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1. Introduction

In this article we study curves of genus 3 over fields of characteristic 2. In
the case when the ground field is finite we have a recent wide classification
(cf. [NR]). Here we assume the ground field is algebraically closed and we
also assume the canonical theta characteristic is totally supported in one
point.
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So if C is such a curve then we can find a canonical divisor on C of
the form 4P0 where P0 is precisely the support of the theta characteristic.
These curves must be non-hyperelliptic and hence canonically embedded in
P

2 as a plane quartic described by an affine equation in a way that P0 is
the origin. We have the following result.

Theorem 1. The isomorphism classes of irreducible nonsingular projective
curves of genus 3 over an algebraically closed field of characteristic 2, with
the canonical theta characteristic totally supported at one point, form an
algebraic variety of dimension 4.

2. Preliminaries

Let C be an irreducible non-singular algebraic curve of genus 3 over a
field of characteristic 2. And let us also assume that there exists a canonical
theta characteristic θ0 = |12div(dx)| on C (with x a separating variable)
which can be represented by a divisor of the form 2P0 for a certain P0 ∈ C.
In this situation 4P0 is a positive canonical divisor so that the point P0 has
canonical order sequence 0, 1, 4. It follows that the curve is nonhyperelliptic
and hence h0(OC(2P0)) = 1 and 2P0 is the only positive divisor in the class
θ0.

Since C is nonhyperelliptic let us consider it canonically embedded in P
2

as a smooth plane quartic given by

f(x, y) =
∑

i+j≤4

cijx
i
y

j
, cij ∈ k. (1)

For a general plane curve of genus g over a field of characteristic p we
have that the Cartier operator

C : Ω1(0) −→ Ω1(0)

which acts on the space of regular differentials of C can be expressed as

C(hdx) = −

(
dp−1h

dxp−1

)1/p

dx

(cf. [SV2]). The Hasse-Witt invariant σ is defined as the rank of the matrix

(hij)(h
p
ij) · · · (h

pg−1

ij )

for (hij) the Hasse-Witt matrix, that is, (h
1/p
ij ) represents the Cartier ope-

rator.

In general a curve C of genus 3 admits a number of 7, 4, 2 or 1 bitangents,
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depending on the values σ = 3, 2, 1 or 0 of the Hasse-Witt invariant (cf.
[SV2] pg. 60). In our case, as the canonical theta characteristic θ0 does
have a section, the Cartier operator necessarily has a non-trivial kernel,
and so σ = 2, 1 or 0.

In the case of a non-singular plane curve (such as our canonical plane
quartic) given by f(x, y) = 0 as in (1), the differential ω = dx

fy
is regular

and
H

0(OC(div(ω)) = { h ∈ k[x, y] | deg(h) ≤ deg(f) − 3 }.

We have that ( [SV2] Theorem 1.1) in the case of characteristic 2 yields
the formula for the Cartier operator

C(hω) =

(
∂2

∂x∂y
hf

)1/2

ω,

giving the Hasse-Witt matrix

H =

(
c11 c01 c10
c31 c21 c30
c13 c03 c12

)

.

We will use the theory of Weierstrass points, for which we refer to ( [SV1]
Section 1). In the case of a non-singular plane curve the results we need
are collected below.

To compute the (canonical) Weierstrass points in curves of genus 3 over a
field of characteristic 2 we use the classical Wronskian since from [K] there
are no non-classical curves in this situation. Using the separating variable
x we obtain

W
0,1,2
x = det




1 x y

0 1 D
(1)
x (y)

0 0 D
(2)
x (y)



 = D
(2)
x (y),

where D
(i)
x (y) stands for the ith Hasse-Schmidt derivative. To compute the

Wronskian we take generic Taylor expansions

T(x) = x + t

T(y) = y + D
(1)
x (y)t + D

(2)
x (y)t2 + · · ·

and use that
f(T(x),T(y)) =

∑

i,j

cijT(x)iT(y)j = 0.

This yields

D
(2)
x (y) =

wK

f3
y

,
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where the numerator wK is given by

wK = fxfy

∑

i,j≡1 mod 2

cijx
i−1

y
j−1 +

f
2
y

∑

i≡2,3 mod 4

cijx
i−2

y
j + f

2
x

∑

j≡2,3 mod 4

cijx
i
y

j−2
,

for

fx =
∑

i≡1 mod 2

cijx
i−1

y
j and fy =

∑

j≡1 mod 2

cijx
i
y

j−1
.

The ramification divisor (cf. [SV1] pg. 3) is given by

RK = div (D(2)
x (y)) + 3 div (dx) + 3E

= div (wK) + 3 div

(
dx

fy

)
+ 3E

= div (wK) + 6E

where E = div (ω) = div (dx
fy

) is the intersection divisor of the curve with

the infinite line. The finite Weierstrass points are thus the zeros (counted

with multiplicities) of the numerator wK of D
(2)
x (y). In our case of genus 3

and characteristic 2 there are altogether 24 Weierstrass points.

If P is a Weierstrass point then its order sequence may be only 0, 1, 3 or
0, 1, 4 and as a consequence of ( [SV1] Theorem 1.5) its Weierstrass weight
is 1 in the first case and greater than 2 in the second. The intersection
divisor of the tangent of the curve at P is then 3P + Q (with P = Q if the
order sequence at P is 0, 1, 4). If Q itself is a Weierstrass point then we
will say that P has a Weierstrass direction towards Q and

P
W
−→ Q

will denote this situation.

3. The moduli problem

We start this section with a result used to rule out some (in principle)
possible degenerate situations. Recall that there are curves in prime char-
acteristics having just one Weierstrass point.

Proposition 3.1. The Weierstrass points of a smooth plane quartic in
characteristic 2 with the canonical theta characteristic supported at one
point are non collinear.
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Proof. If all Weierstrass points were collinear then we can suppose that the
line containing them is the infinite line. In this case the numerator wK

of the Wronskian would be a non-zero constant, as there will be no finite
Weierstrass points.

We can further assume that the canonical theta characteristic θ0 contains
the divisor 2P0, for P0 = (1 : 0 : 0), and that the tangent line of the curve
at P0 is given by y = 0. This implies that c10 = c20 = c30 = c40 = 0 in (1).
Moreover, as 2P0 is a divisor in the class θ0 it follows that 4P0 = div(y)dx

fy
,

the intersection divisor of the line y = 0 with the curve, is a canonical
divisor in the kernel of the Cartier operator. Given the above expression of
the Hasse-Witt matrix this implies c12 = 0. With these normalizations the
equation (1) for the curve simplifies to

f(x, y) = 1 + c01y + c11xy + c02y
2 + c21x

2
y + c03y

3+

c31x
3
y + c22x

2
y

2 + c13xy
3 + c04y

4
.

The expression wK is then given by

wK = [(c2
21c31 + c11c

2
31)y]x5 + [(c2

21c22 + c
2
31c02)y

2 + (c3
21 + c

2
31c01)y]x4

+ [(c11c
2
13 + c

2
03c31)y

5 + (c2
01c31 + c

3
11)y]x + (c2

13c02 + c
2
03c22)y

6

+ (c2
13c01 + c

2
03c21)y

5 + (c2
01c22 + c

2
11c02)y

2 + (c2
01c21 + c

2
11c01)y.

If we successively subtract multiples of f(x, y) from the expression wK so
as to cancel in the resulting expressions the initial terms with respect to
the lexicographic order with x > y, we obtain a remainder of the form

r = c
5
31x

3 + · · · .

This remainder must be a constant, and so c31 = 0, but this condition will
result in a singularity at P0, and so the result is proved. �

For the remainder we use other normalizations for such a curve. Now we
bring the support P0 of the positive divisor in the canonical theta charac-
teristic θ0 to the origin (0 : 0 : 1) and force the tangent of the curve at P0
to be the line given by x = y. This tangent line intersects the curve at P0
with contact multiplicity 4, and thus never meets the curve again.

Theorem 3.2. The isomorphism classes of curves of genus three having
the canonical theta characteristic represented by a positive divisor supported
at one point form an algebraic variety of dimension 4.

Proof. In terms of the coefficients of the equation (1) defining the curve
the normalizations stated above imply c00 = c10 + c01 = c20 + c11 + c02 =
c30 + c21 + c12 + c03 = 0.

As 2P0 is a divisor in the class θ0 it follows that 4P0 = div(x+ y)dx
fy

, the
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intersection divisor of the line x = y with the curve, is a canonical divisor
in the kernel of the Cartier operator. Given the above expression of the
Hasse-Witt matrix this implies c21 + c30 = c03 + c12 = 0.

From the preceding proposition we can use a projective plane transfor-
mation in order to take one Weierstrass point to the location Q1 = (1 : 0 : 0)
and another to Q2 = (0 : 1 : 0). The projective automorphisms that fix
these normalizations of the origin P0 = (0 : 0 : 1), of the tangent at the
origin y = x and of the two infinite Weiertrass points Q1 = (1 : 0 : 0) and
Q2 = (0 : 1 : 0) form a subgroup G of PGl2(k) consisting of (classes of)
matrices

G :=

{(
s00 0 0
0 s00 0
0 0 s22

)
; s00, s22 6= 0

}
/k

∗
. (2)

As a consequence of the choice of points Q1 e Q2 we have c04 = c40 = 0.
The tangent lines at these points (after the necessary homogenizations and
dehomogeneizations) are, respectively,

c30z + c31y = 0 and c03z + c13x = 0.

These are Weierstrass points, and so these equations divide the quadratic
parts appearing in the local expression of f . These divisibility conditions
yield

c
2
31c20 + c

2
30c22 + c30c31c21 = 0 and

c
2
13c02 + c

2
03c22 + c03c13c12 = 0,

and these may be rewritten as

c
2
31c20 + c

2
30c22 + c

2
30c31 = 0 and (3)

c
2
13c02 + c

2
03c22 + c

2
03c13 = 0. (4)

The result is now just parameter counting, once we observe that the two
conditions above are algebraically independent. The curve is given by the
equation f = f1 + f2 + f3 + f4 = 0, where fi is the homogeneous part of
degree i so that, with the chosen normalizations,

f1(x, y) = x + y

f2(x, y) = c20x
2 + (c20 + c02)xy + c02y

2

f3(x, y) = c30x
3 + c30x

2
y + c03xy

2 + c03y
3

f4(x, y) = c31x
3
y + c22x

2
y

2 + c13xy
3
,
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is isomorphic, through a projective plane transformation given by an ele-
ment of the group G described above, to the curve given by

f1(x, y) + α
−1

f2(x, y) + α
−2

f3(x, y) + α
−3

f4(x, y) = 0,

for α = s00

s22
. In these equations the conditions (3) and (4) have not yet

been taken into consideration. �

4. Curves with two Weierstrass directions towards the sup-
port of the canonical theta characteristic

We can ask the question of when the curve has two Weierstrass points
Q1 and Q2 with Weierstrass directions towards P0:

Q1
W
−→ P0 and Q2

W
−→ P0.

We can certainly use a projective plane transformation to bring these Weier-
strass points to the chosen infinite locations (1 : 0 : 0) and (0 : 1 : 0). This
implies c30 = c03 = 0, and from (3) and (4) we deduce

c
2
31c20 = 0 and c

2
13c02 = 0.

On the other hand, if c31 = 0 or c13 = 0 then the infinite points Q1 or Q2
are singular, respectively, and so both c31 and c13 are non-zero, so that if
c30 = c03 = 0 then also c20 = c02 = 0.

If c30 = c03 = 0 and c20 = c02 = 0 then the equation of the curve
simplifies to

Ca,b,c : x + y + ax
3
y + bx

2
y

2 + cxy
3 = 0. (5)

This family of curves were used in [RV] for displayed examples of minimal
curves and eventually minimal curves.

Remark 4.1. We left the details to the reader to check that a curve Ca,b,c

as above is irreducible if and only if a + b + c 6= 0.

The proof of the following result is straightforward:

Proposition 4.2. The curve Ca,b,c is singular if and only if abc = 0.

The intersection divisor with the infinite line is given by

Q1 + Q2 + Qδ + Qδ+1,

where Qδ = ( b
a
δ : 1 : 0) and Qδ+1 := ( b

a
δ + b

a
: 1 : 0), for δ is any root

of the Artin-Schreier equation t2 + t + ca
b2

= (t + δ)(t + δ + 1) = 0. Under
the hypothesis a, b, c 6= 0 these points are all distinct. Moreover, the next
result shows that these 4 infinite points are Weierstrass points with order
sequence 0, 1, 3 and have Weierstrass directions towards the origin and there
is no finite Weierstrass point with Weierstrass direction towards the origin.

São Paulo J.Math.Sci. 3, 1 (2009), 13–24
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Theorem 4.3. In the family of curves Ca,b,c the Hasse-Witt invariant σ

is 0 or 2 according to a = c or not. The rank of the Cartier operator is
always 2.

In the curve Ca,b,c the origin is a Weierstrass point having order sequence
0, 1, 4 and its Weierstrass weight is 5, 8 or 20 according to a 6= c, a = c 6= b

or a = b = c, respectively, and in any case it is the unique point with this
Weierstrass weight. All 4 infinite points are Weierstrass points with or-
der sequence 0, 1, 3, Weierstrass weight 1, having Weierstrass directions to-
wards the origin and being the only ones with this latter property. There are
other Weierstrass points with order sequence 0, 1, 4 only in curves Ca,1,1/a

with a 6= 1, and these points have Weierstrass weight 4.

Proof. The Hasse-Witt matrix of the curve Ca,b,c is given by

H =

(
0 1 1
a 0 0
c 0 0

)

and thus the Hasse-Witt invariant σ, which is the rank of the matrix
(

0 1 1
a 0 0
c 0 0

)


0 1 1
a2 0 0
c2 0 0








0 1 1
a4 0 0
c4 0 0



 =




0 a2 + c2 a2 + c2

a(a4 + c4) 0 0
c(a4 + c4) 0 0





is given by

σ =

{
2 if a 6= c

0 if a = c

If a = c then the origin P is the unique point having 0, 1, 4 as order-
sequence. In fact, if Q is another point with this order-sequence then we
have 4P ∼ 4Q where ∼ means linearly equivalent to. Since there are no
2-torsion points (the Hasse invariant is zero) we get 2P ∼ 2Q, but the curve
is not hyperelliptic.

The numerator of the Wronskian for the curves Ca,b,c is given by

wK = fxfy(ax
2 + cy

2) + f
2
y (axy + by

2) + f
2
x(bx2 + cxy)

= bx
2 + by

2 + (a + c)xy + (ax
2 + cy

2) + (ax
2 + cy

2)2(x + y).

The following hold:

div(x) = 2Q2 + P0 − [Q1 + Qδ + Qδ+1]

div(y) = 2Q1 + P0 − [Q2 + Qδ + Qδ+1].

Because of ( [SV1] Theorem 1.5) the origin is a Weierstrass point with

São Paulo J.Math.Sci. 3, 1 (2009), 13–24



The moduli of Certain Curves of Genus Three in Characteristic Two 21

weight greater than 2 having x as a local parameter, and the following
expansions hold

y = x + (a + b + c)x4 + (a + c)(a + b + c)x7+

+ ((a + c)2(a + b + c) + (b + c)(a + b + c)2)x10 + · · ·

wK = (a + c)(a + b + c)x5 + (a + b + c)2(b + c)x8 + · · ·

If a = c then the order of wK at the origin is greater than 5, and the
expansions are

y = x + bx
4 + (b + a)b2

x
10 + ab

3
x

13 + ab
4(a + b)x19 + · · ·

wK = b
2(b + a)x8 + b

4(b3 + a
3 + b

2
a)x20 + · · ·

If also b + c = 0 (so that a = b = c) then the order of wK at the origin is
20, and the origin is the unique finite Weierstrass point. Summarizing we
have:

vP0
(wK) = vP0

(RK) =






5 if a 6= c

8 if a = c 6= b

20 if a = b = c

At the points Q1 and Q2 the following holds:

vQ2
(wK) = vQ1

(wK) = −5 and vQ2
(RK) = vQ1

(RK) = 1,

and so these points are Weiertrass points with orders 0, 1, 3 and weight 1.

The other infinite points Qδ and Qδ+1 are Weierstrass points with orders
0, 1, 3 and weight 1, since taking the local parameter t = 1/y the local
expansion of x begins as

x =
b

a
δt

−1 + · · · ,

and thus

ax
2 + cy

2 =

(
b2

a
δ
2 + c

)
t
−2 + · · · ;

as δ2+δ = ca
b2

this first coefficient b2

a
δ2+c = b2

a
(δ2+ ca

b2
) = b2

a
δ is nonzero. At

Qδ, for instance, the tangent is given by x + b
a
δy = 0, and the intersection

divisor of this tangent with the curve is given by 3Qδ + P0, so that Qδ and
Qδ+1 have Weierstrass directions towards the origin.

A line in the pencil through the origin has the equation y = αx, which
taken into the equation for Ca,b,c gives

x(1 + α + x
3(aα + bα

2 + cα
3)) = 0.

If α 6= 1 this equation does not have a multiple root, showing that no finite
point of the curve other than the origin has its tangent passing through the
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origin. As a consequence, the infinite points are the only ones in the curve
with Weierstrass direction towards the origin.

Second coordinates of other Weierstrass points are given by the Sylvester
resultant R(f,wK) between f and wK :

R(f,wK) =

= y
20(a2(c4

ab
4 + c

4
b
5 + c

5
b
4)) + y

17(a2(ac
4
b
3 + b

5
c
3 + b

4
c
4 + a

2
c
3
b
3))+

+ y
14(a2(b7 + c

3
a

4 + a
2
c
5 + a

2
b
4
c + a

3
c
2
b
2 + a

2
c
2
b
3 + b

6
a + b

4
c
3))+

+ y
11(a2(b5

c + a
3
c
2
b + b

4
a

2 + b
5
a + c

2
a

4 + a
2
c
4 + b

4
c
2 + ba

2
c
3))+

+ y
8(a2(b3

a
2 + a

4
c + b

2
a

3 + a
2
c
3)) + y

5(a2(a4 + a
2
c
2 + ba

3 + ba
2
c)).

The roots of R(f,wK) are the second coordinates of finite Weierstrass
points, but the counting of multiplicities needs some care: R(f,wK) has a
multiple root in a higher Weierstrass point (that is, one having a higher
weight in the ramification divisor or, equivalently (cf. [SV1] Theorem 1.5),
having orders 0, 1, 4), but a multiple root of R(f,wK) would also happen
if 2 distinct Weierstrass points had the same second coordinate. Note that
the origin is counted with multiplicity 5 if a 6= c, 8 if a = c 6= b and 20 if
a = b = c.

If the curve has Weierstrass points with orders 0, 1, 4 other than the origin
then the polynomial R(f,wK) has other multiple roots. This situation is

given by the discriminant of R(f,wK )
y5 . To simplify the computation of this

discriminant we set b = 1, which is allowed because of the action of G; this
discriminant is then given by

disc

(
R(f,wK)

y5

)
= (a + c)2(a + c + 1)2(1 + ac)12.

The factor a+ c is expected: the origin in this case has multiplicity greater
than 5. The second factor is a + c + 1 = a + b + c, which is never zero. If
the third factor is zero then a = 1

c
, and then

a
3 R(f,wK)

y5
= (a2 + a + 1)(y3 + a(a + 1))(y12 + a

4(a + 1)).

If a2 + a + 1 = 0 then a ∈ F4 \ F2, but then c = 1
a

= a + 1 = a2 and hence

a2 +a+1 = a+b+c = 0, which is against our moduli hypothesis. If a 6∈ F4

then the three distinct roots of

y
12 = a

4(a + 1)

are second coordinates of Weierstrass points with order sequence 0, 1, 4, all
of then having weight four, and the three distinct roots of

y
3 = a(a + 1)
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are second coordinates of Weierstrass points with order sequence 0, 1, 3, all
of then having weight 1, as follows from direct computations. �

Theorem 4.4. The isomorphism classes of curves of genus 3 having the
canonical theta characteristic represented by a positive divisor supported
at one point having 2 Weierstrass directions towards it form an algebraic
variety of dimension two.

Proof. There are exactly 4 Weierstrass points having Weierstrass directions
towards the origin, and we may choose 2 of them to the normalized positions
(1 : 0 : 0) and (0 : 1 : 0) in 12 ways. Having chosen these 2 infinite
Weiertrass points, the group that fixes these normalizations is the group
G described in (2) above. This group fixes the point P0 = (0 : 0 : 1) and
each point of the infinite line Z = 0, acting by homothety on finite points:
(a : b : 1) 7→ (αa : αb : 1), where α := s00

s22
. Thus the curve Ca,b,c is

isomorphic to the curve Cλa,λb,λc for λ 6= 0. �

Theorem 4.5. In the curve Ca,b,a all Weierstrass points other than the
origin are simple Weierstrass points. If b = a the origin is the unique
finite Weierstrass point, otherwise the other 16 Weierstrass points are 4 by
4 collinear. These 4 lines containing them are lines in the pencil of lines
through (1 : 1 : 0), and so is the canonical bitangent.

Proof. If a = c then there are no other bitangents, and thus all Weierstrass
points except the origin have orders 0, 1, 3 and weight one. Besides the
infinite points, these Weierstrass points are given by the zeros of

wK(x, y) = a
2(x + y)5 + (a + b)(x + y)2

= (x + y)2[a2(x + y)3 + a + b]

As x 6= y away from the origin, these Weierstrass points occur in pairs
(x : y : 1) and (y : x : 1), the above equation being symmetric in x and y,
as expected: if a = c then x ↔ y is an automorphism of the curve. The
above equation gives a relation among the coordinates of Weierstrass points

x + y =

(
a + b

a2

)1/3

. (6)

If a = b = c only the origin is a finite Weierstrass point, as we have seen. If
a = c 6= b then a+b

a2 never vanishes and has 3 distinct cubic roots, and thus
the other 12 Weierstrass points are on the 3 lines given by (6), occurring
in 3 sets of 4 collinear points. These 3 lines are concurrent at the infinite
point (1 : 1 : 0), which is also a point in the canonical bitangent x = y. �
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If a 6= c there are 3 non-canonical bitangents, corresponding to α0 +
α1x + α2y = 0 where (

α0
α1
α2

)

is a solution of

H

(
α0
α1
α2

)
=

(
0 1 1
a 0 0
c 0 0

)(
α0
α1
α2

)
=




α2

0
α2

1
α2

2





(cf. [SV2] Proposition 3.3). Therefore, for each one of the 3 distinct roots
of α3 = a + c 6= 0, there is one non-canonical bitangent given by

α
1/2 + a

1/2
x + c

1/2
y = 0.

These non-canonical bitangents are concurrent at the infinite point
(c1/2 : a1/2 : 0).
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