Necessary and Sufficient conditions for Existence of Solutions of a Divergence-type Variational Problem

José Matias

Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
E-mail address: jmatias@math.ist.utl.pt

Abstract

We look for necessary and sufficient conditions for the existence of solutions of the minimization problem $$
(P) \quad \inf \left\{\int_{\Omega} f(P D u(x)) d x: u \in u_{\zeta_{0}}+W_{0}^{m, \infty}\left(\Omega ; \mathbb{R}^{N}\right)\right\}
$$ where $P D$ is a particular type of differential operator of order m, (which we identify as of divergence type) and the boundary data $u_{\zeta_{0}}$ satisfes $P D u_{\zeta_{0}}(x)=\zeta_{0}$ for $\zeta_{0} \in \mathbb{R}$ given .

1. Introduction

The search for minimizers of

$$
\inf \left\{\int_{\Omega} f(\nabla u(x)) d x: u \in u_{0}+W_{0}^{1, \infty}(\Omega)\right\}
$$

when the integrand function f is non convex, has been undertaken extensively (see, for example, [3], [4], [8], [9] and the references therein). Dacorogna and Marcellini ([8]) showed that a necessary condition for existence of solutions to this problem is that the convex envelope of $f, f^{* *}$, is globally affine.

This work follows closely [1] where the problem is treated in the general setting of differential forms and [2] where the problem was treated in the case of the curl operator.

[^0]However, the (simpler) case of divergence was not explicitely treated. In this work, we deal with the problem for a particular type of differential operators, that namely comprise the divergence operator.

In particular, combining this work with the results of [1], [7] and [2], for $d u$ a differential form of order k in $\mathbb{R}^{3},(0 \leq k \leq 2)$, the problem of finding necessary and sufficient conditions for existence of solutions of
$(P) \quad \inf \left\{\int_{\Omega} f(d u(x)) d x: u \in u_{\zeta_{0}}+W_{0}^{1, \infty}\left(\Omega ; \mathbb{R}\binom{n}{k}\right)\right\}$
where the boundary data $u_{\zeta_{0}}$ satisfies $d u_{\zeta_{0}}=\zeta_{0}$, for ζ_{0} a given vector in $\mathbb{R}^{\binom{n}{k}, \text { becomes completely solved. }}$

2. Preliminaries

We start with some notations which are used throughout this paper. Although these notations are somewhat standard we mention them here for the sake of completeness.

- \mathbb{R}_{0}^{+}denotes the set of all non-negative real numbers.
- For $E \subseteq \mathbb{R}^{N}, E \neq \emptyset$, we write span E to denote the subspace spanned by E.
- Let W be a subspace of \mathbb{R}^{N}. We write $\operatorname{dim} W$ to denote the dimension of W.
- H^{k} denotes the k-dimensional Hausdorff measure.
- $B(\Omega)$ denotes the Borel σ-algebra of subsets of Ω.
- co U denotes the convex hull of $U \subseteq \mathbb{R}^{N}$ and $\overline{c o} U$ its closure.
- For a function $f: \mathbb{R}^{N} \rightarrow \mathbb{R}, f^{* *}$ denotes the convex envelope of f, that is,

$$
f^{* *}=\inf \{g: g \text { convex, } g \leq f\} .
$$

- Ω denotes an open bounded subset of \mathbb{R}^{n}, and we denote its Lebesgue measure by meas (Ω).
- We denote by $B_{n}(x, \epsilon)$ the open ball in \mathbb{R}^{n} centered at x with radius ϵ.
- the letter C will be used throughout this work to indicate a constant whose value might change fro line to line.
- We use the standard multi-index notation: for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, $\alpha_{j} \in \mathbb{N}, j=1, \ldots, n,|\alpha|=\alpha_{1}+\ldots+\alpha_{n}$, and for $u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}, \partial^{\alpha} u_{i}$
denotes the partial derivative

$$
\partial^{\alpha} u_{i}=\frac{\partial^{|\alpha|} u_{i}}{d x_{1}^{\alpha_{1}} d x_{2}^{\alpha_{2}} \ldots d x_{n}^{\alpha_{n}}} .
$$

3. Statement of the problem

For $P D$ as above and for $f: \mathbb{R} \rightarrow \mathbb{R}$ a continuous function, we look for necessary and sufficient conditions for existence of solutions of the following minimization problem:
$(P) \quad \inf \left\{\int_{\Omega} f(P D u(x)) d x: u \in u_{\zeta_{0}}+W_{0}^{m, \infty}\left(\Omega ; \mathbb{R}^{N}\right)\right\}$
where:
a) for $i=1, \ldots, N, A_{i}=\left\{\alpha, 0<|\alpha| \leq m_{i}\right\}$ is a set of multi-indices, where $m_{i} \in \mathbb{N}_{1}$ and for $u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}, P D$ is the linear partial differential operator given by

$$
P D u=\sum_{i=1}^{N} \sum_{\alpha \in A_{i}} c_{\alpha, i} \partial^{\alpha} u_{i},
$$

under one of the following hypothesis:

$$
\left(H_{1}\right) \quad \exists i \in\{1, \ldots, N\}:|\alpha|=m_{i}, \forall \alpha \in A_{i} .
$$

or
$\left(H_{2}\right) \quad \exists i \in\{1, \ldots, N\}, \exists j \in\{1 \ldots, n\}: \alpha_{j}=$ constant, $\forall \alpha \in A_{i}$.
b) the boundary data $u_{\zeta_{0}}$ satisfies $P D u_{\zeta_{0}}(x)=\zeta_{0}$, for $\zeta_{0} \in \mathbb{R}$ given, and $m=\max \left\{m_{i}, i=1, \ldots, N\right\}$,

It will be helpfull to consider the auxiliary problem

$$
\left(P^{* *}\right) \quad \inf \left\{\int_{\Omega} f^{* *}(P D u(x)) d x: u \in u_{\zeta_{0}}+W_{0}^{m, \infty}\left(\Omega ; \mathbb{R}^{N}\right)\right\}
$$

where $f^{* *}$ is the convex envelpe of f. By convexity of $f^{* *}$, using Jensen's inequality and the density of C_{c}^{∞} in $W_{0}^{m, \infty}$, it is easy to see that

$$
\inf \left(P^{* *}\right)=f^{* *}\left(\zeta_{0}\right) \operatorname{meas}(\Omega)
$$

4. The Approximation Lemma

In this section we prove an approximation lemma which will be used to establish suufficient conditions for the existence of solutions of problem (P). This result also allows us to prove a relaxation result which states that $\inf (P)=\inf \left(P^{* *}\right)$.

Lemma 4.1. Let $\Omega \subset \mathbb{R}^{n}$ open, bounded and let $t \in[0,1]$ and $\zeta, \eta \in \mathbb{R}$. Let $\phi \in W^{m, \infty}\left(\Omega ; \mathbb{R}^{N}\right)$ be such that $P D \phi=t \zeta+(1-t) \eta$. Then, for every $\epsilon>0$, there exist $u \in \phi+W_{0}^{m, \infty}\left(\Omega ; \mathbb{R}^{N}\right)$ and $\Omega_{\zeta}, \Omega_{\eta}$, disjoint open subsets of Ω such that

$$
\left\{\begin{array}{c}
\left|\operatorname{meas}\left(\Omega_{\zeta}\right)-t \operatorname{meas}(\Omega)\right| \leq \epsilon \tag{4.1}\\
\left|\operatorname{meas}\left(\Omega_{\eta}\right)-(1-t) \operatorname{meas}(\Omega)\right| \leq \epsilon \\
u=\phi \text { in a neighbourhood of } \partial \Omega \\
\|u-\phi\|_{L^{\infty}} \leq C \epsilon
\end{array}\right\} \begin{aligned}
& P D u(x)=\left\{\begin{array}{l}
\zeta \operatorname{in} \Omega_{\zeta} \\
\eta \text { in } \Omega_{\eta}
\end{array}\right. \\
& \operatorname{dist}(P D u(x),[\zeta, \eta]) \leq C \epsilon, \text { a.e. in } \Omega,
\end{aligned}
$$

where $[\zeta, \eta]$ denotes the closed interval with endpoints ζ and η.

Proof. We are assuming that $\zeta \neq \eta$, otherwise the result is trivial since it suffices to take $u=\phi$. We follow here the ideas presented in [2].

Without loss of generality we may assume that Ω is the unit cube centered at the origin with its faces parallel to the coordinate axes. Indeed, if this is not the case, we can express Ω as the disjoint union of cubes whose faces are parallel to the coordinate axes plus a set of small measure; in this case a solution u for (4.1) with respect to Ω can be constructed from a solution of (4.1) when Ω is the unit cube by setting $u=\phi$ on the set of small measure and by using homothetics and translations in each of the small subcubes.

Let $\epsilon>0$, let $\Omega_{\epsilon} \subset \subset \Omega$ and let $h \in C_{0}^{\infty}(\Omega)$ and $L=L(\Omega)$ be such that

$$
\left\{\begin{array}{l}
\text { meas }\left(\Omega \backslash \Omega_{\epsilon}\right) \leq \frac{\epsilon}{2} \\
0 \leq h(x) \leq 1, \forall x \in \Omega \\
h(x)=1, \forall x \in \Omega_{\epsilon} \\
\left|D^{k} h(x)\right| \leq L \epsilon^{-k}, \forall x \in \Omega \backslash \Omega_{\epsilon}, \forall 0<k \leq m
\end{array}\right.
$$

Let $\delta>0$. Suppose first that $P D$ satisfies $\left(H_{1}\right)$ and that $N=1$. Let A be the set of all multi-indices interveening in $P D$, and let $\overline{\alpha_{1}}=\max \left\{\alpha_{1}, \alpha \in\right.$ $A\}$. Select one $\bar{\alpha} \in A$ such that its first component equals $\overline{\alpha_{1}}$ (there could be more than one). Notice that w.l.o.g. we are assuming that $\overline{\alpha_{1}}>0$ (otherwise, take other variable involved). By a standard procedure we may construct a C^{∞} function $g:[0,1] \rightarrow \mathbb{R}$ and sets I_{ζ}, I_{η} which are unions of dispoint open subintervals of $[0,1]$, so that

$$
\left\{\begin{array}{l}
g^{\overline{\alpha_{1}}}\left(x_{1}\right)= \begin{cases}1-t & \text { if } x_{1} \in I_{\zeta} \\
-t & \text { if } x_{1} \in I_{\eta}\end{cases} \\
g^{\overline{\alpha_{1}}}\left(x_{1}\right) \in[-t, 1-t], \forall x_{1} \in[0,1], \\
\left|\operatorname{meas}\left(I_{\zeta}\right)-t\right| \leq \frac{\epsilon}{2}, \\
\left|\operatorname{meas}\left(I_{\eta}\right)-(1-t)\right| \leq \frac{\epsilon}{2}, \\
\left.\left|g\left(x_{1}\right)\right| \leq \delta, \mid g^{\prime}\left(x_{1}\right)\right) \leq \delta, \ldots,\left|g^{\overline{\alpha_{1}}-1}\left(x_{1}\right)\right| \leq \delta \forall x_{1} \in[0,1]
\end{array}\right.
$$

Let

$$
\Omega_{\zeta}:=\left\{x \in \Omega_{\epsilon}: x_{1} \in I_{\zeta}\right\},
$$

and

$$
\Omega_{\eta}:=\left\{x \in \Omega_{\epsilon}: x_{1} \in I_{\eta}\right\}, .
$$

We now define the function $w \in C^{\infty}(\bar{\Omega})$ by

$$
w(x)=\frac{1}{C_{\bar{\alpha}}\left(\alpha_{2}!\ldots \alpha_{n}!\right)} g\left(x_{1}\right) x_{2}^{\overline{\alpha_{2}}} \ldots x_{n}^{\overline{\alpha_{n}}}(\zeta-\eta) .
$$

If $u: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}, N>1$, the same process works with the necessary adaptations. In fact, we just need to construct w_{1} as before (i.e. like w in the case $N=1$, regarding the component u_{1} of u) and then set;

$$
w=\left(w_{1}, 0, \ldots, 0\right) .
$$

(where, once again, we assumed w.l.o.g. that the component u_{1} is involved by the operator $P D$.)

We claim that the function $u: \Omega \rightarrow \mathbb{R}$ given by

$$
u=\phi+h w
$$

satisfies the properties listed in (4.1). Indeed, since $h \equiv 1$ in Ω_{ϵ}, we have

$$
\begin{aligned}
P D(u) & =P D \phi+P D(h w) \\
& =t \zeta+(1-t) \eta+g^{\overline{\alpha_{1}}}\left(x_{1}\right)(\zeta-\eta)
\end{aligned}
$$

so that

$$
P D u(x)= \begin{cases}\zeta & \text { in } \Omega_{\zeta} \\ \eta & \text { in } \Omega_{\eta}\end{cases}
$$

Using the fact that $h \leq 1$ and $g\left(x_{1}\right) \mid \leq \delta$, it is possible to choose δ sufficiently small with respect to ϵ so that $\|u-\phi\|_{\infty}=\|h w\|_{\infty}<\epsilon$.

On he other hand,

$$
\begin{align*}
P D u & =P D \phi+P D(h w) \\
& =t \zeta+(1-t) \eta+h g^{\overline{\alpha_{1}}}\left(x_{1}\right)(\zeta-\eta)+R(h, \alpha) \tag{4.2}\\
& =\left(t+h g^{\overline{\alpha_{1}}}\left(x_{1}\right)\right) \zeta+\left(1-\left(t+h g^{\overline{\alpha_{1}}}\left(x_{1}\right)\right)\right) \eta+R(h, \alpha),
\end{align*}
$$

where, using the estimates on the derivatives of h and g, we can once again choose δ sufficiently small with respect to ϵ, in order to obtain

$$
\begin{equation*}
|R(h, \alpha)| \leq \epsilon . \tag{4.3}
\end{equation*}
$$

Since $0 \leq t+h g^{\overline{\alpha_{1}}}\left(x_{1}\right) \leq 1$, by (4.2) and (4.3) we conclude that

$$
\operatorname{dist}(P D u(x),[\zeta, \eta]) \leq|R(h, \alpha)| \leq \epsilon \text {, a.e. in } \Omega \text {. }
$$

The proof of the remaining statements f (4.1) is straightforward.
Suppose now that $P D$ satisifes $\left(H_{2}\right)$. The process is similar, just constructing w using one of the lowest order derivatives.

Theorem 4.1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ continuous. Then

$$
\inf (P)=\inf \left(P^{* *}\right) .
$$

Proof. The inequality $\inf (P) \geq \inf \left(P^{* *}\right)$ is trivial. We will use the fact that $\inf \left(P^{* *}\right)=f^{* *}\left(\zeta_{0}\right) \operatorname{meas}(\Omega)$ to prove the reverse inequality.

Given $\zeta_{0} \in \mathbb{R}$ there exist $t_{i}>0$ and $\zeta_{i} \in \mathbb{R}$ such that $\sum_{i=1}^{2} t_{i}=1, \zeta_{0}=$ $\sum_{i=1}^{2} t_{i} \zeta_{i}$ and

$$
f^{* *}\left(\zeta_{0}\right)=\sum_{i=1}^{2} t_{i} f\left(\zeta_{i}\right)
$$

Applying the previous lemma to ζ_{0} and $u_{\zeta_{0}}$ we obtain a sequence $u_{n} \in$ $u_{\zeta_{0}}+W_{0}^{m, \infty}(\Omega)$, and $\Omega_{i}, i=1,2$, disjoint open subsets of Ω such that

$$
\left\{\begin{array}{l}
\left|\operatorname{meas}\left(\Omega_{i}\right)-t_{i} \operatorname{meas}(\Omega)\right| \leq \frac{1}{n}, i=1,2, \\
\left\|u_{n}-u_{\zeta_{0}}\right\|_{\infty} \leq \frac{C}{n} \\
P D u_{n}(x)=\zeta_{i} \text { in } \Omega_{i}, i=1,2 \\
\operatorname{dist}\left(P D u_{n}(x), \operatorname{co}\left\{\zeta_{1}, \zeta_{2}\right\}\right) \leq \frac{C}{n}, \text { a.e. in } \Omega .
\end{array}\right.
$$

The sequence u_{n} is admissible for problem (P), so we have

$$
\begin{aligned}
& \inf (P) \leq \lim _{n \rightarrow \infty} \int_{\Omega} f\left(P D u_{n}(x)\right) d x \\
& =\lim _{n \rightarrow \infty}\left(\int_{\Omega \backslash \bigcup_{i=1}^{2} \Omega_{i}} f\left(P D u_{n}(x)\right) d x+\sum_{i=1}^{2} \int_{\Omega_{i}} f\left(\zeta_{i}\right) d x\right) \\
& \leq \lim _{n \rightarrow \infty}\left(\int_{\Omega \backslash \bigcup_{i=1}^{2} \Omega_{i}} f\left(P D u_{n}(x)\right) d x+\sum_{i=1}^{2} f\left(\zeta_{i}\right) t_{i} \operatorname{meas}(\Omega)+\frac{C}{n}\right) \\
& =f^{* *}\left(\zeta_{0}\right) \operatorname{meas}(\Omega)=\inf \left(P^{* *}\right),
\end{aligned}
$$

where

$$
\lim _{n \rightarrow \infty} \int_{\Omega \backslash \cup_{i=1}^{2} \Omega_{i}} f\left(P D u_{n}(x)\right) d x=0
$$

since meas $\left(\Omega \backslash \cup_{i=1}^{2} \Omega_{i}\right) \leq \frac{2}{n}$ and by the continuity of f, the sequence $\left(f\left(P D u_{n}().\right)\right)$ is uniformly bounded.

5. Necessary Conditions

We look for necessary conditions for the existence of solutions of the problem

$$
(P) \quad \inf \left\{\int_{\Omega} f(P D u(x)) d x: u \in u_{\zeta_{0}}+W^{m, \infty}\left(\Omega ; \mathbb{R}^{N}\right)\right\}
$$

where the boundary data $u_{\zeta_{0}}$ satisfies $P D U_{\zeta_{0}}(x)=\zeta_{0}$, for $\zeta_{0} \in \mathbb{R}$ given and $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous.

The set

$$
K:=\left\{\zeta \in \mathbb{R}: f^{* *}(\zeta)<f(\zeta)\right\}
$$

will play an important role in this analysis.
Proposition 5.1. Suppose u solves (P). Then u is a solution of

$$
\begin{cases}f(P D u)=f^{* *}(P D u) & \text { a.e. in } \Omega \tag{I}\\ u=u_{\zeta_{0}} & \text { on } \partial \Omega\end{cases}
$$

Proof. If u is a solution of (P) then clearly $u=u_{\zeta_{0}}$ on $\partial \Omega$. On the other hand, by Theorem (4.1), we know that

$$
\inf (P)=\inf \left(P^{* *}\right)=f^{* *}\left(\zeta_{0}\right) \operatorname{meas}(\Omega)
$$

Hence, by convexity of $f^{* *}$, Jensen's inequality and by density, we have that

$$
\begin{aligned}
& f^{* *}\left(\zeta_{0}\right) \operatorname{meas}(\Omega)=\inf (P)=\int_{\Omega} f(P D u(x)) d x \\
& \geq \int_{\Omega} f^{* *}\left(P D u_{n}(x)\right) d x \geq f^{* *}\left(\frac{1}{\operatorname{meas}(\Omega)} \int_{\Omega} P D u(x) d x\right) \operatorname{meas}(\Omega) \\
& =f^{* *}\left(\frac{1}{\operatorname{meas}(\Omega)} \int_{\Omega} \zeta_{0}+P D\left(u(x)-u_{\zeta_{0}}(x)\right) d x\right) \operatorname{meas}(\Omega) \\
& =f^{* *}\left(\zeta_{0}\right) \operatorname{meas}(\Omega) .
\end{aligned}
$$

It follows that $f(P D U(x))=f^{* *}(P D u(x))$ for a.e. $x \in \Omega$.
Remark 5.1. When ζ_{0} is a vector (for instance in the case of the gradient or the curl) there is another necessary condition related to the existence of directions of strict convexity for $f^{* *}$ at ζ_{0}. However, in this simpler case, $f^{* *}$ is affine in each connected component of K.

6. Sufficient Conditions

Recall that

$$
K=\left\{\zeta \in \mathbb{R}: f^{* *}(\zeta)<f(\zeta)\right\},
$$

and that the boundary data $u_{\zeta_{0}}$ satisfies $P D u_{\zeta_{0}}=\zeta_{0}$. Our main result in this section is the following
Theorem 6.1. Let $K \subset \mathbb{R}$ be bounded and connected and let $\zeta_{0} \in K$. Then, if $u \in W^{m, \infty}\left(\Omega ; \mathbb{R}^{N}\right)$ is a solution of

$$
\left(I_{1}\right) \quad\left\{\begin{array}{c}
P D u \in \partial K \\
u=u_{\zeta_{0}} \text { on } \partial \Omega
\end{array}\right.
$$

then u is also a solution of (P).

Proof. Since $f^{* *}$ is affine in \bar{K} at ζ_{0}, if u is a solution of $\left(I_{1}\right)$, then there exist $a, b \in \mathbb{R}$, such that $f^{* *}(P D u)=a P D u+b$. As $P D u \in \partial K$, we have that

$$
\begin{align*}
\int_{\Omega} f(P D u(x)) d x & =\int_{\Omega} f^{* *}(P D u(x)) d x \\
& =\int_{\Omega} a P D u(x)+b d x \tag{6.4}
\end{align*}
$$

Since

$$
\int_{\Omega} a\left(u(x)-u_{\zeta_{0}}(x)\right) d x=0,
$$

and hence

$$
\int_{\Omega} a P D u(x) d x=\int_{\Omega} a \zeta_{0} d x
$$

we conclude that

$$
\begin{aligned}
\int_{\Omega} f(P D u(x)) d x & =\int_{\Omega} a \zeta_{0}+b d x \\
& =f^{* *}\left(\zeta_{0}\right) \operatorname{meas}(\Omega) \\
& =\inf \left(P^{* *}\right)=\inf (P)
\end{aligned}
$$

that is, u is a non-trivial solution of (P). Notice that, since $\zeta_{0} \in \partial K, u_{\zeta_{0}}$ is not a solution of $\left(I_{1}\right)$, and so, by Proposition (4.1), it is not a solution of (P) either. If $f^{* *}$ is globally affine the equalities (6.4) hold trivially and so the result follows as in the first case.

Before proving existence of solutions to problem $\left(I_{1}\right)$, we need the following definitions:

Definition 6.1. Let $\Omega \subseteq \mathbb{R}^{n}$ be an open set. For $\theta>0$, let W_{θ} be the set of all functions $u \in C_{\text {piec }}^{m}\left(\bar{\Omega} ; \mathbb{R}^{N}\right)$ for which there exists $\Omega_{\theta} \subset \Omega$ such that meas $\left(\Omega \backslash \Omega_{\theta}\right) \leq \theta$, and PDu is piecewise constant in Ω_{θ}.

Definition 6.2. Let $E ; S \subseteq \mathbb{R}$. We say that S has the relaxation property with respect to E, if, for every bounded open set $\Omega \subseteq \mathbb{R}^{n}$ and for every map u_{ζ} satisfying $P D u_{\zeta}=\zeta \in \operatorname{int} S$, there exists a sequence $u: n \in W_{\frac{1}{n}}$ such
that

$$
\left\{\begin{array}{l}
u_{n} \in u_{\zeta}+W_{0}^{m, \infty}\left(\Omega ; \mathbb{R}^{N}\right) \\
u_{n} \rightarrow u_{\zeta} \text { in } L^{\infty}\left(\Omega ; \mathbb{R}^{N}\right), P D u_{n} \stackrel{*}{\stackrel{*}{*} \text { in } L^{\infty}(\Omega)} \\
P D u_{n}(x) \in E \cup \operatorname{int} S \text { a.e. in } \Omega \\
\lim _{n \rightarrow+\infty} \int_{\Omega} \operatorname{dist}\left(P D u_{n}(x), E\right) d x=0
\end{array}\right.
$$

For the proof of existence of solutions to problem $\left(I_{1}\right)$, we will need to show that $\operatorname{co}(\partial K)$ has the relaxation property with respect to ∂K. The following lemma provides a way of doing this.

Lemma 6.1. Let $E, E_{\delta} \subseteq \mathbb{R}$, for $\left.\delta \in\right] 0, \delta_{0}[$, be compact sets such that
i) $\operatorname{co} E_{\delta} \subset$ intco E for every $\left.\delta \in\right] 0, \delta_{0}[$;
ii) $\forall \epsilon>0, \exists \delta(\epsilon)>0$, such that, $\forall \delta \in] 0, \delta(\epsilon)\left[, \rho \in E_{\delta} \Rightarrow \operatorname{dist}(\rho, E) \leq \epsilon\right.$;
iii) if $\rho \in \operatorname{intco} E$, then $\rho \in \operatorname{co} E_{\delta}$, for every $\delta>0$ sufficiently small.

Then coE has the relaxation property with respect to E.

Proof. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set and let $u: \Omega \rightarrow \mathbb{R}^{N}$ be a function satisfying

$$
P D u=\zeta \in \operatorname{intco} E .
$$

We claim that there exists a sequence $u_{n} \in W_{\frac{1}{n}}$ such that

$$
\left\{\begin{array}{l}
u_{n} \in u+W_{0}^{m, \infty}\left(\Omega ; \mathbb{R}^{N}\right) \\
u_{n} \rightarrow u \text { in } L^{\infty}\left(\Omega ; \mathbb{R}^{N}\right), P D u_{n} \stackrel{*}{\rightharpoonup} \zeta \text { in } L^{\infty}(\Omega) \\
P D u_{n}(x) \in E \cup \operatorname{intco} E \text { a.e. in } \Omega \\
\lim _{n \rightarrow+\infty} \int_{\Omega} \operatorname{dist}\left(P D u_{n}(x), E\right) d x=0
\end{array}\right.
$$

Fix $\epsilon>0$ and let $\delta=\delta(\epsilon)$ be determined according to $i i)$. By $i i i$), we may find $\delta_{1}<\delta$ such that

$$
\zeta \in \operatorname{intco} E \Rightarrow \zeta \in \operatorname{co} E_{\delta_{1}} .
$$

Therefore we may write $\zeta=t \zeta_{1}+(1-t) \zeta_{2}$ with $\zeta_{1}, \zeta_{2} \in E_{\delta_{1}}$. By property i), we can choose $\left.\epsilon^{\prime} \in\right] 0, \epsilon\left[\right.$ such that the ϵ^{\prime}-neighbourhood of $\operatorname{co} E_{\delta_{1}}$ is contained in intcoE. Using the Approximation Lemma (4.1) we may find
$u_{\epsilon} \in C_{\text {piec }}^{m}\left(\bar{\Omega} ; \mathbb{R}^{N}\right)$ and Ω_{1}, Ω_{2} disjoint open subsets of Ω, such that

$$
\left\{\begin{array}{l}
\operatorname{meas}\left(\Omega \backslash\left(\Omega_{1} \cup \Omega_{2}\right)\right)=O\left(\epsilon^{\prime}\right) \\
u_{\epsilon}=u \text { near } \partial \Omega \\
\left\|u_{\epsilon}-u\right\|_{\infty} \leq C \epsilon^{\prime}
\end{array}\right] \begin{aligned}
& \zeta_{1} \text { in } \Omega_{1} \\
& P D u_{\epsilon}(x)=\left\{\begin{array}{l}
\zeta_{2} \text { in } \Omega_{2}
\end{array}\right. \\
& \operatorname{dist}\left(P D u_{\epsilon}(x), \operatorname{co} E_{\delta_{1}}\right) \leq C \epsilon^{\prime}, \text { a.e in } \Omega
\end{aligned}
$$

Now, the choice of ϵ^{\prime} ensures that

$$
P D u_{\epsilon} \in \operatorname{co} E,
$$

and in view of $i i)$, taking into account that $\operatorname{dist}\left(P D u_{\epsilon}, E\right)$ is a bounded function, we conclude that

$$
\begin{aligned}
\int_{\Omega} \operatorname{dist}\left(P D u_{\epsilon}(x), E\right) d x & =\int_{\Omega_{1}} \operatorname{dist}\left(\zeta_{1}, E\right) d x+\int_{\Omega_{2}} \operatorname{dist}\left(\zeta_{2}, E\right) d x \\
& +\int_{\Omega \backslash\left(\Omega_{1} \cup \Omega_{2}\right)} \operatorname{dist}\left(P D u_{\epsilon}(x) d x\right. \\
& \leq \epsilon \operatorname{meas}\left(\Omega_{1}\right)+\epsilon \operatorname{meas}\left(\Omega_{2}\right)+O\left(\epsilon^{\prime}\right)=O(\epsilon),
\end{aligned}
$$

so that the claim is obtained by letting $\epsilon \rightarrow 0^{+}$. Finally, we need to check if $u_{n} \in W_{\frac{1}{n}}$. Letting $2 \epsilon^{\prime}=\frac{1}{n}$, we have that $\left(u_{n}\right) \subset C_{\text {piec }}^{m}\left(\bar{\Omega} ; \mathbb{R}^{N}\right)$ and

$$
P D u_{n}(x)=\left\{\begin{array}{l}
\zeta_{1} \text { in } \Omega_{1} \\
\zeta_{2} \text { in } \Omega_{2}
\end{array}\right.
$$

where $\operatorname{meas}\left(\Omega \backslash\left(\Omega_{1} \cup \Omega_{2}\right)\right) \leq \frac{1}{n}$. Thus, $u_{n} \in W_{\frac{1}{n}}$.
In what follows, we will need the following result of convex analysis, which can be found in [11].
Proposition 6.1. Let $E \subset \mathbb{R}$ be compact and such that intco $E \neq \emptyset$. Let $E_{\text {ext }}$ denote the set of extreme points of $\mathrm{co} E$. Then, there exists a convex a lower semicontinuous function $\psi: \mathbb{R} \rightarrow \mathbb{R} \cup\{+\infty\}$ such that

$$
E_{\text {ext }}=\{\zeta \in \mathbb{R}: \psi(\zeta)=0\}
$$

and

$$
\operatorname{co} E=\operatorname{co} E_{\mathrm{ext}}=\{\zeta \in \mathbb{R}: \psi(\zeta) \leq 0\}
$$

Finally we are in position to state the following

Theorem 6.2. Let $\Omega \subseteq \mathbb{R}^{n}$ be an open set and let $E \subset \mathbb{R}$ be a compact set. Let $\phi \in C_{\text {piec }}^{m}\left(\bar{\Omega} ; \mathbb{R}^{N}\right)$ be such that $P D \phi$ is piecewise constant in Ω an $P D \phi \in E \cup$ intco E. Then there exists $u \in C\left(\bar{\Omega} ; \mathbb{R}^{N}\right)$ with $P D u \in L^{\infty}(\Omega)$ and satisfying

$$
\left\{\begin{array}{c}
P D u(x) \in E \text { a.e. } x \in \Omega \\
u(x)=\phi(x), \forall x \in \partial \Omega
\end{array}\right.
$$

Proof. Assume w.l.o.g. that Ω is bounded and that $\left.\phi \in C^{m}(\bar{\Omega}) ; \mathbb{R}^{N}\right)$. Assume also that intco $E \neq \emptyset$ since otherwise the result is trivial (it suffices to take $u \equiv \phi$).

Step 1

Under the previous assumptions we show that $\operatorname{co} E$ has the relaxation property with respect to E. For this purpose we use Lemma (6.1). Choose $\alpha_{0} \in \operatorname{intco} E$ and, for $\left.\delta \in\right] 0,1[$, define the sets

$$
E_{\delta}:=\delta \alpha_{0}+(1-\delta) E .
$$

Notice that these sets are compact since E is compact. If $\rho \in E_{\delta}$ then $\rho=\delta \alpha_{0}+(1-\delta) \bar{\rho}$, with $\bar{\rho} \in E$, and hence

$$
\operatorname{dist}(\rho, E) \leq|\rho-\bar{\rho}|<\epsilon,
$$

provided we take $\delta(\epsilon)=\frac{\epsilon}{\text { diamcoE }}$. This proves property $\left.i i\right)$. As for property iii), if $\rho \in \operatorname{intco} E$, since

$$
\lim _{\delta \rightarrow 0}\left|\left(\frac{\rho}{1-\delta}-\frac{\delta}{1-\delta} \alpha_{0}\right)-\rho\right|=0
$$

it follows that

$$
\frac{\rho}{1-\delta}-\frac{\delta}{1-\delta} \alpha_{0} \in \operatorname{co} E
$$

for $\delta>0$ sufficiently small, and so $\rho \in \delta \alpha_{0}+(1-\delta) \operatorname{co} E=\operatorname{co} E_{\delta}$.
It remains to show property i). Since $\alpha_{0} \in \operatorname{intco} E$ there exists $r>0$ such that

$$
\begin{equation*}
B_{1}\left(\alpha_{0}, r\right) \subset \operatorname{co} E . \tag{6.5}
\end{equation*}
$$

Therefore, it suffices to show that

$$
B_{1}\left(\delta \alpha_{0}+(1-\delta) \rho, \delta r\right) \subset \operatorname{co} E, \forall \rho \in \operatorname{co} E .
$$

Let $x \in B_{1}\left(\delta \alpha_{0}+(1-\delta) \rho, \delta r\right)$ and let

$$
\alpha:=\frac{x-(1-\delta) \rho}{\delta} .
$$

Notice that $\left|\delta \alpha-\delta \alpha_{0}\right|<\delta r$ and so, from (6.5), we have that $\alpha \in \operatorname{co} E$, and we conclude that

$$
x=\delta \alpha+(1-\delta) \rho \in \operatorname{co} E .
$$

Step 2

Assume first that $P D \phi(x) \in \operatorname{intco} E$ for a.e. $x \in \Omega$. Since E is compact and intco $E \neq \emptyset$, by Proposition (6.1) applied to $E_{\text {ext }}$, we conclude that there exists a convex and lower semicontinuous function

$$
\psi: \mathbb{R} \rightarrow \mathbb{R} \cup\{+\infty\}
$$

such that

$$
\begin{equation*}
E=E_{\mathrm{ext}}=\{\zeta \in \mathbb{R}: \psi(\zeta)=0\} \tag{6.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{co} E=\operatorname{co} E_{\mathrm{ext}}=\{\zeta \in \mathbb{R}: \psi(\zeta) \leq 0\} \tag{6.7}
\end{equation*}
$$

Let V be the set of fuctions $u: \Omega \rightarrow \mathbb{R}^{N}$ so that there exists $u_{n} \in W_{\frac{1}{n}}$ satisfying $u_{n}=\phi$ on $\partial \Omega, P D u_{n} \in E \cup$ intco E a.e. in Ω, and $u_{n} \rightarrow u$ in $L^{\infty}\left(\Omega ; \mathbb{R}^{N}\right)$. Notice that $\phi \in V$ and V is a complete metric space when endowed with the C^{0} norm.

The compactness of E and $\operatorname{co} E$, the convexity and lower semicontinuity of ψ and (6.6), (6.7) yield

$$
\begin{align*}
& V \subset\left\{u \in C\left(\bar{\Omega} ; \mathbb{R}^{N}\right): P D u \in L^{\infty}(\Omega),\right. \\
& u=\phi \text { on } \partial \Omega, \psi(P D u(x)) \leq 0 \text { a.e. } x \in \Omega\} . \tag{6.8}
\end{align*}
$$

For $u \in V$, set

$$
L(u):=\int_{\Omega} \psi(P D u(x)) d x .
$$

From the lower semicontinuity and convexity of ψ we have that, for every $u \in V$,

$$
\begin{equation*}
L(u) \leq \liminf _{u_{n} \rightarrow, u_{n} \in V} L\left(u_{n}\right) . \tag{6.9}
\end{equation*}
$$

Also, by (6.8), $L(u) \leq 0$ and

$$
\begin{equation*}
L(u)=0 \Leftrightarrow P D u(x) \in E \text { for a.e. } x \in \Omega . \tag{6.10}
\end{equation*}
$$

Define

$$
V^{k}:=\left\{u \in V: L(u)>-\frac{1}{k}\right\} .
$$

By (6.9), V^{k} is open in V. We will now prove that V^{k} is dense in V, in which case it will follow from Baire's Category Theorem that $\bigcap_{k} V^{k}$ is dense in v. In particular,

$$
\bigcap_{k} V^{k}=\{u \in V: L(u)=0\} \neq \emptyset
$$

Thus, there exists $u \in V$ such that $L(u)=0$, that is, by (6.10), such that $P D u(x) \in E=E_{\text {ext }}$ for a.e. $x \in \Omega$, and since $u \in V$ we are done.

Therefore, it remains to prove the density result, i.e., that for fixed $k \in$ $\mathbb{N}, u \in V$, and $\epsilon \in] 0, \frac{1}{k}$ [sufficiently small, we can find $u_{\epsilon} \in V^{k}$ such that $\left\|u_{\epsilon}-u\right\|_{\infty} \leq \epsilon$. We will prove this property under the further assumption that, for some $\theta>0$, small, $u \in W_{\theta}$ and $P D u(x) \in E \cap$ intco E for a.e. $x \in$ Ω. The general case will follow from the definition of V. Also, by working on each subset of Ω where u is of class C^{m} and $P D u$ is constant, and by setting $u_{\epsilon}=u$ on $\Omega \backslash \Omega_{\theta}$ we can assume, w.l.o.g., that $u \in C^{m}\left(\bar{\Omega} ; \mathbb{R}^{N}\right), P D u$ is constant in Ω and $P D u(x) \in$ intco E (otherwise the result is trivial).

By compactness of E and $\operatorname{co} E$ we have that

$$
\begin{equation*}
\zeta \in E \cup \operatorname{co} E \Rightarrow \operatorname{dist}(\zeta, E) \leq \beta \tag{6.11}
\end{equation*}
$$

for some $\beta>0$. By the convexity and lower semicontinuity of ψ and (6.6), we can fix $\delta=\delta(\epsilon)>0$, such that, for any measurable function $\mu: \mathbb{R}^{n} \rightarrow E \cap \operatorname{co} E$, the following holds

$$
\begin{equation*}
\int_{\Omega} \operatorname{dist}(\mu(x), E) d x \leq \delta \Rightarrow \int_{\Omega} \psi(\mu(x)) d x \geq-\epsilon \tag{6.12}
\end{equation*}
$$

The result now follows immediately from the relaxation property. Indeed, since co E has the relaxation property with respect to E and since $P D u(x)$ is a constant belonging to intco E, there exists a sequence $u_{\epsilon} \in W_{\epsilon}$ such that

$$
\left\{\begin{array}{c}
u_{\epsilon} \in u+W_{0}^{m, \infty}\left(\Omega ; \mathbb{R}^{N}\right) \\
\left\|u_{\epsilon}-u\right\|_{\infty} \leq \epsilon \\
\operatorname{curl} u_{\epsilon}(x) \in E \cup \text { intco } E \text { a.e. } x \in \Omega \\
\int_{\Omega} \operatorname{dist}\left(P D u_{\epsilon}(x), E\right) d x \leq \delta
\end{array}\right.
$$

From (6.12) we conclude that

$$
\int_{\Omega} \psi\left(P D u_{\epsilon}(x)\right) d x \geq-\epsilon \Rightarrow L\left(u_{\epsilon} \geq-\epsilon>-\frac{1}{k}\right.
$$

for $\epsilon<\frac{1}{k}$. Thus $u_{\epsilon} \in V^{k}$ and $\left|\left|u_{\epsilon}-u\right|_{-} \infty \leq \epsilon\right.$, so the proof of the density result is complete.

Step 3

We now turn to the general case, $P D \phi(x) \in E \cup$ intco E for a.e. $x \in \Omega$, and we let

$$
\Omega_{0}:=\{x \in \Omega: P D \phi(x) \in E\}, \Omega_{1}:=\Omega \backslash \Omega_{0} .
$$

Then Ω_{1} is open by continuity, and $P D \phi(x) \in \operatorname{intco} E$ for a.e. $x \in \Omega_{1}$. We apply Step 2 to the set Ω_{1} to obtain a function $u_{1} \in C\left(\bar{\Omega}_{1} ; \mathbb{R}^{N}\right)$ with $P D u_{1} \in L^{\infty}\left(\Omega_{1}\right)$ and such that

$$
\left\{\begin{array}{c}
P D u_{1}(x) \in E_{\mathrm{ext}} \text { for a.e. } x \in \Omega_{1} \\
u_{1}(x)=\phi(x) \text { on } \partial \Omega_{1}
\end{array}\right.
$$

Defining

$$
u(x):= \begin{cases}\phi(x) & \text { if } x \in \Omega_{o} \\ u_{1}(x) & \text { if } x \in \Omega_{1}\end{cases}
$$

it is clear that we find a function satisfying the statement of the theorem.

Corollary 6.1. assume that the set K is bounded and connected and that $\zeta_{0} \in K$. Then there exists $u \in u_{\zeta_{0}}+W_{0}^{m, \infty}\left(\Omega ; \mathbb{R}^{N}\right)$ such that u is a solution of $\left(I_{1}\right)$.

Proof. Set $\phi(x)=u_{\zeta_{0}}(x)$, and $E=\partial K$. Since K is bounded and connected it follows thatt E is compact and that $K \subset \operatorname{co} \partial K$. Thus,

$$
K \subseteq E \cup \text { intco } E
$$

and so $\zeta_{0} \in E \cup$ intco E. The existence of a solution to problem $\left(I_{1}\right)$ follows immediately from Theorem (6.2).

References

[1] S. Bandyopadhyay, B. Dacorogna, A.C. Barroso, J. Matias: Differential inclusions for differential forms, Calc. Var. Partial Differential Equations 28 (2007) 449-469
[2] A.C. Barroso, J. Matias: Necessary and sufficient conditions for existence of solutions of a variational problem involving the curl, Discrete and Continuous Dynamical Systems 12 no. 1 (2005) 97-114.
[3] A. Cellina: On minima of a functional of the gradient: necessary conditions, Nonlinear Analysis, Theory Meth. Appl. 20 (1993) 337-341.
[4] A. Cellina: On minima of a functional of the gradient: sufficient conditions, Nonlinear Analysis, Theory Meth. Appl. 20 (1993) 343-347.
[5] B. Dacorogna: Non convex problems of the calculus of variations and differential inclusions. To appear in Stationary Partial Differential Equations, Handbook of Differential Equations. North-Holland Publishing Co., Amsterdam.
[6] B. Dacorogna: Direct Methods in the Calculus of Variations, Springer-Verlag, Berlin et al.,1989.
[7] B. Dacorogna, I. Fonseca: A-B quasiconvexity and implicit partial differential equations, Calc. Var. Partial Differential Equations 14 no. 2 (2002) 115-149.
[8] B. Dacorogna, P. Marcellini: Existence of minimizers for non quasiconvex integrals, Arch. Rat. Mech. Anal. 131 (1995) 359-399.
[9] B. Dacorogna, P. Marcellini: Implicit Partial Differential Equations, Birkhäuser Verlag, Basel,1999.
[10] I. Fonseca, S. Müller: A-quasiconvexity: a necessary and sufficient condition for lower semicontinuity under PDE constraints, SIAM J. Math. Anal. 30 (1999) 1355-1390.
[11] R. T. Rockafellar: Convex Analysis, Princeton University Press,1970.

[^0]: The research of José Matias was partially supported by FCT (Portugal) through the Program POCI/2010/FEDER and through the Project POCI/FEDER/MAT/55745/2004..

