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Abstract. We look for necessary and sufficient conditions for the ex-
istence of solutions of the minimization problem

(P ) inf

{
∫

Ω

f(PDu(x)) dx : u ∈ uζ0 + W m,∞
0 (Ω; RN )

}

where PD is a particular type of differential operator of order m, (which
we identify as of divergence type) and the boundary data uζ0 satisfes
PDuζ0 (x) = ζ0 for ζ0 ∈ R given.

1. Introduction

The search for minimizers of

inf

{
∫

Ω

f(∇u(x)) dx : u ∈ u0 +W 1,∞
0

(Ω)

}

when the integrand function f is non convex, has been undertaken ex-
tensively (see, for example, [3], [4], [8], [9] and the references therein).
Dacorogna and Marcellini ([8]) showed that a necessary condition for exis-
tence of solutions to this problem is that the convex envelope of f, f∗∗, is
globally affine.

This work follows closely [1] where the problem is treated in the general
setting of differential forms and [2] where the problem was treated in the
case of the curl operator.
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310 José Matias

However, the (simpler) case of divergence was not explicitely treated. In
this work, we deal with the problem for a particular type of differential
operators, that namely comprise the divergence operator.

In particular, combining this work with the results of [1], [7] and [2], for

du a differential form of order k in R3, (0 ≤ k ≤ 2), the problem of finding
necessary and sufficient conditions for existence of solutions of

(P ) inf











∫

Ω

f(du(x)) dx : u ∈ uζ0 +W 1,∞
0

(Ω; R

(

n
k

)

)











where the boundary data uζ0 satisfies duζ0 = ζ0, for ζ0 a given vector in

R

(

n
k

)

, becomes completely solved.

2. Preliminaries

We start with some notations which are used throughout this paper.
Although these notations are somewhat standard we mention them here
for the sake of completeness.

• R+

0
denotes the set of all non-negative real numbers.

• For E ⊆ RN , E 6= ∅, we write spanE to denote the subspace spanned
by E.

• Let W be a subspace of RN . We write dimW to denote the dimen-
sion of W .

• Hk denotes the k-dimensional Hausdorff measure.
• B(Ω) denotes the Borel σ-algebra of subsets of Ω.

• co U denotes the convex hull of U ⊆ RN and coU its closure.
• For a function f : RN → R, f∗∗ denotes the convex envelope of f ,

that is,

f∗∗ = inf{g : g convex, g ≤ f}.
• Ω denotes an open bounded subset of Rn, and we denote its Lebes-

gue measure by meas(Ω).
• We denote by Bn(x, ε) the open ball in Rn centered at x with radius
ε.

• the letter C will be used throughout this work to indicate a constant
whose value might change fro line to line.

• We use the standard multi-index notation: for α = (α1, . . . , αn),
αj ∈ N, j = 1, . . . , n, |α| = α1+. . .+αn, and for u : Rn → RN , ∂αui
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denotes the partial derivative

∂αui =
∂|α|ui

dxα1
1
dxα2

2
. . . dxαn

n
.

3. Statement of the problem

For PD as above and for f : R → R a continuous function, we look for
necessary and sufficient conditions for existence of solutions of the following
minimization problem:

(P ) inf

{
∫

Ω

f(PDu(x)) dx : u ∈ uζ0 +Wm,∞
0

(Ω; RN )

}

where:

a) for i = 1, . . . , N , Ai = {α, 0 < |α| ≤ mi} is a set of multi-indices,

where mi ∈ N1 and for u : Rn → RN , PD is the linear partial
differential operator given by

PDu =

N
∑

i=1

∑

α∈Ai

cα,i∂
αui,

under one of the following hypothesis:

(H1) ∃i ∈ {1, . . . , N} : |α| = mi, ∀α ∈ Ai.

or

(H2) ∃i ∈ {1, . . . , N},∃j ∈ {1 . . . , n} : αj = constant, ∀α ∈ Ai.

b) the boundary data uζ0 satisfies PDuζ0(x) = ζ0, for ζ0 ∈ R given,
and m = max{mi, i = 1, . . . , N},

It will be helpfull to consider the auxiliary problem

(P ∗∗) inf

{
∫

Ω

f∗∗(PDu(x)) dx : u ∈ uζ0 +Wm,∞
0

(Ω; RN )

}

where f∗∗ is the convex envelpe of f . By convexity of f∗∗, using Jensen’s
inequality and the density of C∞

c in Wm,∞
0

, it is easy to see that

inf(P ∗∗) = f∗∗(ζ0)meas(Ω).
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4. The Approximation Lemma

In this section we prove an approximation lemma which will be used
to establish suufficient conditions for the existence of solutions of problem
(P ). This result also allows us to prove a relaxation result which states
that inf(P ) = inf(P ∗∗).

Lemma 4.1. Let Ω ⊂ Rn open, bounded and let t ∈ [0, 1] and ζ, η ∈ R.
Let φ ∈ Wm,∞(Ω; RN ) be such that PDφ = tζ + (1 − t)η. Then, for every

ε > 0, there exist u ∈ φ +Wm,∞
0

(Ω; RN ) and Ωζ ,Ωη, disjoint open subsets
of Ω such that











































































|meas(Ωζ) − tmeas(Ω)| ≤ ε

|meas(Ωη) − (1 − t)meas(Ω)| ≤ ε

u = φ in a neighbourhood of ∂Ω

||u− φ||L∞ ≤ Cε

PDu(x) =

{

ζ in Ωζ

η in Ωη

dist(PDu(x), [ζ, η]) ≤ Cε, a.e. in Ω,

(4.1)

where [ζ, η] denotes the closed interval with endpoints ζ and η.

Proof. We are assuming that ζ 6= η , otherwise the result is trivial since it
suffices to take u = φ. We follow here the ideas presented in [2].

Without loss of generality we may assume that Ω is the unit cube cen-
tered at the origin with its faces parallel to the coordinate axes. Indeed, if
this is not the case, we can express Ω as the disjoint union of cubes whose
faces are parallel to the coordinate axes plus a set of small measure; in
this case a solution u for (4.1) with respect to Ω can be constructed from
a solution of (4.1) when Ω is the unit cube by setting u = φ on the set
of small measure and by using homothetics and translations in each of the
small subcubes.

Let ε > 0, let Ωε ⊂⊂ Ω and let h ∈ C∞
0

(Ω) and L = L(Ω) be such that
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





































meas (Ω\Ωε) ≤ ε
2

0 ≤ h(x) ≤ 1, ∀x ∈ Ω

h(x) = 1, ∀x ∈ Ωε

|Dkh(x)| ≤ Lε−k, ∀x ∈ Ω\Ωε, ∀0 < k ≤ m

Let δ > 0. Suppose first that PD satisfies (H1) and that N = 1. Let A be
the set of all multi-indices interveening in PD, and let ᾱ1 = max{α1, α ∈
A}. Select one ᾱ ∈ A such that its first component equals ᾱ1 (there could
be more than one). Notice that w.l.o.g. we are assuming that ᾱ1 > 0
(otherwise, take other variable involved). By a standard procedure we may
construct a C∞ function g : [0, 1] → R and sets Iζ , Iη which are unions of
dispoint open subintervals of [0, 1] , so that































































gᾱ1(x1) =

{

1 − t if x1 ∈ Iζ

−t if x1 ∈ Iη

gᾱ1(x1) ∈ [−t, 1 − t], ∀x1 ∈ [0, 1],

|meas(Iζ) − t| ≤ ε
2
,

|meas(Iη) − (1 − t)| ≤ ε
2
,

|g(x1)| ≤ δ, |g′(x1)) ≤ δ, . . . , |gᾱ1−1(x1)| ≤ δ ∀x1 ∈ [0, 1]

Let

Ωζ := {x ∈ Ωε : x1 ∈ Iζ},
and

Ωη := {x ∈ Ωε : x1 ∈ Iη}, .
We now define the function w ∈ C∞(Ω̄) by

w(x) =
1

Cᾱ(α2! . . . αn!)
g(x1)x

ᾱ2
2
. . . xᾱn

n (ζ − η).

If u : Ω ⊂ Rn → RN , N > 1, the same process works with the necessary
adaptations. In fact, we just need to construct w1 as before (i.e. like w in
the case N = 1, regarding the component u1 of u) and then set;

w = (w1, 0, . . . , 0).
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(where, once again, we assumed w.l.o.g. that the component u1 is involved
by the operator PD.)

We claim that the function u : Ω → R given by

u = φ+ hw

satisfies the properties listed in (4.1). Indeed, since h ≡ 1 in Ωε, we have

PD(u) = PDφ+ PD(hw)

= tζ + (1 − t)η + gᾱ1(x1)(ζ − η)

so that

PDu(x) =

{

ζ in Ωζ

η in Ωη

Using the fact that h ≤ 1 and g(x1)| ≤ δ, it is possible to choose δ suffi-
ciently small with respect to ε so that ||u− φ||∞ = ||hw||∞ < ε.

On he other hand,

PDu = PDφ+ PD(hw)

= tζ + (1 − t)η + hgᾱ1(x1)(ζ − η) +R(h, α)

= (t+ hgᾱ1(x1))ζ + (1 − (t+ hgᾱ1(x1)))η +R(h, α),

(4.2)

where, using the estimates on the derivatives of h and g, we can once again
choose δ sufficiently small with respect to ε, in order to obtain

|R(h, α)| ≤ ε. (4.3)

Since 0 ≤ t+ hgᾱ1(x1) ≤ 1, by (4.2) and (4.3) we conclude that

dist (PDu(x), [ζ, η]) ≤ |R(h, α)| ≤ ε, a.e. in Ω.

The proof of the remaining statements f (4.1) is straightforward.

Suppose now that PD satisifes (H2). The process is similar, just con-
structing w using one of the lowest order derivatives. �

Theorem 4.1. Let f : R → R continuous. Then

inf(P ) = inf(P ∗∗).

Proof. The inequality inf(P ) ≥ inf(P ∗∗) is trivial. We will use the fact that
inf(P ∗∗) = f∗∗(ζ0)meas(Ω) to prove the reverse inequality.
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Given ζ0 ∈ R there exist ti > 0 and ζi ∈ R such that
∑

2

i=1
ti = 1, ζ0 =

∑

2

i=1
tiζi and

f∗∗(ζ0) =

2
∑

i=1

tif(ζi).

Applying the previous lemma to ζ0 and uζ0 we obtain a sequence un ∈
uζ0 +Wm,∞

0
(Ω), and Ωi, i = 1, 2, disjoint open subsets of Ω such that


































|meas(Ωi) − timeas(Ω)| ≤ 1

n
, i = 1, 2,

||un − uζ0||∞ ≤ C
n

PDun(x) = ζi in Ωi, i = 1, 2

dist(PDun(x), co{ζ1, ζ2}) ≤ C
n
, a.e. in Ω.

The sequence un is admissible for problem (P ), so we have

inf(P ) ≤ limn→∞
∫

Ω
f(PDun(x)) dx

= limn→∞
(

∫

Ω\∪2
i=1Ωi

f(PDun(x)) dx+
∑

2

i=1

∫

Ωi
f(ζi) dx

)

≤ limn→∞
(

∫

Ω\∪2
i=1Ωi

f(PDun(x)) dx+
∑

2

i=1
f(ζi)timeas(Ω) + C

n

)

= f∗∗(ζ0)meas(Ω) = inf(P ∗∗),

where

lim
n→∞

∫

Ω\∪2
i=1Ωi

f(PDun(x)) dx = 0

since meas(Ω\ ∪2
i=1

Ωi) ≤ 2

n
and by the continuity of f , the sequence

(f(PDun(.))) is uniformly bounded. �

5. Necessary Conditions

We look for necessary conditions for the existence of solutions of the
problem

(P ) inf

{
∫

Ω

f(PDu(x)) dx : u ∈ uζ0 +Wm,∞(Ω; RN )

}

where the boundary data uζ0 satisfies PDUζ0(x) = ζ0, for ζ0 ∈ R given and
f : R → R is continuous.
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The set
K := {ζ ∈ R : f∗∗(ζ) < f(ζ)}

will play an important role in this analysis.

Proposition 5.1. Suppose u solves (P ).Then u is a solution of

(I)

{

f(PDu) = f∗∗(PDu) a.e. in Ω

u = uζ0 on ∂Ω

Proof. If u is a solution of (P ) then clearly u = uζ0 on ∂Ω. On the other
hand, by Theorem (4.1), we know that

inf(P ) = inf(P ∗∗) = f∗∗(ζ0)meas(Ω).

Hence, by convexity of f∗∗, Jensen’s inequality and by density, we have
that

f∗∗(ζ0)meas(Ω) = inf(P ) =
∫

Ω
f(PDu(x)) dx

≥
∫

Ω
f∗∗(PDun(x)) dx ≥ f∗∗

(

1

meas(Ω)

∫

Ω
PDu(x) dx

)

meas(Ω)

= f∗∗
(

1

meas(Ω)

∫

Ω
ζ0 + PD(u(x) − uζ0(x)) dx

)

meas(Ω)

= f∗∗(ζ0)meas(Ω).

It follows that f(PDU(x)) = f∗∗(PDu(x)) for a.e. x ∈ Ω. �

Remark 5.1. When ζ0 is a vector (for instance in the case of the gradient
or the curl) there is another necessary condition related to the existence of
directions of strict convexity for f∗∗ at ζ0. However, in this simpler case,
f∗∗ is affine in each connected component of K.

6. Sufficient Conditions

Recall that
K = {ζ ∈ R : f∗∗(ζ) < f(ζ)},

and that the boundary data uζ0 satisfies PDuζ0 = ζ0. Our main result in
this section is the following

Theorem 6.1. Let K ⊂ R be bounded and connected and let ζ0 ∈ K.

Then, if u ∈Wm,∞(Ω; RN ) is a solution of

(I1)

{

PDu ∈ ∂K

u = uζ0 on ∂Ω

then u is also a solution of (P ).
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Proof. Since f∗∗ is affine in K̄ at ζ0, if u is a solution of (I1), then there
exist a, b ∈ R, such that f∗∗(PDu) = aPDu+ b. As PDu ∈ ∂K, we have
that

∫

Ω
f(PDu(x)) dx =

∫

Ω
f∗∗(PDu(x)) dx

=
∫

Ω
aPDu(x) + b dx

(6.4)

Since
∫

Ω

a(u(x) − uζ0(x)) dx = 0,

and hence
∫

Ω

aPDu(x) dx =

∫

Ω

aζ0 dx,

we conclude that

∫

Ω
f(PDu(x)) dx =

∫

Ω
aζ0 + b dx

= f∗∗(ζ0)meas(Ω)

= inf(P ∗∗) = inf(P )

that is, u is a non-trivial solution of (P ). Notice that, since ζ0 ∈ ∂K, uζ0 is
not a solution of (I1), and so, by Proposition (4.1), it is not a solution of
(P ) either. If f∗∗ is globally affine the equalities (6.4) hold trivially and so
the result follows as in the first case.

�

Before proving existence of solutions to problem (I1), we need the fol-
lowing definitions:

Definition 6.1. Let Ω ⊆ Rn be an open set. For θ > 0, let Wθ be the set

of all functions u ∈ Cm
piec

(Ω̄; RN ) for which there exists Ωθ ⊂ Ω such that

meas(Ω\Ωθ) ≤ θ, and PDu is piecewise constant in Ωθ.

Definition 6.2. Let E;S ⊆ R. We say that S has the relaxation property
with respect to E, if, for every bounded open set Ω ⊆ Rn and for every map
uζ satisfying PDuζ = ζ ∈ intS, there exists a sequence u : n ∈ W 1

n
such

São Paulo J.Math.Sci. 2, 1 (2008), 309–324
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that


































un ∈ uζ +Wm,∞
0

(Ω; RN )

un → uζ in L∞(Ω; RN ), PDun
∗
⇀ ζ in L∞(Ω)

PDun(x) ∈ E ∪ intS a.e. in Ω

limn→+∞
∫

Ω
dist(PDun(x), E) dx = 0

For the proof of existence of solutions to problem (I1), we will need to
show that co(∂K) has the relaxation property with respect to ∂K. The
following lemma provides a way of doing this.

Lemma 6.1. Let E,Eδ ⊆ R, for δ ∈]0, δ0[, be compact sets such that

i) coEδ ⊂ intcoE for every δ ∈]0, δ0[;
ii) ∀ε > 0, ∃δ(ε) > 0, such that, ∀δ ∈]0, δ(ε)[, ρ ∈ Eδ ⇒ dist(ρ,E) ≤ ε;
iii) if ρ ∈ intcoE, then ρ ∈ coEδ, for every δ > 0 sufficiently small.

Then coE has the relaxation property with respect to E.

Proof. Let Ω ⊂ Rn be a bounded open set and let u : Ω → RN be a function
satisfying

PDu = ζ ∈ intco E.

We claim that there exists a sequence un ∈W 1
n

such that



































un ∈ u+Wm,∞
0

(Ω; RN )

un → u in L∞(Ω; RN ), PDun
∗
⇀ ζ in L∞(Ω)

PDun(x) ∈ E ∪ intcoE a.e. in Ω

limn→+∞
∫

Ω
dist(PDun(x), E) dx = 0

Fix ε > 0 and let δ = δ(ε) be determined according to ii). By iii), we may
find δ1 < δ such that

ζ ∈ intcoE ⇒ ζ ∈ coEδ1 .

Therefore we may write ζ = tζ1 + (1 − t)ζ2 with ζ1, ζ2 ∈ Eδ1 . By prop-
erty i), we can choose ε′ ∈]0, ε[ such that the ε′-neighbourhood of coEδ1 is
contained in intcoE. Using the Approximation Lemma (4.1) we may find
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uε ∈ Cm
piec

(Ω̄; RN ) and Ω1,Ω2 disjoint open subsets of Ω, such that


























































meas(Ω\(Ω1 ∪ Ω2)) = O(ε′)

uε = u near ∂Ω

||uε − u||∞ ≤ Cε′

PDuε(x) =

{

ζ1 in Ω1

ζ2 in Ω2

dist(PDuε(x), coEδ1) ≤ Cε′, a.e in Ω

Now, the choice of ε′ ensures that

PDuε ∈ coE,

and in view of ii), taking into account that dist(PDuε, E) is a bounded
function, we conclude that
∫

Ω
dist(PDuε(x), E) dx =

∫

Ω1
dist(ζ1, E) dx+

∫

Ω2
dist(ζ2, E) dx

+
∫

Ω\(Ω1∪Ω2)
dist(PDuε(x) dx

≤ εmeas(Ω1) + εmeas(Ω2) +O(ε′) = O(ε),

so that the claim is obtained by letting ε→ 0+. Finally, we need to check

if un ∈W 1
n
. Letting 2ε′ = 1

n
, we have that (un) ⊂ Cm

piec
(Ω̄; RN ) and

PDun(x) =

{

ζ1 in Ω1

ζ2 in Ω2

where meas(Ω\(Ω1 ∪ Ω2)) ≤ 1

n
. Thus, un ∈W 1

n
. �

In what follows, we will need the following result of convex analysis,
which can be found in [11].

Proposition 6.1. Let E ⊂ R be compact and such that intcoE 6= ∅. Let
Eext denote the set of extreme points of coE. Then, there exists a convex
a lower semicontinuous function ψ : R → R ∪ {+∞} such that

Eext = {ζ ∈ R : ψ(ζ) = 0}
and

coE = coEext = {ζ ∈ R : ψ(ζ) ≤ 0}.

Finally we are in position to state the following
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Theorem 6.2. Let Ω ⊆ Rn be an open set and let E ⊂ R be a compact

set. Let φ ∈ Cm
piec

(Ω̄; RN ) be such that PDφ is piecewise constant in Ω an

PDφ ∈ E ∪ intcoE. Then there exists u ∈ C(Ω̄; RN ) with PDu ∈ L∞(Ω)
and satisfying

{

PDu(x) ∈ E a.e. x ∈ Ω

u(x) = φ(x), ∀x ∈ ∂Ω

Proof. Assume w.l.o.g. that Ω is bounded and that φ ∈ Cm(Ω̄); RN ). As-
sume also that intcoE 6= ∅ since otherwise the result is trivial (it suffices to
take u ≡ φ).

Step 1

Under the previous assumptions we show that coE has the relaxation
property with respect to E. For this purpose we use Lemma (6.1). Choose
α0 ∈ intcoE and, for δ ∈]0, 1[, define the sets

Eδ := δα0 + (1 − δ)E.

Notice that these sets are compact since E is compact. If ρ ∈ Eδ then
ρ = δα0 + (1 − δ)ρ̄, with ρ̄ ∈ E, and hence

dist(ρ,E) ≤ |ρ− ρ̄| < ε,

provided we take δ(ε) = ε
diamcoE

. This proves property ii). As for property

iii), if ρ ∈ intcoE, since

lim
δ→0

∣

∣

∣

∣

(

ρ

1 − δ
− δ

1 − δ
α0

)

− ρ

∣

∣

∣

∣

= 0,

it follows that
ρ

1 − δ
− δ

1 − δ
α0 ∈ coE

for δ > 0 sufficiently small, and so ρ ∈ δα0 + (1 − δ)coE = coEδ.

It remains to show property i). Since α0 ∈ intcoE there exists r > 0
such that

B1(α0, r) ⊂ coE. (6.5)

Therefore, it suffices to show that

B1(δα0 + (1 − δ)ρ, δr) ⊂ coE, ∀ρ ∈ coE.

Let x ∈ B1(δα0 + (1 − δ)ρ, δr) and let

α :=
x− (1 − δ)ρ

δ
.
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Notice that |δα− δα0| < δr and so, from (6.5), we have that α ∈ coE, and
we conclude that

x = δα+ (1 − δ)ρ ∈ coE.

Step 2

Assume first that PDφ(x) ∈ intcoE for a.e. x ∈ Ω. Since E is compact
and intcoE 6= ∅, by Proposition (6.1) applied to Eext, we conclude that
there exists a convex and lower semicontinuous function

ψ : R → R ∪ {+∞},
such that

E = Eext = {ζ ∈ R : ψ(ζ) = 0}, (6.6)

and
coE = coEext = {ζ ∈ R : ψ(ζ) ≤ 0}. (6.7)

Let V be the set of fuctions u : Ω → RN so that there exists un ∈ W 1
n

satisfying un = φ on ∂Ω, PDun ∈ E ∪ intcoE a.e. in Ω, and un → u in
L∞(Ω; RN ). Notice that φ ∈ V and V is a complete metric space when

endowed with the C0 norm.

The compactness of E and coE, the convexity and lower semicontinuity
of ψ and (6.6), (6.7) yield

V ⊂ {u ∈ C(Ω̄; RN ) : PDu ∈ L∞(Ω),

u = φ on ∂Ω, ψ(PDu(x)) ≤ 0 a.e. x ∈ Ω}.
(6.8)

For u ∈ V, set

L(u) :=

∫

Ω

ψ(PDu(x)) dx.

From the lower semicontinuity and convexity of ψ we have that, for every
u ∈ V ,

L(u) ≤ lim inf
un→,un∈V

L(un). (6.9)

Also, by (6.8), L(u) ≤ 0 and

L(u) = 0 ⇔ PDu(x) ∈ E for a.e. x ∈ Ω. (6.10)

Define

V k :=

{

u ∈ V : L(u) > −1

k

}

.

By (6.9), V k is open in V . We will now prove that V k is dense in V ,

in which case it will follow from Baire’s Category Theorem that
⋂

k V
k is

dense in v. In particular,
⋂

k

V k = {u ∈ V : L(u) = 0} 6= ∅.
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Thus, there exists u ∈ V such that L(u) = 0, that is, by (6.10), such that
PDu(x) ∈ E = Eext for a.e. x ∈ Ω, and since u ∈ V we are done.

Therefore, it remains to prove the density result, i.e., that for fixed k ∈
N, u ∈ V, and ε ∈]0, 1

k
[ sufficiently small, we can find uε ∈ V k such that

||uε − u||∞ ≤ ε. We will prove this property under the further assumption
that, for some θ > 0, small, u ∈Wθ and PDu(x) ∈ E ∩ intcoE for a.e. x ∈
Ω. The general case will follow from the definition of V . Also, by working
on each subset of Ω where u is of class Cm and PDu is constant, and by
setting uε = u on Ω\Ωθ we can assume, w.l.o.g., that u ∈ Cm(Ω̄; RN ), PDu
is constant in Ω and PDu(x) ∈ intcoE (otherwise the result is trivial).

By compactness of E and coE we have that

ζ ∈ E ∪ coE ⇒ dist(ζ,E) ≤ β (6.11)

for some β > 0. By the convexity and lower semicontinuity of ψ and
(6.6), we can fix δ = δ(ε) > 0, such that, for any measurable function
µ : Rn → E ∩ coE, the following holds

∫

Ω

dist(µ(x), E) dx ≤ δ ⇒
∫

Ω

ψ(µ(x)) dx ≥ −ε. (6.12)

The result now follows immediately from the relaxation property. Indeed,
since coE has the relaxation property with respect to E and since PDu(x)
is a constant belonging to intcoE, there exists a sequence uε ∈ Wε such
that



































uε ∈ u+Wm,∞
0

(Ω; RN )

||uε − u||∞ ≤ ε

curl uε(x) ∈ E ∪ intcoE a.e. x ∈ Ω

∫

Ω
dist(PDuε(x), E) dx ≤ δ

From (6.12) we conclude that
∫

Ω

ψ(PDuε(x)) dx ≥ −ε⇒ L(uε ≥ −ε > −1

k

for ε < 1

k
. Thus uε ∈ V k and ||uε − u| ∞ ≤ ε, so the proof of the density

result is complete.

Step 3

We now turn to the general case, PDφ(x) ∈ E ∪ intcoE for a.e. x ∈ Ω,
and we let

Ω0 := {x ∈ Ω : PDφ(x) ∈ E}, Ω1 := Ω\Ω0.
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Then Ω1 is open by continuity, and PDφ(x) ∈ intcoE for a.e. x ∈ Ω1.

We apply Step 2 to the set Ω1 to obtain a function u1 ∈ C(Ω̄1; R
N ) with

PDu1 ∈ L∞(Ω1) and such that
{

PDu1(x) ∈ Eext for a.e. x ∈ Ω1

u1(x) = φ(x) on ∂Ω1

Defining

u(x) :=

{

φ(x) if x ∈ Ωo

u1(x) if x ∈ Ω1,

it is clear that we find a function satisfying the statement of the theorem.
�

Corollary 6.1. assume that the set K is bounded and connected and that

ζ0 ∈ K. Then there exists u ∈ uζ0 +Wm,∞
0

(Ω; RN ) such that u is a solution

of (I1).

Proof. Set φ(x) = uζ0(x), and E = ∂K. Since K is bounded and connected
it follows thatt E is compact and that K ⊂ co∂K. Thus,

K ⊆ E ∪ intcoE

and so ζ0 ∈ E∪ intcoE. The existence of a solution to problem (I1) follows
immediately from Theorem (6.2). �
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