1) + B[0, ν1κ1])× (Im(h2)
+ B[0, ν2κ2]).

(6) ∀i ∈ {1, 2} ∃ µi ≥ 0 ∀x ∈ D ∀ yi, zi ∈ Im(hi) + B[0, νiκi],
‖G(x, y1, z1)−G(x, y2, z2)‖ ≤ µ1‖y1 − y2‖+ µ2‖z1 − z2‖.

(7) ∀i ∈ {1, 2}, hi is continuous.

Denote, for i ∈ {1, 2}, ‖
∫

D
‖Ki(x, y)‖dy‖∞ by κi and

sup{‖Hi(x, z)‖ : x ∈ D, z ∈ Im(G)} by νi. Then whenever µ1κ1ι1 +
µ2κ2ι2 < 1 there exists one and only one continuous function f : D → A
such that

f(x) = G(x, h1(x) +

∫

D

K1(x, y)H1(y, f(y))dy, h2(x)

+

∫

D∩(−∞,x]

K2(x, y)H2(y, f(y))dy).

Before the proof of this theorem is given, we observe that the functions
Hi : D ×A → A, for i ∈ {1, 2}, and G : D ×A2 → A could be replaced by
Hi : D × Im(G) → A, for i ∈ {1, 2}, and G : D × (Im(h1) + B[0, ν1κ1]) ×
(Im(h2) + B[0, ν2κ2])→ A
Proof : The possible continuous solutions to the integral equation belong
to S := C(D;A) which is a complete metric space with distance given by
the supremum norm.
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Now, for all x ∈ D, we have for every f

0 ≤ ‖
∫

D

K1(x, y)H1(y, f(y))dy‖ ≤
∫

D

‖K1(x, y)‖‖H1(y, f(y))‖dy

≤
∫

D

‖K1(x, y)‖ sup{‖H1(s, t)‖ : s ∈ D, t ∈ Im(G)}dy

= ν1

∫

D

‖K1(x, y)‖dy ≤ ν1 sup{
∫

D

‖K1(x, y)‖dy : x ∈ D}

= ν1‖
∫

D

‖K1(x, y)‖dy‖∞ = ν1κ1.

Analogously,

0 ≤ ‖
∫

D∩(−∞,x]

K2(x, y)H2(y, f(y))dy‖ ≤ ν2κ2.

Thus, for all x ∈ D,

h1(x) +

∫

D

K1(x, y)H1(y, f(y))dy ∈ (Im(h1) + B[0, ν1κ1])

and

h2(x) +

∫

D∩(−∞,x]

K2(x, y)H2(y, f(y))dy ∈ (Im(h2) + B[0, ν2κ2]) .

Let, for all f ∈ S, T (f) : D → A be given by

Tf(x) := (T (f))(x)

= G(x, h1(x) +

∫

D

K1(x, y)H1(y, f(y))dy, h2(x)

+

∫

D∩(−∞,x]

K2(x, y)H2(y, f(y))dy).

Note that T (S) ⊂ S for if f ∈ S we have

‖Tf(x)− Tf(z)‖ =

= ‖G(x, h1(x) +

∫

D

K1(x, y)H1(y, f(y))dy, h2(x)

+

∫

D∩(−∞,x]

K2(x, y)H2(y, f(y))dy)−G(z, h1(z)

+

∫

D

K1(z, y)H1(y, f(y))dy, h2(z)

+

∫

D∩(−∞,z]

K2(z, y)H2(y, f(y))dy)‖
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Now, the continuity of G in D×(Im(h1)+B[0, ν1κ1])×(Im(h2)+B[0, ν2κ2])
and that of h1 and h2 in D together with the inequalities and limits bellow

‖
(
∫

D

K1(x, y)H1(y, f(y))dy

)

−
(
∫

D

K1(z, y)H1(y, f(y))dy

)

‖

≤
∫

D

‖H1(y, f(y))‖‖K(z, y) −K(x, y)‖dy

≤ sup{‖H1(y, f(y))‖ : y ∈ D}
∫

D

‖K1(z, y)−K1(x, y)‖dy

≤ sup{‖H1(s, t)‖ : s ∈ D, t ∈ Im(G)}
∫

D

‖K1(z, y)−K1(x, y)‖dy

= ν1

∫

D

‖K1(z, y) −K1(x, y)‖dy → 0 as z → x

and

‖(
∫

D∩(−∞,x]

K2(x, y)H2(y, f(y))dy)

− (

∫

D∩(−∞,z]

K2(z, y)H2(y, f(y))dy)‖

≤
∫

D∩(−∞,x∧z]

‖H2(y, f(y))‖‖K2(z, y) −K2(x, y)‖dy

+

∫

D∩(−∞,x]\D∩(−∞,x∧z]

‖H2(y, f(y))‖‖K2(x, y)‖dy

+

∫

D∩(−∞,z]\D∩(−∞,x∧z]

‖H2(y, f(y))‖‖K2(z, y)‖dy

≤ ν2(

∫

D

‖K2(z, y)−K2(x, y)‖dy

+

∫

D∩(−∞,x]\D∩(−∞,x∧z]

‖K2(x, y)‖dy

+

∫

D∩(−∞,z]\D∩(−∞,x∧z]

‖K2(z, y)‖dy) → 0

as z → x guarantee that Tf is continuous.

Observe that the terms
∫

D∩(−∞,x]\D∩(−∞,x∧z]

‖K2(x, y)‖dy
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and
∫

D∩(−∞,z]\D∩(−∞,x∧z]

‖K2(z, y)‖dy

go to zero as z → x as a consequence of assumption 2 and the fact that
the Lebesgue measure of the sets D ∩ (−∞, x] \D ∩ (−∞, x ∧ z] and D ∩
(−∞, z] \D ∩ (−∞, x ∧ z] are bounded above by n‖x − z‖ (diam(D))

n−1
,

where diam(D) <∞ stands for the diameter of the compact set D .

Now let us show that T is a contraction in S.

We have, for all f, g ∈ S

‖Tf − Tg‖∞ = ‖G(x, h1(x) +

∫

D

K1(x, y)H1(y, f(y))dy, h2(x)

+

∫

D∩(−∞,x]

K2(x, y)H2(y, f(y))dy) −G(x, h1(x)

+

∫

D

K1(x, y)H1(y, g(y))dy, h2(x) +

∫

D∩(−∞,x]

K2(x, y)H2(y, g(y))dy)‖∞

≤ µ1‖h1(x)− h1(x) +

∫

D

K1(x, y)H1(y, f(y))dy

−
∫

D

K1(x, y)H1(y, g(y))dy‖∞ + µ2‖h2(x)− h2(x)

+

∫

D∩(−∞,x]

K2(x, y)H2(y, f(y))dy −
∫

D∩(−∞,x]

K2(x, y)H2(y, g(y))dy‖∞

≤ µ1 sup{‖H1(y, f(y))−H1(y, g(y))‖ : y ∈ D}‖
∫

D

‖K1(x, y)‖dy‖∞
+ µ2 sup{‖H2(y, f(y))−H2(y, g(y))‖ : y ∈ D ∩ (−∞, x]}

· ‖
∫

D∩(−∞,x]

‖K2(x, y)‖dy‖∞

≤ µ1 sup{ι1‖f(y)− g(y)‖ : y ∈ D}‖
∫

D

‖K1(x, y)‖dy‖∞
+ µ2 sup{ι2‖f(y)− g(y)‖ : y ∈ D ∩ (−∞, x]}

· ‖
∫

D∩(−∞,x]

‖K2(x, y)‖dy‖∞

≤ µ1ι1‖f − g‖∞‖
∫

D

‖K1(x, y)‖dy‖∞ + µ2ι2‖f − g‖∞

· ‖
∫

D

‖K2(x, y)‖dy‖∞
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Thus
‖Tf − Tg‖∞ ≤ (µ1ι1κ1 + µ2ι2κ2) ‖f − g‖∞,

a contraction whenever µ1ι1κ1 + µ2ι2κ2 < 1, and the theorem follows.

Theorem 2.2. Let D be a measurable subset of IRn, A be a finite di-
mensional complete normed algebra, Ki : D2 → A, hi : D → A, Hi :
D × A → A, for i ∈ {1, 2}, and G : D × A2 → A be functions satis-
fying conditions 1 to 4, 6 and 7 in theorem 2.1. If G is continuous and
bounded in D× (Im(h1) + B[0, ν1κ1])× (Im(h2) + B[0, ν2κ2]) , then when-
ever µ1κ1ι1 +µ2κ2ι2 < 1 there exists one and only one continuous function
f : D → A such that

f(x) = G(x, h1(x) +

∫

D

K1(x, y)H1(y, f(y))dy, h2(x)

+

∫

D∩(−∞,x]

K2(x, y)H2(y, f(y))dy).

The same remark that follows theorem 2.1 is still applicable.

Proof : Follow the steps in theorem 2.1 proof. Observe that

S := B(D; Im(G)), the set of bounded functions from D to the closure of
the image of G, is a Banach space and that T (S) ⊂ S. Use Lemma 2.1 to
deal with the possibly unbounded sets D ∩ (−∞, x] \D ∩ (−∞, x ∧ z] and
D ∩ (−∞, z] \D ∩ (−∞, x ∧ z].

3. Related results and corollaries

Theorem 3.1. Let Ki : ([0, 1]n)2 → IR+, hi : [0, 1]n → IR+, for i ∈ {1, 2},
be non-negative functions, β and δ be strictly positive real numbers, and

Hi : [0, 1]n × [0, 1

δ
] → IR+ for i ∈ {1, 2} and G : [0, 1]n × (Im(h1) +

[0, ν1κ1])× (Im(h2) + [0, ν2κ2])→ IR+ be functions such that:

(1) ∀i ∈ {1, 2} ∀x ∈ [0, 1]n limz→x

∫

[0,1]n
|Ki(z, y)−Ki(x, y)|dy = 0.

(2) ∀i ∈ {1, 2} ‖
∫

[0,1]n
Ki(x, y)dy‖∞ <∞.

(3) ∀i ∈ {1, 2} sup{Hi(x, z) : x ∈ [0, 1]n z ∈ [0, 1

δ
]} <∞.

(4) ∀i ∈ {1, 2} ∃ ιi ≥ 0 ∀z ∈ [0, 1]n ∀x, y ∈ [ 1

β
, 1

δ
] |Hi(z, x)−Hi(z, y)| ≤

ιi|x− y|.
(5) 0 < δ = inf{G(x, y, z) : (x, y, z) ∈ [0, 1]n × (Im(h1) + [0, ν1κ1]) ×

(Im(h2) + [0, ν2κ2])} and β = sup{G(x, y, z) : (x, y, z) ∈ [0, 1]n ×
(Im(h1) + [0, ν1κ1])× (Im(h2) + [0, ν2κ2])} <∞.

(6) ∀i ∈ {1, 2} ∃ µi ≥ 0 ∀x ∈ [0, 1]n ∀ yi, zi ∈ Im(hi) + [0, νiκi] ,

|G(x,y1,z1)−G(x,y2,z2)

G(x,y1,z1)G(x,y2,z2)
| ≤ µ1|y1 − y2|+ µ2|z1 − z2|.

(7) ∀i ∈ {1, 2} hi is continuous
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Denote, for i ∈ {1, 2}, ‖
∫

[0,1]n
Ki(x, y)dy‖∞ by κi and sup{Hi(x, z) : x ∈

[0, 1]n z ∈ [0, 1

δ
]} by νi Then whenever µ1κ1ι1 + µ2κ2ι2 < 1 there exists one

and only one continuous function f : [0, 1]n → IR, such that

f(x) G(x, h1(x) +

∫

[0,1]n
K1(x, y)H1(y, f(y))dy, h2(x)

+

∫

[0,x]

K2(x, y)H2(y, f(y))dy) = 1.

Clearly this function is strictly positive.

Proof :

Similar to that of theorem 2.1 . For all x ∈ [0, 1]n we have for every f

0 ≤
∫

[0,1]n
K1(x, y)H1(y, f(y))dy

≤
∫

[0,1]n
sup{H1(y, f(y)) : y ∈ [0, 1]n}K1(x, y)dy

≤ ν1

∫

[0,1]n
K1(x, y)dy ≤ ν1κ1.

Analogously,

0 ≤
∫

[0,x]

K2(x, y)H2(y, f(y))dy ≤ ν2κ2.

so that for all x ∈ [0, 1]n the solution of the integral equation satisfies

1

β
≤ f(x) = G

[

x, h1(x) +

∫

[0,1]n
K1(x, y)H1(y, f(y))dy, h2(x)

+

∫

[0,x]

K2(x, y)H2(y, f(y))dy

]−1

≤ 1

δ
.

Thus the possible continuous solutions to the integral equation belong

to S := C([0, 1]n; [ 1

β
, 1

δ
]) which is a complete metric space with distance

given by the supremum norm.

Let, for all f ∈ C([0, 1]n; IR∗
+), T (f) : [0, 1]→ IR be given by

Tf(x) := (T (f)) (x) = G

[

x, h1(x) +

∫

[0,1]n
K1(x, y)H1(y, f(y))dy, h2(x)

+

∫

[0,x]

K2(x, y)H2(y, f(y))dy

]−1

.
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Note that T (S) ⊂ S for if f ∈ S we have

0 ≤
∫

[0,1]n
K1(x, y)H1(y, f(y))dy ≤ ν1κ1

and

0 ≤
∫

[0,x]

K2(x, y)H2(y, f(y))dy ≤ ν2κ2

from which

δ−1 ≥
∥

∥

∥

∥

G

[

x, h1(x) +

∫

[0,1]n
K1(x, y)H1(y, f(y))dy, h2(x)+

∫

[0,x]

K2(x, y)H2(y, f(y))dy

]−1
∥

∥

∥

∥

∞
≥ β−1

and we get β−1 ≤ ‖Tf‖∞ ≤ δ−1.
Moreover, conditions 5 and 6 imply the continuity of 1

G
on [0, 1]n×(Im(h1)+

[0, ν1κ1])× (Im(h2)+ [0, ν2κ2]) and a similar argument to that in Theorem
2.1 proof shows that |Tf(x) − Tf(z)| → 0 as z → x; i.e. leads to the
conclusion that Tf is continuous.

Observe that|G(x,y1,z1)−G(x,y2,z2)

G(x,y1,z1)G(x,y2,z2)
| = | 1

G(x,y1,z1)
− 1

G(x,y1,z1)
| so that condi-

tion 6 in this corollary is the same as condition 6 in Theorem 2.1 applied

to 1

G
. Now follow the steps in Theorem 2.1 proof to show that T is a con-

traction in S.

We observe that the conditions on the kernels in theorems 2.1 and 3.1
hypothesis are implied by Kernel continuity. As a matter of fact, their
continuity on the compact set D2 or on [0, 1]2n implies uniform continuity

on D2 or on [0, 1]2n which, by its turn, implies condition 1; continuity

on D2 or on [0, 1]2n also implies boundedness and integrability so that
condition 2 is guarantied. Partial differentiability of Hi with respect to

the second variable on D × Im(G) or on [0, 1]n × [ 1

β
, 1

δ
] and boundedness

of this derivative on D × Im(G) or on [0, 1]n × [ 1

β
, 1

δ
] implies condition 4

as we can choose, by the mean value inequality, ιi = sup{‖∂2Hi(x, z)‖ :

(x, z) ∈ D × Im(G)} or ιi = sup{‖∂2Hi(x, z)‖ : (x, z) ∈ [0, 1]n × [ 1

β
, 1

δ
]}.

Also continuous differentiability of Hi on [0, 1]n × [ 1

β
, 1

δ
] clearly implies 4.

Similarly, bounded partial differentiability with respect to the second and
third variables of G on D × (Im(h1) + B[0, ν1κ1])× (Im(h2) + B[0, ν2κ2])

or of 1

G
on [0, 1]n× (Im(h1)+ [0, ν1κ1])× (Im(h2)+ [0, ν2κ2]) or continuous
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differentiability of 1

G
on [0, 1]n × (Im(h1) + [0, ν1κ1])× (Im(h2) + [0, ν2κ2])

implies condition 6.

Clearly, the pure Hammerstein or Volterra - Hammerstein integral equa-
tions are particular cases of the complete mixed integral equation.

In this way one can write some corollaries, the weaker of them is:

Corollary 3.1. Let K : [0, 1]2 → IR be a non-negative continuous function.

Denote ‖
∫

1

0
K(x, y)dy‖∞ by κ and assume κ < ∞. Let also β and δ be

strictly positive real numbers, and H : [0, 1

δ
] → IR+ and G : [0, νκ] → IR+

be functions such that:

(1) ν = sup{H(z) : z ∈ [0, 1

δ
]} <∞.

(2) H is continuously differentiable on [ 1

β
, 1

δ
].

Denote ι = sup{|H ′(z)| : z ∈ [ 1

β
, 1

δ
]}.

(3) 0 < δ = inf{G(z) : z ∈ [0, νκ]} and
β = sup{G(z) : z ∈ [0, νκ]} <∞.

(4) G is continuously differentiable on [0, νκ].

Denote µ = sup{|
(

1

G(z)

)′
| : z ∈ [0, νκ]}.

Then whenever µκι < 1 there exists one and only one continuous function
f(x), x ∈ [0, 1], such that

f(x) G

(
∫

1

0

K(x, y)H(f(y))dy

)

= 1.

Clearly this function is strictly positive.

Proof : Theorem 3.1 and remarks above.

4. Examples and Final Remarks

The following examples will show typical uses of the theorems and corol-
laries developed so far.

Concerning the integral equation

f(x) exp

(
∫

1

0

f(y)γK(x, y)dy

)

= 1

we can obtain the following

Example 4.1. Let γ be a real positive number and K : [0, 1]2 → IR be a
non-negative continuous function such that

‖
∫

1

0

K(x, y)dy‖∞ = κ
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where κ < 1

γ
in case γ ≥ 1 and κγe(1−γ)κ < 1 in case 0 < γ < 1.

Then there exists one and only one continuous solution f(x), x ∈ [0, 1],
to the integral equation

f(x) exp

(
∫

1

0

f(y)γK(x, y)dy

)

= 1.

This solution is strictly positive.

Proof :

Clearly, δ = inf{exp(z) : z ∈ IR+} = inf{exp(z) : z ∈ [0, a]} = 1, what-

ever a > 0 is, so that ν = sup{zγ : z ∈ [0, 1

δ
]} = 1 and β = sup{exp(z) :

z ∈ [0, νκ]} = eκ. Thus ι = sup{γzγ−1 : z ∈ [ 1

eκ , 1]} which is equal to γ in

case γ ≥ 1 and to γe(1−γ)κ in case 0 < γ < 1. The exponential function is
continuously differentiable and µ = sup{e−x : x ∈ [0, κ]} = 1. Now apply
Corollary 3.1 .
The second example concerns integral equations for matrix valued func-
tions.

Example 4.2. Consider the complete mixed Hammerstein integral equation
on M2×2(IR)-valued functions of [0, 1]2

f(x) = G(x, h1(x) +

∫

[0,1]2
K1(x, y)H1(y, f(y))dy, h2(x)

+

∫

[0,x]

K2(x, y)H2(y, f(y))dy)

where λ1, λ2, θ1, θ2 are real numbers, K1(x, y) = exp(λ1

(

x1 y1

y2 x2

)

),

H1(y, f(y)) =
θ1f(y)2

1+‖f(y)‖2

(

y1 0
0 y2

)

, h1(x) =

(

2 + x1

√
3√
2
x2

1√
3√
2
x2

2 2− x2

)

,

K2(x, y) = exp(λ2

(

x2
1 y2

1

x2
2 y2

2

)

), H2(y, f(y)) =
θ2ft(y)2

1+‖ft(y)‖2

(

0 y1

y2 0

)

,

h2(x) =

(

x2
1 x1

x1 x2
2

)

), and G(x, y, z) = ‖x‖αyz, for positive α, and the

norms of vectors and matrices are the euclidean ones. Then a sufficient
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condition for existence and uniqueness of a solution to this integral equation
is

√
2
(

R2e
2|λ1||θ1|+ R1e

2|λ2||θ2|
)

·
(

1 +
R2

1 + R2

)

(

R + (R ∧ (
√

R2 + 1−R))

1 + (R ∧ (
√

R2 + 1−R))2

)

< 1

where R1 = (4 +
√

2|θ1|e2|λ1|), R2 = (2 +
√

2|θ2|e2|λ2|) and R = R1R2.
Thus, the set of parameters (λ1, λ2, θ1, θ2) for which the solution is unique
contains an unbounded open neigbourhood of the origin.

Proof : The algebra M2×2(IR) with usual operations and euclidean norm
is complete and satisfies ‖xy‖ ≤ ‖x‖‖y‖. We have the following inequalities:

(1) ∀x ∈ [0, 1]2 ‖h1(x)‖ ≤ 4, ∀x ∈ [0, 1]2 ‖h2(x)‖ ≤ 2,

(2) ‖K1(x, y)‖ ≤ exp(|λ1| ‖
(

x1 y1

y1 x2

)

‖), and ‖
∫

D
‖K1(x, y)‖dy‖∞

≤ supx∈[0,1]2
∫

[0,1]2
e|λ1|
√

x2
1+x2

2+y2
1+y2

2dy ≤ e2|λ1|

(3) ‖K2(x, y)‖ ≤ exp(|λ2| ‖
(

x2
1 y2

1

y2
1 x2

2

)

‖), and ‖
∫

D
‖K2(x, y)‖dy‖∞

≤ supx∈[0,1]2
∫

[0,1]2
e|λ2|
√

x4
1+x4

2+y4
1+y4

2dy ≤ e2|λ2|

(4) ‖H1(y, f(y))‖ ≤ |θ1| ‖f(y)2‖
1+‖f(y)‖2

√

y2
1

+ y2
2
, ‖H2(y, f(y))‖

≤ |θ2| ‖ft(y)2‖
1+‖ft(y)‖2

√

y2
1

+ y2
2

and

sup{‖H1(y, f(y))‖ : y ∈ D, z ∈ Im(G)}
≤ sup{‖H1(y, f(y))‖ : y ∈ D, z ∈ A)} ≤

√
2|θ1|.

sup{‖H2(y, f(y))‖ : y ∈ D, z ∈ Im(G)}
≤ sup{‖H2(y, f(y))‖ : y ∈ D, z ∈ A)} ≤

√
2|θ2|.

Thus, κ1 ≤ e2|λ1|, κ2 ≤ e2|λ2|, ν1 ≤
√

2|θ1|, ν2 ≤
√

2|θ2|, and Im(h1) ⊂
B[0, 4] as well as Im(h2) ⊂ B[0, 2].

Now, ‖G(x, y1, z1) − G(x, y2, z2)‖ = ‖x‖α‖y1z1 − y2z2‖ = ‖x‖α‖y1z1 −
y2z1 + y2z1 − y2z2‖ ≤ ‖x‖α(‖y1 − y2‖‖z1‖+ ‖y2‖‖z1 − z2‖).
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Thus, ∀x ∈ D,∀y1, y2 ∈ Im(h1) + B[0, ν1κ1] ⊂ B[0, 4 +
√

2|θ1|e2|λ1|]
∀z1, z2 ∈ Im(h2) + B[0, ν2κ2] ⊂ B[0, 2 +

√
2|θ2|e2|λ2|] we have

‖G(x, y1, z1)−G(x, y2, z2)‖ ≤ (2 +
√

2|θ2|e2|λ2|)‖y2 − y1‖
+ (4 +

√
2|θ1|e2|λ1|)‖z2 − z1‖

and µ1 ≤ 2 +
√

2|θ2|e2|λ2| and µ1 ≤ 4 +
√

2|θ1|e2|λ1|.

G = ‖x‖αyz −→ Im(G) ⊂ B[0, sup{‖x‖αyz : x ∈ D,

y ∈ B[0, 4 +
√

2|θ1|e2|λ1|], z ∈ B[0, 2 +
√

2|θ2|e2|λ2|]}]
= B[0, (4 +

√
2|θ1|e2|λ1|)(2 +

√
2|θ2|e2|λ2|)].

‖H1(x, y)−H1(x, z)‖ = ‖ θ1y
2

1 + ‖y‖2
(

x1 0

0 x2

)

− θ1z
2

1 + ‖z‖2
(

x1 0

0 x2

)

‖

≤
√

2|θ1|
‖y2(1 + ‖z2‖)− z2(1 + ‖y2‖)‖

(1 + ‖z‖2)(1 + ‖y‖2)

≤
√

2|θ1|(‖
y2 − z2

1 + ‖y‖2 ‖+ ‖ (‖z2‖ − ‖y2‖)z2

(1 + ‖z‖2)(1 + ‖y‖2)‖)

≤
√

2|θ1|(
(‖y‖ + ‖z‖)(‖y − z‖)

1 + ‖y‖2 +
‖z2‖(‖y‖+ ‖z‖)(‖y − z‖)

(1 + ‖z‖2)(1 + ‖y‖2)

=
√

2|θ1|(1 +
‖z2‖

1 + ‖z‖2 )(
‖y‖+ ‖z‖
1 + ‖y‖2 )‖y − z‖

Now, the maximization of g(u, v) =
(

1 + u2

1+u2

)(

u+v
1+v2

)

subjected to

the constraint (u, v) ∈ [0, R]2, for arbitrary R, furnishes u = R and v =

R ∧ (
√

R2 + 1−R) so that, letting R = (4 +
√

2|θ1|e2|λ1|)(2 +
√

2|θ2|e2|λ2|)
we have

ι1 ≤
√

2|θ1|
(

1 +
R2

1 + R2

)

(

R + (R ∧ (
√

R2 + 1−R))

1 + (R ∧ (
√

R2 + 1−R))2

)

Analogously, since z ∈ B[0, r]←→ zt ∈ B[0, r], we have

‖H2(x, y)−H2(x, z)‖ ≤
√

2|θ2|
(

1 +
‖(zt)2‖

1 + ‖zt‖2
)(‖yt‖+ ‖zt‖

1 + ‖yt‖2
)

‖yt−zt‖ ≤
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√
2|θ2|

(

1 +
R2

1 + R2

)

(

R + (R ∧ (
√

R2 + 1−R))

1 + (R ∧ (
√

R2 + 1−R))2

)

‖y − z‖

and

ι2 ≤
√

2|θ2|
(

1 +
R2

1 + R2

)

(

R + (R ∧ (
√

R2 + 1−R))

1 + (R ∧ (
√

R2 + 1−R))2

)

.

In this way, by Theorem 2.1, existence and uniqueness of solution of the
integral equation is implied by µ1κ1ι1 + µ2κ2ι2 < 1 and, consequently, by :

s(θ1, θ2, λ1, λ2) :=
√

2((2 +
√

2|θ2|e2|λ2|])e2|λ1||θ1|

+ (4 +
√

2|θ1|e2|λ1|)e2|λ2||θ2|) · (1 +
R2

1 + R2
)

· ( R + (R ∧ (
√

R2 + 1−R))

1 + (R ∧ (
√

R2 + 1−R))2
) < 1

Now, observe that s is a continuous function and s−1([0, 1)) ⊃ {(0, 0)}×IR2.
Finally, we remark that one can consider the situation where either Ki or
Hi takes values in the field instead of in the algebra and obtain variants of
the theorems presented thus far.
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