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On The Closed Geodesics Problem

Francesco Mercuri

Paolo Piccione

Abstract. In this paper we review some important results on the
closed geodesics problem for compact Riemannian manifolds, as the
Gromoll-Mayer Theorem, and discuss some extension of those results
to the case of Finsler and semi Rimannian manifolds.

1. Introduction.

The study of closed geodesics in a Riemannian manifold is a classical
theme of research in Riemannian geometry. A basic question is:

The closed geodesic problem: Find a (sharp) lower bound for the
number of non constant geometrically distinct1 closed geodesics on a com-
pact manifold M .

In this paper we will describe some classical results in this direction,
leading to the following:

Conjecture: On any compact Riemannian manifold there are infinitlely
many closed geodesics.

We will discuss also some partial generalizations and related open ques-
tions for the the corresponding problem for Finsler and semi-Riemannian
manifolds.

The starting point in attacking the problem is the way we look at a closed
geodesic. In fact a closed geodesic can be viewed in two different ways:

• as a closed curve which is a geodesic,

Key words: Riemannian manifolds, Finsler manifolds, semi Riemannian manifolds,
closed geodesics, Morse inequalities.
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1Two closed geodesics are geometrically distinct if one is not obtained from the other

by a rotation or an iteration.
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• as a geodesic which is a closed curve.

If we take the first point of view, our “universe” is the space of closed
curves and we try to find the ones that are geodesics; this is the variational
viewpoint. For the second point of view the “universe” is the space of
geodesics and we try to find the ones that are closed; this is the dynamical
viewpoint.

In order to determine closed curves that are geodesics, the standard
technique is critical point theory. The geodesics are the critical points of
the energy functional, and we want to estimate the number of critical points
of the functional in terms of topological invariants of the manifold.

In the second case we look at the geodesic flow in the unitary tangent
bundle. If there is a non constant closed orbit of the flow ( see Theorem 2.5),
we look at the return map, i.e. we look at an orthogonal section at a point,
call it Σ, and, for points of Σ near by the given one, to the orbit starting at
this point. This orbit will meet again Σ in a return point. We look at the
periodic points of this map, prove that are generically infinitely many, and
that this “generically” can be intended in the sense of the metrics. This is,
essentially, the point of view of dynamical systems.

The main results on the problem are the following:

Theorem 1.1. (Gromoll-Meyer) Let M be an n-dimensional simply con-
nected Riemannian manifold whose topology is sufficiently complicated.
Then there are infinitely many non trivial, geometrically distinct closed
geodesics.

Remark 1.2. The terms sufficiently complicated will be cleared in the precise
statement of the the Theorem given in section 2 (see Theorem 2.12). It is
also interesting to observe that Gromoll-Meyer’s result holds more generally
for a class of non simply connected manifolds (see Example at the end of
Section 4).

Theorem 1.3. (Klingenberg-Takens) Let M be a compact manifold. There
is a dense set of metrics on M such that every metric in this set admits
infinitely many non trivial, geometrically distinct closed geodesics.

In this paper we will be essentially interested in understanding Theo-
rem 1.1 and some generalizations. In next section we will describe the
basic critical point theory for proving Theorem 1.1, and, in the following
ones, we will discuss some generalizations of the result to the case of Finsler
and semi-Riemannian metrics.
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2. The critical point theory.

We will start this section discussing the basic critical point theory. We
will consider a connected Riemannian manifold M modeled on an Hilbert
space H and a smooth map f : M −→ R. We recall that a point x ∈ M is
critical if the differential df(x) : TxM −→ R is the zero map.

We will assume the following:

• M is a complete metric space2.
• f is smooth and bounded below.
• The following compacness condition is fullfilled:

If {xn} ⊆ M is a sequence such that |f(xn)| is bounded and
inf‖∇f(xn)‖ = 0, then {xn} has a convergent subsequence.

Remark 2.1. The last condition is known as Condition (C) or Palais-Smale
condition. It allows to carry on compactness arguments, even in the infinite
dimensional case.

In the situation above we have the Theorem of Lusternik-Schnirelman:

Theorem 2.2. (Lusternik-Schnirelman) In the hypothesis above, f has at

least3 cat(M) critical points.

Remark 2.3. For further use we we recall that the idea of the proof of
Theorem 2.2 is to study the flow of −∇f , where ∇f is the gradient of f .
Set f c = {x ∈ M : f(x) ≤ c}. If there are no critical values in [a, b] ⊆ R,

following the integral lines of −∇f , we can deform f b onto fa, so there is

no change in the topology, passing from f b to fa. If c is the only critical

value in [a, b], the category of f b at least the one of fa plus the category of

the set of critical points in f−1(c).

For a detailed proof see [20], [21].

To apply such a Theorem to the closed geodesics problem we proceed as
follows. Let M be a compact Riemannian manifold. Consider the space:

Λ̃(M) := {γ : S1 −→ M : γ ∈ C∞(S1,M)},
2With respect to the metric:

d(x, y) = inf{

∫ 1

0

‖γ̇(t)‖dt : γ : [0, 1] −→ M is a smooth curve withγ(0) = x, γ(1) = y}.

3We recall that, for a topological spaces Y ⊆ X, cat(Y, X) is defined as the minimal
number (possible infinity) of closed sets in X, contractible in X, which cover Y . Then
cat(X) := cat(X, X).
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and the energy functional:

E : Λ̃(M) −→ R, E(γ) :=
1

2

∫

S1

‖γ̇(t)‖2dt.

The “critical points” of the energy functional are the closed geodesics.

Unfortunately Λ̃(M) does not have any natural structure of complete Rie-
mannian manifold. We will then use the following strategy:

• We define a suitable complete Riemannian manifold Λ(M) which

contains Λ̃(M) as a dense subset.
• We extend the energy functional to a functional on Λ(M) which is

smooth and bounded below.
• We prove that the extended functional verify condition (C).
• We prove that the critical points of the extended functional are in

Λ̃(M) (regularity Theorem).

Remark 2.4. The choice of the completion of Λ̃(M) is, in our case, very
simple and natural (see below). However, for general variational problems,
this task is quite delicate. In fact we have to take in account two “conflicting
interests”: On one hand we want a topology in which convergence is easy to
show, which will help in proving condition (C), and on the other hand we
want a topology not too different from the natural C∞ topology, in order
to prove the regularity Theorem.

We will assume that M is a submanifold of RN , with the induced metric,
which is not restrictive by the Nash embedding Theorem. Nevertheless, it
is interesting to observe that a critical point theory setup for the closed
geodesic problem can be constructed in abstract Riemannian manifolds,
without using any specific isometric embedding into Euclidean spaces. This
abstract setup is particularly useful when dealing with complete but non
compact manifold; note in fact that in this case Nash embedding theorem
does not guarantee the existence of a closed embedding.

Consider the vector space of maps γ : S1 −→ R
N such that:

(1) γ̇(t) exist for almost all t ∈ S1, and

‖γ̇(t)‖ ∈ L2(S1,RN ) ⊆ L1(S1,RN ),

(2) γ(t) = γ(0) +
∫

S1 γ̇(t)dt, i.e., γ is absolutely continuous.

and denote this space by H1(S1,RN ). This space is an Hilbert space with
respect to the scalar product:

(γ, τ) := 〈γ(0), τ(0)〉 +

∫

S1

〈γ̇(t), τ̇ (t)〉dt.
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and the set:

Λ(M) := {γ ∈ H1(S1,RN ) : γ(t) ∈ M, ∀ t ∈ S1},
is a closed (hence complete) submanifold of H1(S1,RN ).

The tangent space of Λ(M) at γ is the space:

TγΛ(M) = {ξ ∈ H1(S1,RN ) : ξ(t) ∈ Tγ(t)M},
and the Riemannian metric is given by:

(ξ, η) :=

∫

S1

[〈ξ′, η′〉 + 〈ξ, η〉]dt,

where primes denote covariant derivative along γ and 〈·, ·〉 is the Riemann-
ian metric of M .

Then we have:

• Λ(M) is a complete Riemannian manifold.
• The energy functional extend naturally to a map E : Λ(M) −→ R

which is smooth and bounded below (obvious).
• E : Λ(M) −→ R verify condition (C) (relatively easy, see [21] for

example).
• The critical points of E are closed geodesics (easy, see [21] for ex-

ample).

There are various problems if we want to apply Theorem 2.2 to our
situation in a naive way.

• We already know that there exist infinitely many closed geodesics,
the constant ones! We can avoid this problem considering a “relative”
version of 2.2. Identifying M with the constant curves, the number of non
constant closed geodesics can be estimate in terms of the topology of the
pair (Λ(M),M). In fact, in this way we can prove:

Theorem 2.5. On a compact Riemannian manifold the is at least one non
constant closed geodesic.

• If we start with a nontrivial closed geodesic γ : S1 −→ M , we can
produce infinitely many other closed geodesics, simply “rotating” γ. We
can avoid this problem with an equivariant version of Theorem 2.2. We
consider the action:

µ : S1 × Λ(M) −→ Λ(M), µ(θ, γ)(t) = γ(t + θ),

where θ, t ∈ R/Z. The energy functional is invariant by this action and
so induces a functional defined in the quotient space Π(M) = Λ(M)/µ.
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Although Π(M) is not a manifold4, we can still prove a version of Theorem
2.2 that we can apply to this situation.

But the real problem in this approach is the following: how we can
distinguish a given closed geodesic γ : S1 −→ M from its iterates γn(t) =
γ(nt)? Theorem 2.2 and its simpler generalizations, like the ones quoted
above, are not fine enough to answer the question. So we need finer results
that we will describe now. We recall the following concepts:

• The Hessian map H(f, x) is defined as:

H(f, x) : TxM× TxM −→ R, H(f, x)(X,Y ) := X̃Ỹ (f)(x),

where X̃, Ỹ are extensions of X,Y to a neighborhood of x. If x is a
critical point of f, H(f, x)(X,Y ) does not depend on the choice of

the extensions X̃, Ỹ , and is a well defined symmetric bilinear form.
• A critical point of f is non degenerate if the Hessian map is non

degenerate.
• The index of f at a critical point is the supremum of the dimensions

of subspaces on which the Hessian is negative definite (eventually
infinite).

The behavior of a function near a non degenerate critical point is de-
scribed by the classical Morse Lemma:

Lemma 2.6. (Morse Lemma) Let H be an Hilbert space, U an open neigh-

borhood of 0 ∈ H and f : U −→ R a C2 function such that f(0) = 0 and
0 ∈ U is a non degenerate critical point. Then there exist an orthogonal
decomposition

H = H− ⊕ H+,

such that H± are invariant under the Hessian of f at 0, and, up to a local
diffeomorphism of a neigborhood V of 0 ∈ V ⊆ U , we have:

f(x) = −‖x−‖2 + ‖x+‖2, x ∈ V,

where x± are the orthogonal projections of x onto H±.

Observe that, in particular, the non degenerate critical points are iso-
lated.

Let p ∈ M be a non degenerate critical point of index λ, with f(p) = c
and suppose, for simplicity, that p is the only critical point in f−1

(

[a, b]
)

,
a < c < b. A simple excision argument, the Morse Lemma 2.6 and defor-
mation along the integral lines of −∇f give:

4In fact there are two main problems: The action of S1 is not smooth, and the non
constant curves have, in general, non conjugate isotropy groups.
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Proposition 2.7. Let A be a commutative ring with unity. Then:

Hk(f
b, fa;A) ∼= A, if k = λ, Hk(f

b, fa) = {0}, if k 6= λ,

where Hk(f
b, fa;A) is the relative k-dimensional singular homology with

coefficients in A.

As a consequence we have:

Theorem 2.8. (Morse inequalities)

cλ ≥ bλ(M; F),

where cλ is the number of critical points of index λ < ∞, F is a field,

and bλ(M; F) is the λth Betti number of M with coefficients in F, i.e.

the dimension, over F, of Hλ(M; F), the λth homology group of M with
coefficients in F.

Remark 2.9. Observe that Theorem 2.8 gives no information as to the ex-
istence of critical points of infinite index, in terms of the singular homology
of M. In the last few years there has been interest in finding other “homo-
logical invariants” that can give extimates on the existence of such critical
points (see [1], for example).

Although Theorem 2.8 gives an idea how to proceed in the proof of The-
orem 1.1, it is not yet satisfactory, since a closed geodesic γ cannot be a non
degenerate critical point of the energy. In fact it is not an isolated critical
point since the entire orbit S1γ, which is diffeomorphic to S1 if γ is not con-
stant, is a set of critical points. For dealing with this problem we consider
the analogue of Theorem 2.8 for non degenerate critical submanifolds.

Definition 2.10. A connected submanifold N ⊆ M is a non degenerate
critical submanifold if all point in N are critical points of f and for each
x ∈ N the restriction of the hessian of f to the normal space at x, is non
degenerate. The index of such a submanifold is the index of the hessian
form restricted to the normal space.

It turns out that, in this case, the nullity is the dimension of N and the
index is well defined, i.e., it is constant along N .

We can considere a small tubular neighborhood of N , for example, if N
is compact, the exponential of an ε neighborhood of the zero section of the
normal bundle, and apply 2.7 to the restriction of f to the fibres. Collecting
the local results, we get:

Theorem 2.11. If Ni, i = 1, . . . l are the non degenerate compact critical
submanifolds in f−1([a, b]) and λi is the index of Ni, we have:

H∗(f
b, fa) ∼= ⊕H∗−λi

(Mi).
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For a detailed proof, see, for example, [4].

Now we state precisely Theorem 1.1 and give an idea of the proof.

Theorem 2.12. Let M be a compact simply connected riemannian mani-
fold such that the sequence of Betti numbers βi(Λ(M)) is unbounded (with

some field of coefficients). Then M admits infinitely many prime5, non
constant, closed geodesics.

We start observing that hypothesis that M is simply connected imply
that Λ(M) is connected. Moreover compactness imply that the homology
of Λ(M) is finitely generated in any dimension, so the Betti numbers are
finite. It is interesting to observe that the simple connectedness assumption
is not really necessary in Theorem 2.12, whose main result holds also for
a class of non simply connected manifolds. What is really needed in the
proof of Theorem 2.12 is that

lim sup
i→∞

βi(ΛM) = +∞; (1)

examples of compact manifolds M that are not simply connected, whose
free loop space has some of its Betti number infinite, and that satisfies (1)
can be found at the end of Section 4.

We also recall the expression of the index form:

H(E, γ)(ξ, η) =

∫

1

0

[〈ξ′, η′〉 − 〈R(ξ, γ̇)γ̇, η〉]dt,

The constant geodesics give contribution to the homology of Λ(M) only
in dimension up to n = dim(M).

Suppose there are a finite number of prime, non constant closed geodesics,
γj, j = 1, . . . k and suppose for the moment that the orbits of the γ′

js and

of their iterates are non degenerate critical submanifolds (diffeomorphic to

S1). By the Morse index Theorem, the index of the γ′
js is finite. The basic

step is to estimate the index of the iterates γm
j . This was done by Bott (see

[5]) and a simpler version appears in [3]:

Lemma 2.13. The index of γm
j is either constant (equal to 0), or it has a

uniform linear growth in m as m → ∞.

The Lemma imply that the number of closed geodesics with a given index
is uniformly bounded and, by Theorem 2.11, so are the Betti numbers, a
contradiction.

5i.e. each one is not a non trivial covering of another closed geodesic.
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For the possibly degenerate case we need a Morse Lemma that apply
in this situation. Let H be an Hilbert space and f : U −→ R a smooth
function defined in a neighborhood of 0 ∈ H, with f(0) = 0. Suppose that
0 is an isolated critical point of index λ and finite nullity ν. Them we have
a splitting H = H±⊕H0, where H± are as in 2.6, and H0 is the kernel of the
symmetric endomorphism determined by the hessian form (dimH0 = ν). If
x ∈ H, x = x+ + x− + y, x± ∈ H±, y ∈ H0. The degenerate Morse Lemma
states that, up to a change of variables, the function takes the form:

f(x) = −‖x−‖2 + ‖x+‖2 + g(y),

for some function g, defined in a neighborhood of 0, depending only on the
y variable. A small perturbation of g with support in a small neighborhood
of 0 ∈ H0, will produce a new function with only non degenerate critical
points. The indexes of those critical points are between λ and λ + ν. So,
the change in homology passing from f−ε to f ε occurs only in dimension
between λ and λ + ν.

For the case of critical submanifolds we procede as before looking at a
small tubular neighborhood of the manifold and working fibrewise.

To proceed as in the non degenerate case we need only to control the
nullity of an iterated geodesic in terms of the nullity of the prime one.

For details of the proof we refer to [6] and [7]

Remark 2.14. The condition on the growth of the Betti numbers in Theorem
1.1 may be interpreted in terms of the topology of M as follows: In the
hypothesis of the Theorem, taking homology with rational coefficients, the
condition is satisfied if and only if the rational cohomology ring of M is
not a truncated polynomial ring in one generator. In particular if the
cohomology is not isomorphic to the cohomology of a symmetric space of
rank one (see [23]).

3. The Finsler case

In 1973, Katok give an example of a Finsler metric on S2 with only
two prime non constant closed geodesics (see [9]). Later Ziller constructed
Finsler metrics on manifolds diffeomorphic to compact symmetric spaces of
rank one having only finitely many closed geodesics (see [24]). Therefore
a Theorem analogue to 1.1, in the context of Finsler geometry is the best
possible. In this section we will discuss briefly the closed geodesic problem
for Finsler manifolds.

We recall some basic facts:

Definition 3.1. A Finsler metric on a smooth manifold M is a continuous
function F : TM −→ R such that:
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(1) F is C∞ outside the zero section,
(2) F (X) ≥ 0 and F (X) = 0 if and only if X = 0,
(3) F (tX) = tF (X) ∀t ∈ R, t ≥ 0.

(4) Let L = F 2. Then the fibre derivative dfL : TM −→ T ∗M is
regular outside the zero section.

It is easy to see that L is actually C1 on the entire tangent bundle TM .

Remark 3.2. A Riemannian metric is a Finsler metric, setting L(X) :=
〈X,X〉. In this case L is C∞ on the all TM . The low differentiability at
the zero section of a Finsler metric caracterizes the ones that do not came
from Riemannian metirc. More precisely, the function L is C2 on the all
TM if and only is the Finsler metric associated to a Riemannian metric.

For a Finsler metric there is not a unique canonical connection. We can
use the canonical symplectic structure in the cotangent bundle T ∗M and
its pull back via dfL. This is, by condition (4), a symplectic structure in

TM , and we can define geodesics using this structure (see [14] and [24], for
example). For what we are concerned, we can assume that geodesics are
critical points of the energy functional:

E(γ) :=
1

2

∫

S1

L(γ̇(t))dt.

The analogue of Theorem 1.1, in the context of Finsler manifolds, was
first proved by Matthias (see [13]). The author uses a finite dimensional
approximation of the space of closed curves, much like Milnor uses in [16]
for the fixed endpoints problem.

We can also proceed along the line described in the previous section.

We consider a fixed Riemannian metric on M and the associated manifold
Λ(M), as in section 1. We want to develop the Morse Theory for the Finsler
energy functional. To proceed as in the Riemannian case we have to work
out essentially three points:

• The energy functional in not C2, since L is not C2 on the zero
section of TM (see Remark 3.2). However it is twice differentiable
at a closed geodesic, since the tangent vector of such a curve is
nowhere zero. The gradient field is locally Lipschitzian, so it’s flow is
well defined. The part of the Theory concerning deformation along
the integral lines of the gradient is, therefore, the same as in the
Riemannian case. So we need to prove a Morse Lemma for functions
in our differentiability conditions. This has been done in [15] for
the non degenerate case and in [17] in the possibly degenerate case.
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• Prove condition (C) for the energy functional and the “regularity
Theorem”, i.e. that the critical points are actually smooth. This
was done in [14].

• We need an estimate for the index and nullity of an iterated closed
geodesic. This was done in [13] and [22].

With those two results we conclude, as in the Riemannian case:

Theorem 3.3. Let M be a compact simply connected Finsler manifold such
that the sequence of Betti numbers of Λ(M) is not bounded. Then there are
infinitely many prime closed geodesics.

We conclude this section by presenting a curious result on the existence
of infinitely many closed geodesic, in the Finsler case, from the point of
view of Hamiltonian systems.

Theorem 3.4. Let M be a compact differentiable manifold. Then, in the
set of C2 Finsler metrics, there is a dense subset such that for each metric
in this subset, the set of unit vectors whose associated geodesic is closed, is
dense in the C2 topology.

Remark 3.5. Theorem 3.4 is proved in [24]. It follows from an analogous
result for general Hamiltonian systems, where the unit tangent bundle is
replaced by a constant energy surface. It is interesting to observe that
Theorem 3.4 does not hold in the space of Riemannian metrics6, not even
in the space of symmetric Finsler metrics7. Theorem 1.3 is a much weaker
result.

4. The semi-Riemannian case

There are several obstructions to Morse theory in the case of geodesics
in manifolds endowed with a non positive definite metric tensor g (semi-
Riemannnian manifolds. First, the geodesic action functional:

E : Λ(M) −→ R, E(γ) =
1

2

∫

S1

g(γ̇, γ̇)dt

is not bounded from below and it does not satisfy condition (C); besides, the
Morse index of each critical point is infinite. Let us consider the case of sta-
tionary Lorentzian manifolds (i.e., manifolds endowed with a metric tensor
of index 1), that admit a complete timelike Killing vector field Y . Assume
also that M has a compact Cauchy surface; recall that a Cauchy surface
in a Lorentzian manifold is a spacelike hypersurface S with the property
that every inextendible causal curve intercepts S exactly once. Recall that

6The set of Riemannian metrics is not open in the space of Finsler metrics.
7A Finsler metric F is symmetric if F (−X) = F (X).
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all Cauchy surfaces of a Lorentzian manifold (assuming the existence of at
least one) are homeomorphic; for the background in Lorentzian geometry
we refer to the textbooks [2] and [18]. Lorentzian manifolds admitting a
Cauchy surface are said to be globally hyperbolic. Timelike invariance of
the metric tensor allows to determine a smooth embedded submanifold N
of ΛM with the following properties:

• E|N has the same critical points of E;
• N has the same homotopy type of Λ(M) (this uses the completeness

of the timelike Killing vector field);
• E is bounded from below and it satisfies condition (C) on each

connected component of N (this uses the compactnes of the Cauchy
surface);

• each critical point of E|N has finite Morse index;
• if a critical point is degenerate for E|N , then it is also degenerate

for E.

More precisely, N is the set of all closed curves γ in M , having Sobolev
regularity H1, for which the quantity g(γ̇, Y ) is constant almost everywhere.

The abelian group G = O(2)×R acts (isometrically) on N , and E is G-

invariant. The group O(2) acts on the parameter space S1 of the curves, and
as in the Riemannian case, this action is not smooth, but only continuous.
Nevertheless, if γ is a smooth curve, then the orbit O(2)γ is smooth, and
it is diffeomorphic to O(2) if γ is not constant. In particular, critical orbits
are always smooth. The group R acts by translation along the flow lines
of the timelike Killing vector field Y ; obviously, the actions of O(2) and of
R commute. In this situation, we define geometrically distinct two closed
geodesics that belong to different G-orbits, and that cannot be obtained one
from another by iteration. The action of R is free, the orbit space given

by the quotient ˜N = N/R is a smooth manifold and N is diffeomorphic to

the product ˜N ×R. Thus, in order to study multiplicity of distinct closed
geodesics, it suffices to study geometrically distinct critical O(2)-orbits for
the constrained functional E|

˜N .

The central result of [3], which gives the existence of infinitely many
distinct closed geodesics in a class of stationary Lorentzian manifolds, is
obtained applying equivariant Morse theory to this setup. Essential tools
for the development of the theory are a calculation of the Morse index for
each critical point of E|N , and a formula that describes its growth under
iterations. The Morse index is given in terms of symplectic invariants of
the geodesic, such as the Conley–Zehnder and the Maslov index. Using a
method for computing the index of essentially positive symmetric bilinear
forms, possibly degenerate, in terms of restrictions to possibly degenerate
subspaces, one reduces the computation of the Morse index for periodic
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geodesics to the Morse index of the corresponding fixed endpoint geodesic,
avoiding the usual assumption of orientability of the closed geodesic (see
[12]). The Morse index theorem is given in terms of a symplectic invariant
of the geodesic, called the Maslov index. The rate of growth of this index
under iteration, which is one of the main points in Gromoll and Meyer
paper, is studied in [8], where the authors prove that the index of an n-
th iterate is either bounded by a universal constant, or it grows at least
linearly in n as n → ∞.

As to the nullity of an iterate, the result is totally analogous to the
Riemannian case using the linearized Poincaré map. This setup paves the
path to an application of infinite dimensional equivariant Morse theory, in
the same spirit as Gromoll and Meyer’s celebrated result, that gives the
existence of infinitely many critical points for the functional E|

˜N .

We will now state precisely the main result in [3]. Let (M,g) be a
globally hyperbolic stationary Lorentzian manifold, and let us assume that
M admits a complete timelike Killing vector field Y. Denote by Ft, t ∈ R,
the flow of Y; clearly, if γ is a (closed) geodesic in M , then also Ft ◦ γ is a
(closed) geodesic for all t ∈ R.

In order to state the result, we need to give an appropriate notion of
geometric equivalence of closed geodesics.

Definition. Given closed geodesics γi : [ai, bi] → M , i = 1, 2, in a sta-
tionary Lorentzian manifold (M,g), we will say that they are geometrically

distinct, if there exists no t ∈ R such that the sets Ft ◦ γ1

(

[a1, b1]
)

and

γ2

(

[a2, b2]
)

coincide.

The main result of [3] is the following:

Theorem. Let (M,g) be a simply connected globally hyperbolic stationary
Lorentzian manifold having a complete timelike Killing vector field, and
having a compact Cauchy surface. Assume that the free loop space ΛM has
unbounded Betti numbers with respect to some coefficient field. Then, there
are infinitely many geometrically distinct non trivial (i.e., non constant)
closed geodesics in M .

Note that, by causality, every closed geodesic in (M,g) is spacelike. It
should be observed here that, although the notion of geometric equivalence
given above depends on the choice of a complete timelike Killing vector
field, the property of existence of infinitely many geometrically distinct
closed geodesics is intrinsic to (M,g). It is also interesting to observe that
the statement of the Theorem admits a generalization to a class of non
simply connected manifolds. Namely, the assumptions that M is simply
connected and that the Betti numbers of ΛM form an unbounded sequence
can be replaced by the single assumption that lim supk→∞ βk(ΛM) = +∞.
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Examples of non simply connected spaces M satisfying βk(ΛM ;K) =
+∞ for some small value of k but for which βk(ΛM ;K) is bounded for k
large can be obtained as follows. Consider a standard stationary Lorentzian
manifold M = S×R, where S is a compact connected manifold whose uni-
versal cover is contractible. The free loop space ΛM of M is homotopically
equivalent to the free loop space ΛS of S. Given p ∈ S, denote by ΩpS
the loop space of S based at p; the map ΛS 3 γ 7→ γ(0) ∈ S is a fibration,
whose fiber at p is ΩpS. The space ΩpS has infinitely many connected
component (π1(S) must be infinite), each of which is contractible, by the
assumption on the universal cover of S. It follows that each connected
component of ΛS is homotopically equivalent to S, and therefore, given
any coefficient field K, βk(ΛS,K) = +∞ for some k ∈ {0, . . . ,dim(S)},
while βk(ΛS;K) = 0 for all k > dim(S).
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