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1. Introduction

Many concepts in algebra are easy to formulate but in concrete situations
it is not easy to make computations involving them. For example, if M is a
submodule of the free module A™, where A = R[x1,...,z,] and R is a Noe-
therian commutative ring, a presentation of M is defined by the quotient
A® /K, where s is the number of generators of M and K is the kernel of the
canonical homomorphism A% — M that sends the canonical vectors of A*
into the generators of M. However, for concrete examples the computation
of K is not an easy task. For instance, if M =< f,fy >C (Ziolx,9])?,
where f, = (32%y + 3z, 2y — 2y) and £y = (Toy? +y,y? — 42) then a direct
computation of K without a Computer Algebra System, or at least without
an algorithmic procedure, is a very extensive an complicated exercise. Per-
haps the most important algorithmic tools for solving this kind of problems
are the Grobner bases introduced in the sixties by Bruno Buchberger (see
[3]). Grobner bases play a key role in computational commutative algebra
and let us to solve many problems that are practically impossible to attack
with traditional theoretical methods.
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26 Oswaldo Lezama

Grobner bases have been studied intensively in the last years, and there
are a lot of interesting applications in many branches of mathematics such
as in homological algebra, commutative algebra, algebraic geometry, dif-
ferential algebra, graph theory, etc. Grobner bases have been also used
in applied sciences as statistics ([4]), robotic ([6]), linear control systems
([5],[14]), etc. There are excellent monographs that study the theory and
applications of Grobner bases. In particular, we can mention the recent
works of Lorenzo Robbiano and Martin Kreuzer (see [11],[12] and also [9]),
the monograph of Pfister and Greuel ([8]) that includes the package SIN-
GULAR ([10]), the monographs of Cox et al with applications in Algebraic
Geometry ([6], [7]), the classical book of Becker and Weispfenning ([2]),
and the textbook of Adams and Loustaunau ([1]).

In this paper we present some applications of Grébner bases of mod-
ules in homological algebra. Thus, if R is a Noetherian commutative ring,
A = Rx1,...,zy], and A™ is the free module of vector columns of length
m > 1 with entries in R[zi,...,x,], we will compute presentations of
Homa(M,N), M@ N, Ext"y(M,N) and Tor(M, N), where M is a given
submodule of A™ and N is a given submodule of A!, with m,l > 1 and
r > 0. The technique we will use is very simple, we compute presentations
of submodules of A™ using syzygies and Grobner bases, and with this, we
compute free resolutions and the correspondent modules of homology.

The theory and methods of Grébner bases for modules are well known.
For example, in [1] is presented the theory of Grobner bases for ideals of
A and for submodules of (K|z1,...,z,])™, where K is a field (see also the
Chapter 2 of [8], and Chapters 2 and 3 of [11]). In [13] and [15] the theory
was extended for submodules of A™, in particular, in [13] was presented
and proved the algorithm of Buchbeger for computing Grobner bases of
submodules of A™. In the present paper we will use the Buchberger’s
algorithm of [13] for computing all Grobner bases needed in the examples
that illustrate our results and procedures below. Moreover, we will use the
usual terminology about monomial orders on A and A™ (see [1] and [8]),
in particular, we will use the POTREV order on monomials of A™ defined
as in [13], i.e., given a monomial order > on Mon(A) (monomials of A), we
define the following natural order on Mon(A™) (monomials of A™).

Definition 1. Let X = Xe; and Y = Ye; € Mon(A™), where X,Y €
Mon(A) and {ey,...,en} is the canonical basis of A™. The POTREV
order is defined by

1< ]
X>Y<— < or
i=j5and X >Y.
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Note that for this monomial order
e1>e9> > en.

If f # 0 is a vector of A™, then we may write f as a sum of terms in the
following way

f=aXi+ - +aXy,

where ¢1,...,¢4 € R—0 and X; > Xo > --- > X, are monomials of
Mon(A™).

Definition 2. With the above notation, we say that

(i) It(f) = c1 X7 is the leading term of f.
(ii) le(f) = c1 is the leading coefficient of f.
(iii) Im(f) = Xy is the leading monomial of f.

With the above terminology we recall the definition of Grobner basis for
submodules of A™ (see [13]): Let G # 0 be a non empty subset of A™, then

Lt(G) =< lt(g)|g € G >

is the submodule of A™ generated for the leading terms of vectors of G.
Let M # 0 be a submodule of A™ and let G # 0 be a non empty finite
subset of M, we say that G is a Grébner basis for M if Lt(M) = Lt(G).
Taking m = 1 we get the definition of Grobner basis for ideals of A. An
effective method for computing Grobner bases of ideals and submodules
over commutative polynomials rings is the the Buchberger’s algorithm that
can be found in [1] or [13]. For more details about the general theory of
Grobner bases of ideals and modules see [1], [8] and [13].

The paper in divided in four sections. The second section is dedicated
to compute syzygies of modules, the presentation of a given module and
the kernel and the image of a homomorphism between modules. In the
third section we compute the modules Homy(M,N) and M ®4 N, and
also we will compute a free resolution of a given submodule M of A™.
The last section is dedicated to compute presentations for Ext’y (M, N)
and Tor2 (M, N). All computations will be illustrated with examples. We
remark that in the literature is difficult to find such illustrative examples.

2. Elementary applications of Grobnes bases

In this section we will list the most basic applications of Grobner bases
in module theory that we will use later. We will compute syzygies of mod-
ules, the presentation of a given module, the kernel and the image of a
homomorphism between modules. All of these computations are analogues
of those for ideals of R[z1,...,zy] or submodules of K|[z1,...,x,]|™, and
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the proofs have been adapted (see Chapters 3 and 4 in [1], and Chapter 2
of [8]).

2.1. Syzygy of a module. We start computing the syzygy of a submodule
M =< fq,...,fs > of A™. For this we consider the matrix F' = [f,--- f,]
and we recall that Syz(F') consists of vectors h = (hy,...,hs) € A% such
that

hifi+---+hfs =0,
i.e., Fh = 0. We note that Syz(F') is a submodule of A* and we also define
Syz(M) = Syz(F).
In order to compute Syz(M) we need the following preliminary result
(see Lemma 2.8.2 in [8]).

Theorem 3. Let F = {f},...,f.} be a set of non-zero vectors of A™ and
G a Grébner basis for M =< F > with respect to POTREV order on
Mon(A™). Then, for anyk =0,...,m—1, GN(P;~, , Ae;) is a Grobner
basis for M N (P;L, ., Ae;).

The key for computing syzygies is the following theorem.
Theorem 4. Let F = {f,,...,f,} be a set of non-zero vectors of A™.
Consider the canonical embedding
A™ Am-I—S
and the canonical projection
R s — L
Let G ={gy,...,9,} be a Grébner basis for < fi + emt1,---,fs + €m+s >
with respect to the POTREV order on Mon(A™*). IfGﬂ(EB?:fH Ae;) =
{91, g1} then Syz(F) =<m(gy),...,7(g) >.

Proof. If K is a field the proof of the Lemma 2.5.3 of [§] for A =
K[xy,...,z,] applies in our general situation. We will adapt this proof
using a matrix notation. Let M =< f; + epm+1,...,f5 + €mts >, by the
previous theorem {gy,...,g;} is a Grobner basis for M N (P* 1 Ae;).
For 1 <ov <, let

g, =
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Some applications of Grébner bases in homological algebra 29

We know that during the process of computing a Grobner basis we can
express each g; as a combination of generators of M (see [13]), thus there

exist elements hq,...,hs € A such that
[ 117 [ f1s ]
fml fms
go=h1 | 1 |+ +he| 0|
0 0
Lo [ 1]
where by the canonical embedding
[ f1i]
fmi
0
fi= :
1
L 0
then h; = gm0 for each 1 <7 < s and also
fll fls
hl + .4 hs = 0’
fml fms

ie, gmt1of1+ -+ Imtsofs = 0, and hence, 7(g,) € Syz(F) for each
1 <wv <. This proves that < w(gy),...,m(g;) >C Syz(F).

Conversely, let b = (hy,...,hs) € Syz(F), then hif, + -+ hsfs =0
and hence
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[ f117] f1is] 0 [0
fim1 fms 0

hi| 1 | +--4+hs| 0| =] eEMN (@ZJ;ZS.H Ae;).
0 0 ha
0 | 1]

Since {g,...,9;} is a Grobner basis for M N (@?:fﬂ Ae;), there exist
p1,---,p € A such that

0 0 0
0 0 0
hi| =P gmsrn Tt Gm1, |’
_hs_ | Im+s,1 | | Im+-s,1 |
hence h €< 7(g,),...,m(g;) >. This complete the proof. O

The following example illustrates the elimination method described in
the previous theorem.

Example 5. In [13] we computed a Grébner basis for M =< f,fy >
with respect to POTREV order on Mon(A?), where f, = 3iz?ye; + (1 +
i)ze1+2ixy’es+5zeq, fo = (2+i)x’ze1 +yer +3xy’es+y2es+4izes and
A = Zli][z,y, z]. On Mon(A) we used the order deglex with x >y > z. The
Grobner basis we computed is G = {f;, fo, f3,fa}, where f5 = 3ye; +
(=3+i)2%e1 + 97y ea+ (—4—2i)zy’zex+ 3y ea + 12iyzes + (—5+10i) 22 eq
and f, = 92%9y3es + (—4 — 2i)x3y%zey + 3223 ey + 12ix%yzes + (-5 +
10i)z%2%eq — 2xy3es + (3 —3i)wy?zes + (1 —i)y*zes + Hiyzes + (4+4i) 2% es.
Using again the algorithm of Buchberger presented in the Theorem 23 of
[13] we compute a Grobner basis G’ for F' = {f, + es, fo + e},

G = {g/1>gl2?gé>g£1}a
where g) = f1 + es, g = fo+ es, g5 = f5+ (=1 + 2i)ze3 + 3yey and

g, = fi+ (=1+2i)x2ze3 +iyes + 3x°yes + (1 — i)zey. We observe that
G' N (Aes @ Aey) = 0, and hence Syz(f,f,) = 0.
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2.2. Presentation of a module. Let M =< f4,...,f, > be asubmodule
of A™, there exists a natural surjective homomorphism mp; : A5 — M
defined by mas(e;) = f;, where {e;}1<i<s is the canonical basis of A®. If
Kyr = ker(mps), then we have the isomorphism 77 : A%/ Ky =2 M, defined
by 7mar(€;) = f;, where €; = e; + Kj;. We note that Ky =< hy,... hs, >
is also a finitely generated module and we have the exact sequence

At O qs TV ), (2.1)

with dps = ipr o 7, where ips is the inclusion of Kjs in A® and 7, is
the natural surjective homomorphism from A% to Kj;. We recall that the
quotient module A%/Ky, or equivalently, the exact sequence (2.1), is a
presentation of M. We observe that Ky = Syz(M) = Syz(F'), where F' =
[f1---fs, and consequently, the Theorem 4 gives a method for computing
a presentation of a module. On the other hand, let Ap; be the matrix of
dpr in the canonical bases of A%t and A®, then the columns of Ay, are the
generators of Syz(F') since I'm(dys) = ker(mps). We will also say that Ay
is a matrix presentation of M.

The next example will be used often in this paper.

Example 6. Let M =< f17f2 >C (Zlo[l‘,y])Q and N =< 91,929,393 >C
(210[1:73/])27 where fl = (3x2y+3:1:,xy—2y),f2 = (7$y2+y7y2 _4$)7 91 =
(0,z) and g9 = (y,z) and g5 = (2x, ), then applying the Theorem 4 with
order deglex on Mon(Z[z,y]) and x > y, we get presentations for M and
N,

M = A?/Syz(M), N = A®/Syz(N),
where

Syz(M) =< (5y,5z) >, Syz(N) =< (5,0,5), (2x + 9y, 8z, y) >.

Presentations of quotient modules could be also computed. In fact, let
N C M be submodules of A™, M =< f,....fs > N =<gq,...,9; >,
M/N =< f,,...,f, >, then we have a canonical surjective homomorphism
d : A* — M/N such that a presentation of M/N is given by M/N =
A®/Syz(M/N). But Syz(M/N) can be computed in the following way. h =
(h1,...,hs) € Syz(M/N) if and only if hif;+ -+ hsfs €< g1y---, 9 >
if and only if there exist hsi1,...,hsyt € A such that hyf; +--- + hsf, +
hot191 + -+ + hsrgy = 0 if and only if (hy,... hs, hey1,.. . hott) €
Syz(H), where

H=I[f, - fs91 g4
Thus we have the following well know result.
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Theorem 7. With the notation above, a presentation of M/N is given
by A°/Syz(M/N), where a set of generators of Syz(M/N) are the first s
coordinates of generators of Syz(H).

2.3. Kernel and image of a homomorphism. Let M C A™ and N C Al
be modules, M =< f,...,fs >, N=<g;,...,9,>,andlet ¢ : M — N
be a homomorphism. Then, there exists a matrix ® = [¢;;] of size t x s
with entries in A defined by

o(fi) = ¢1i91 + -+ + PGy,

for each 1 < i < s. We compute now a system of generators and a pre-
sentation for ker ¢ and I'm(¢). We assume that the homomorphism ¢ is
well-defined and it is given by the matrix ®. Using the notation of the
previous subsection, let A%/Syz(M) and A'/Syz(N) be presentations of
M and N. We consider the canonical isomorphisms

s A%/ Syz(M) — M, 7y : A'/Syz(N) — N

defined by 7i7(€;) = f;, 1 < i < s, 7n(e}) = g;, 1 < j < t, where
{ei}1<i<s is the canonical basis of A® and {e;}lgjgt is the canonical basis
of A'. Then, we have the following commutative diagram

M N N

l l (2.2)

A%/ Sy=(M) —— A'/Sy=(N)
where the vertical arrows are the isomorphisms (7a7 )~1and (7x)~!. Hence,
o(€) = (An) Lo g oTar(€) = 1€l + puie}, for each 1 < i < s. We
observe that the matrix of ¢ coincides with the matrix of ¢, ker(¢) = ker(¢)

and I'm(¢p) = Im(¢).

Let_hlfl +oeee ths € ker(¢)> the_n (ﬁ)il(QS(hlfl +oeee hifs))
0 = o((mr) "(hafy + - + hsf )= op(hier + - + hs&s) = hig(e)
<+ hsop(es) = hl(gbie’l + -t duep)t+ hs(gblie’l + -+ Prsel)
(h1¢11 + -+ hs(bls)ell + -4 (hl(btl + -+ hsgbts)e;. This implies that
(hig11 + -+ + hsprs)el + -+ + (hiu + -+ + hsius)e; € Syz(N). We
assume that we have computed a system of generators for Syz(N) =<
ui,...,uy; >C A' (Theorem 4). Hence, there exist hgy1,...,hsyy € A
such that

I |
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b1 P15
++hs —|—h5+1U1+"'+hs+t1ut1:O‘
(btl @bts

From these computations we also can conclude that
hfy 4+ hsfs €ker(¢) & (b1, hs) € ker ().
Thus, we have proved the following theorem.
Theorem 8. With the notation above, let
H=[® - & w - uyl,
where ®; is the it" column of the matriz ®, 1 < i < s. Then,
(R, hsyhsi1,. .. hstyy) € Syz(H) < hif; + -+ + hsf, € ker(¢).

Thus, if {z1,...,2,} C AT is a system of generators of Syz(H), let 2}, €
A% be the vector obtained from z, when omitting the last t1 components,

1<k <w, then {?1, ..., 2,} is a system of generators for ker(¢). Moreover,
if

hy

2'/1:(hlly---yhls)a"'uzé;:(hvly-°-7hvs)7

then {hi1f; + -+ hisfsy - horfy + - + hosf,} is a system of generators
for ker(¢).

A presentation of ker(¢) is given in the following way.

Corollary 9. With the notation of this section, a presentation of ker(¢) is
given by AV /K, where

K = Syz(ker(¢)) = Syz[hinfy + - +hisfs -+ horfi +- 4+ hosfs].

Example 10. In the Step 6 of Section 3.1 we will prove that the function
¢ defined by

M3 N
fi— 293

fa—ya

is an homomorphism, where M and N are as in the Example 6. Now we
will calculate a system of generators for ker(¢). We note that the matrix

of ¢ is
0 y
@:[o 0],
x 0
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thus, we must compute Syz(H) where

0 v 5 2249y
H=10 0 0 8z
z 0 5 Y

For this we apply the Theorem 4 and we get
Syz(H) =< (0,0,2,0),(0,0,-y,5) >.

By the Theorem 8, we omit the last two components of (0,0,2,0),
(0,0,—y,5) and we get that ker(¢) = 0.

An explicit presentation for ker(¢) could be also given. We assume that
we have computed a system of generators for Syz(M) =< wy,...,ws >C

A®. We know that a presentation of ker(¢) is given by ker(¢) = A”/K’,
where K’ = Syz(ker(¢)) = Syz(< 2),..., 2, >). But, (I1,...,l,) € Syz(<
2h, ...,z >) if and only if there exist l,41,...,ly,4s, € A such that l12] +

stz Flpwy o+ lyys, ws, = 0. Thus, we have proved the following
corollary.

Corollary 11. With the notation above, let
L:[Zjl Z/U w; - 'ws1];

if {l, ..., l;} C A"51 s a system of generators of Syz(L), let I, € A" be the
vector obtained from U when omitting the last s1 components, 1 < k < g,
then {ly,. .., l;} is a system of generators for K', and hence, a presentation

of ker(¢) is given by AV/K'.
We consider now the image of homomorphism ¢ : M — N in (2.2).
Then the following result is clear from the above discussion.

Corollary 12. A system of generators for Im(¢) is given by

Im(¢) =< ¢ng + -+ GuB .- P1s81 + -+ + 18y >
A presentation of Im(¢) is A%/I, where

I=Syz[png + - +duge ... @181+ + Prsgyl.

Example 13. Let ¢ be as in the Example 10, then by the previous corol-
lary, Im(¢) =< (222,2%),(0,2y) >. A presentation of Im(¢) is given by
Syz(I), where
2
1= [2€ ’ ] ,

r° Y

so we apply again the Theorem 4 and we get Syz(I) =< (5y, 5z) >. Thus,
Im(¢) = A%/ < (5y,5x) >. This conclusion of course coincides with the
results of the Examples 6 and 10 since Im(¢) = M.
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We conclude this section showing an explicit presentation of Im(¢).

We know that Im(¢) =< ¢11€] + -+ + due},...,p15€ + - + ds€f >,

thus a presentation of Im(¢) is given by Im(¢) = A®/Syz(Im(¢)). Let

(h1,...,hs) € Syz(Im(¢)), then there exist hgy1,...,hs1t, € A such that

P11 P15
+ -+ hg —|—h5+1U1+"'+hs+t1ut1:O‘
(btl @bts

Thus, we have proved the following corollary.

Corollary 14. Let H be the matriz in the Theorem 8. If {z1,...,z,} C
AT s q system of generators of Syz(H), let z. € A® be the vector ob-
tained from zp when omitting the last t1 components, 1 < k < v, then

{#},...,2,} is a system of generators for Syz(Im(¢)) and A®/Syz(Im(¢p))

is a presentation of Im(p).

hy

3. Computing Hom, ® and free resolutions

The main goal of the paper is to compute the modules Ext and Tor,
in this section we will compute the particular cases  ExtY(M,N) =
Hom (M, N) and Torg(M,N) = M ®4 N. We also show how to compute
free resolutions.

3.1. Computation of Hom. In this subsection we show a procedure for
computing Hom (M, N), where M is a submodule of A™ and N is a sub-
module of A'. By computing Hom (M, N) we mean to find a presentation
of Homy (M, N) and to find an specific set of generators for Hom (M, N).
For fields, i.e., when A = K{z1,...,x,], where K is a field, the computa-
tion of Hom (M, N) can be found in [1], [8] and [11]. The constructions
there apply to our more general situation when the ring of coefficients of
A is a Noetherian commutative ring R, however we will add the explicit
definition of some homomorphisms and we will prove the commutativity of
some diagrams omitted in the literature.

We will illustrate the theory and steps of the procedure through the
following particular example: M =< fi,fy >C (Z1o[z,9])? and N =<
91,92, 93 >g (210[1:73/])27 where fl = (31:2?/ + 3x,xy - 2y)7f2 = (7$y2 +
y,y? —4z),9, = (0,2) and g, = (y,7) and g5 = (27, 7) (see the Example
6).

Let M and N be submodules of A™ and A, respectively, then M and N

are finitely generated modules, M =< f{,...,f, >, N =< g¢,...,9; >.
In our concrete example, A = Zjp[z,y|, and we choose the POTREV order
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for the monomials of A2. The order in Mon(A) is deglex with z > y. So, in
this illustrative example, R = Z1g, A = Zyo[z,y], m = 2,s = 2,1 = 2,t = 3.
We divide the procedure in some steps.

Step 1. Presentations of M and N. In order to compute a presentation
of Homa(M, N) we first compute presentations of M and N as we saw in
the second section:

M= A% /Ky, N =2 A /Ky,

where Ky and Ky are the kernels of natural homomorphisms 7 : A5 —
M and 7y @ A* — N defined by mar(ei) = f;, mn(e)) = g5, 1 <i <,
1 < j <t ({ei}i<i<s is the canonical basis of A™ and {e;}lgjgt is the
canonical basis of A'). Then, Hom(M,N) = Homa(A*/Ky, At/Ky),
and we can compute a presentation and a system of generators of
Homa(A% /K, AY/Ky) instead of Homa(M,N). However, in the last
step of the procedure we will use the system of generators of
Homa(A% /Ky, AYJKy) for giving an explicit system of generators of
Homy (M, N).

We recall that Ky and K are computed by the syzygies of the matrices

Fy=I[fr - Ffd.Fv=1[91 - 4,
ie., Ky = Syz(Fy) = Syz(M), Ky = Syz(Fy) = Syz(N). In our exam-

ple,
M = A?/Syz(M), N = A®/Syz(N),

and by the Example 6,
Syz(M) =< (5y,5x) >, Syz(N) =< (5,0,5), (2x + 9y, 8z, y) >.
Hence,
Homa(M,N) =
>~ Homa(A%/ < (5y,5x) >, A%/ < (5,0,5), (22 + 9y, 8z,y) >).

Step 2. Homa(A®/Syz(M), A'/Syz(N)) as a kernel. Since R is a
Noetherian ring, Syz(M) and Syz(NN) are finitely generated A-modules,
Syz(M) is generated by s; elements and Syz(N) is generated by t; el-
ements. Thus, we also have surjective homomorphisms 7, : A1 —
Syz(M) and 7y : A" — Syz(N), and hence the following sequences
are exact

Ast M, gs M A% /Syz(M) —— 0 (3.1)

A 0N, gt N At/Syz(N) —— 0 (32)
where 0y = iy o), O = iy © Ty, iar, iy denote inclusions, and jar, jn
are natural homomorphisms. From (3.1) we get the exact sequence
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0 — Hom(A®/Syz(M), At /Syz(N)) & Homa(A®%, At/Syz(N)) 4,
Homy (A%, A'/Syz(N)),

where
d(a) =aody for € Homy(AS, A/Syz(N))
and p is defined in the same way. Thus,
Homa(A®/Syz(M), A'/Syz(N)) = ker(d). (3.3)
Step 3. Computation of Homa(A*, A'/Syz(N)) and
Hom (A%, A'/Syz(N)). According to (3.3), we must compute presenta-

tions of Hom (A%, A'/Syz(N)) and Hom (A%, A'/Syz(N)). Let Aps be
the matriz presentation of M and Ay the matrix presentation of N.

In our example, s1 =1, 1 = 2 and

5 5 249y
b Yy

Let My, s(A) be the ring of matrices with ¢; rows and s columns with entries
in A, in the same way we define Ms(A). Then, from (3.2) we get the
diagram

Hom (A%, A™) v, Hom (A%, AY) 22X Hom(A%, At/Syz(N))

l

Mt1S(A) MtS(A)
d*
Atls N Ats

(3.4)
where dy is the natural homomorphism induced by dy, i.e.,

dn(B) =6y o for B e Homa(A%, AN)

and py is surjective and defined in the same way. The first row is exact
since A is projective. A’* is the free module of vector columns of size
t1s obtained by concatenating the columns of matrices of M, (A). A
is defined in the same way, thus the vertical arrows are natural isomor-
phisms. The left vertical compose isomorphism is noted by ®,,; and the
right compose isomorphism is noted by ®, ;. dj is induced by dy and the

vertical isomorphisms, dy, = ®5;0dy o @;tll. Then, the following diagram
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is commutative:
Hom 4 (A%, At) v, Hom 4 (A3, A?)

q)s,tl J{ J/q)s,t

*
Atl S dN Ats

We can explicit how acts the homomorphism d%,, in fact, if
a= (an,...,atll,... s Qlgy e ,Cbtls) € Ahis

and An = [A;;] is the matrix of dx in the canonical bases of AM and A,
then

t1 t1 t1 t1
dy(a) = O Akt Y Awarr,. o Y Atglps, -, Y Agpays)
k=1 k=1 k=1 k=1

(3.5)
Thus, in the canonical bases of A% and A’ the matrix of d¥; is
Is & AN

where I is the identical matrix of size sx and ® means tensor product.
Thus, di (a) = (Is ® Ax)aT. From the exact sequence (3.4) we get that

Hom (A%, A /Syz(N)) = Homa (A%, AY)/Im(dy),
but
Im(dy) = Im(dy) =< I; ® An >,
where < I; ® Ay > is the module generated by the columns of Iy ® Ay.
Hence a presentation of Hom (A%, A'/Syz(N)) is

Homa (A% A" /Syz(N)) = A/ < I, @ Ay > . (3.6)
This isomorphism is defined as follow. Let f € Hom (A%, A*/Syz(N)) and
f(el) = (f1i>'-' afti)a 1<i<s, then

Homa(A®, A /Syz(N)) 25 At/ < I, o Ay >
is defined by

087t(f) = (flla"' aftlv"' 7f15>"' afts)‘
We observe that 0, ; is a surjective homomorphism. We have to prove that

93715 is injective. If Hs,t(f) = 6, then (fn, PN ,fﬂ, e ,fls, ey fts) S
< Iy ® An > and consequently

(flla"'aftla"'aflsa"'afts):d}k\f(a’)
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for some a = (a11,...,G41,--.,01s,-..,a45). Thus,
(fits- s fors oo fiss oy fis) = @ 0dy 0 @7 (a)
=&, 0dy(a)
®54(0n 0 a),

where a € Homy(A®, A1) is defined by a(e;) = (ayi,...,ai), 1 < i <
s. But for each 1 < i < s, (0y o a)(e;) €< Ay >= Syz(N), hence
(f1i,- -+, fui) = 0 for each 1 < i < s. This means that f = 0.

In the same way, but using Hom 4(A®!, ), we obtain

Homa (A%, A'/Syz(N)) =2 A1) < I, @ An >, (3.7)
and the explicit isomorphism

0
Homa(A51, At Syz(N)) =25 Ats1 ) < I, @ Ay >
is defined by

Hsl,t(h) = (h117 ceey ht17 ceey h1517 ... 7ht81)7
where h € Hom (A%, At/Syz(N)).
In the example we have

5 2x+9y 0 0
g 8; 8 8 5 2249y
<Ihb®Ay >= 0 0 5 2z + 9y <1 ® An >= g 8 >
0 0 0 8z Yy
0 0 5 y

and hence
Hom (A% A3) < (5,0,5), (22 + 9y, 87,y) >) 2 A%/ < [, ® An >,
Homa(A, A3/ < (5,0,5), (2x + 9y,87,y) >) 2 A3/ < [ @ Ay >.

Step 4. Computing the matriz U. As in the previous step, the homomor-
phism &y in the sequence (3.1) induces the natural homomorphism dyy;,
and this one induces the homomorphism d}, defined by dj; and the natu-
ral vertical isomorphisms of the following commutative diagram

Hom 4 (A3, A?) _dm Hom 4 (A1, AY)

q>5,tl J((I)sl,t

*
Ats dM Ats 1

Sao Paulo J.Math.Sci. 3, 1 (2009), 25-59



40 Oswaldo Lezama

Since Hom4( , A') inverts the sense of arrows, in the canonical bases the
matrix of d}, is
ALyl =(Ay®L)T,
where AT, is the transpose of the matrix Ay, In the example,
5y 0 0 b5z 0 O
AyoL)Y=10 59 0 0 5z 0
0O 0 5 0 0 b5z

As in the equation (3.5), we can explicit the homomorphism d},. Let u =

(ULty ooy ULy e e ey ULy« - -y Uss), then dip(u) = (Ay @ I;)TuT, and hence
S S S S
i () = O wakGkts - Y UekOkts - D UkOksys -5 D UtkOks,)
k=1 k=1 k=1 k=1
(3.8)

where App = [0y,].

We observe that d},(< I, ® An >) €< I,, ® Ay >. In fact, it is enough
to prove that dj,;(u) €< Iy, ® Any >, where u is any column of I, ® Ap.
But the form of w is

’Ll,:(0,...,0,...,Alj,...,Atj,...,O,...,0)
where (Ayj,...,Ayj) is the j-column of Ay, 1 < j < ¢;. We note that

(Atj,...,Ay) can be located in s different places within u, so we suppose
that (Aqj,...,Ay;) is located in the l-position within u, 1 <1 <s. Thus,
EAVASTR _ _ _ -
1 ' 1 Alj 0
011 :
& (w) = Ay L)TaT=| | =a |50 5o, |
M(u)—( M® t) u- = : =01 0 + o+ 015 Alj
5181A1j :
: 0 Ay
L015, At ] - -

ie, dj(u) e< I, @ Ay >.
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The homomorphism d}, induces the homomorphism @ and we have the
commutative diagram

Hom (A%, A?) _du Hom (A%t AY)

q>s,tJ{ J/q)sl,t

*
dIW Atsl

J l ljl
&,
A ) < I,@ Ay > —— A1) < I, @ Ay >
where j and j; are the canonical homomorphisms. We define the matrix
U where its columns are the generators of ker(j; o dj,), ie., < U >=
ker(jiod};). We observe that the matrix of homomorphism j;od}, coincides
with the matrix of homomorphism dj,, then by the Theorem 8,

columns of U =first st coordinates of generators of
Syz ([(Anr @ 1) |15, © An)])
(the enhanced matrix obtained from A adding the columns of B is denoted
by [A|B]). For our illustrative example, we have computed Syz([(Ay &
I3)T|I; ® Ay)]) using Theorem 4. Additionally, we computed a minimal
Grébner basis for Syz([(Ay ®@13)T |1, @ Ay)]) and then we selected the first

six coordinates of elements of this basis, the result of these computations
was

1 0000000
00z 200000
g |l 002000
=10 0 0y 0100
0 9% 000020
00 00010 2

Step 5. Presentation of Homa(A%/Syz(M), A/Syz(N)). From the
above results we have the following commutative diagram

Homu(A®, A'/Syz(N)) —%— Hom (A%, At/Syz(N))

es,tJ/ J/esl,t

iy

A/ < L@ Ay> —Mu A1/ <] @AyN>.
In fact, let f € Homa(A®, A'/Syz(N)) with matrix F = [f};] given by
f(ei) = (fiis- -+, fu), 1 <i <s. Then,
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d(f) = fodu =h € Homa(A%, A'/Syz(N)),
and hence,

Hsl,t(h) =
(O ret J1kOkts - s 2oy JekOkts - 2opey S1kOksts - - 2opey JehOksy )
On the other hand,

dyyOs(F)) = 3 ((Fra - foas ooy Frss oo fis))
:d*M((fllu"'7ft17"'7f157"'7ft8)
= (ATM®It)(f117'°°7ft17"'7f187°"7fts)

= (Z flk(skh' . °7thk5]€17 cee 7Zf1k5k817 .. '7thk5k81)'
k=1 k=1 k=1 k=1

Hence, ker(d) 2 ker(d},), and from (3.3), a presentation of ker(d},) gives
a presentation of Hom(A%/Syz(M), At/Syz(N)). Let u € A, then

u € ker(d},) < d},;(0) =0 < dj;(u) €< I, @ Ay >+

Ay @ ITul e< I, @ Ay >
the first st coordiantes of u belong to Syz ([(Ay @ I)T|I,, ® Ay)]) <=
ue<lU>/<I;®AN >,
where < U > is the column module of matrix U. Thus, we have proved
that ker(d},) =< U > / < I, ® Ay >, and we get the following theorem.
Theorem 15. With the notation above,
Homs(M,N)=<U> /< I;® Ay >, (3.9)

and presentation of < U > |/ < I; ® Ay > is a presentation for
Homa(M,N).

In the example we have Hom (M, N) = A8 /K, where K is the module
generated by the first 8 entries of generators of Syz([U|la ® An]) (see the
Theorem 7). We computed a minimal Grobner basis for the syzygy of
the matrix [U|lz ® Ay| and then we selected the first eight entries of the
elements of this basis. The result was

8
HOmA(M, N) = A / < v1, V2, Vs, V4, Us, Vg, V7, Vg, Vg >
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where
v1 =< 5,0,0,0,0,0,0,0 >
vy =< 8x +y,0,6x,0,z 4+ 4y,0,0,0 >
v3 =< 0,0,5,0,0,0,0,0 >
vy =< 0,8,2,0,0,0,4y,0 >
v5 =< 0,0,0,0,5,0,0,0 >
v =< 0,0,0,8,2,2y,0,0 >
v7 =< 0,0,0,0,0,0,5,0 >
vg =< 0,0,0,0,0,0,0,5 >
vg =< 0,0,0,0,0,4x + 8y, 8x,y > .

Step 6. We conclude this section computing an explicit set of generators
for Homa(M, N) in our illustrative example. We know that
Homa(M,N) =

Hom (A% < (5y,5z) >, A3/ < (5,0,5), (2z + 9y, 8z, y) >).
Each element ¢ € Hom4(M, N) can be represented by an unique element
@ c A%/ < wy,...,v9 > with @ = aje; + --- + ageg € A%. We consider
the column ¢ of U, Ue;,1 < ¢ < 8, the six entries of this column could be
disposed into a 3 x 2 matrix, denoted by Uj;, taking the first three entries as

column one and the next three entries as column two. Thus, U; represents
an A-homomorphism defined by

A2 Yi, 43
z+— Uz
and it induces an A-homomorphism also denoted by U;
A2/ Ky 2 A3/ Syz(N)
ZzZ— m

It is easy to verify that each U; is well defined, i.e. U;(Ky) C Ky, 1 <i <
8. The eight matrices are

10 0 0 0 0 0 y

Uy =10 0|,Us= |2 9y U3:20,U4:00]
10 0 0 0 0 z 0
0 0 0 1 0 0 0 0

U5:OOU6:OOU7:02U8:OO].
2 0 0 1 0 0 0 2
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The isomorphisms
A? /Ky = M A3/Kny = N
€ —f; e_;- = g;

describe the eight homomorphisms of Hom 4 (M, N),
M N

fi—ei—Ue = ,1+e_§:91+93

e
forrea—Uea=0

M2 N M2 N M2 N
f1— 199 f1— 295 f1— g3
JFar—=9y9, Jor—0 Foryg,
M, M2, M
f1—2g3 fi—0 fi—0
far—0 for—g1+9;3 far— 295

M2 N

f1—0

far—2g;3

3.2. Computation of M ® N. For M =< f,...,f, >C A™ and N =<

g1,---,9; >C Al we now compute a presentation of M ® N. This com-
putation has been also considered in [8] using exact sequences (see [8],
Corollary 2.7.8). Our presentation is given as a quotient module of M ® N
and showing an explicit set of generators for Syz(M ® N). We start with
a preliminary proposition ( see [8], Proposition 2.7.10).

Proposition 16. Let S be an arbitrary commutative ring and M, N mod-
ules over S. Let mj € M,g; € N, 1 < j <t such that N =< gy,...,g; >.
Then, mi®g,+- - -+my®g, = 0 if and only if there exist elements m), € M
and hj, € S, such that mj = > _| hj,m, and E;Zl hjyg; = 0 for each
1<v<r, 1<j5 <t Ina matriz notation,
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[my - my] = [mf - my |HT, H'[g, - g,] =0,
where H = [hj,] and the module expanded by the columns of H is contained
in Syz(N).
Theorem 17. Let M and N be submodules as above. Then,
M®N = A% /Syz(M ® N)
where

Syz(M @ N) =< [Syz(M) ® I | Is ® Syz(N)] > .

Proof. 1t is clear that

M®N:<f1®gla"'7f1®gt7"'7fs®gla"'7fs®gt>' (310)
Let Syz(M) =< f1,...,f; > and Syz(N) =< g},..., g, >, with
fll:(f117°°'7f81)7"'7f;':(fl?“u"waT)
and
gll:(9117"'7gt1)7"'7g;):(glpv"'vgtp)'
In a matrix notation,
fiu .. fir g1 ... 9Jip
Syz(M)= |+ |, Syz(N)=|+ .
fsl fsr g1 .-+ G
Then,
ufi+--+fafs = 0
flrf1+"'+fsrfs =0
and
gnugi+---+gngy = 0
91p91+ -+ Gp9s = 0.

We note that any of the following ¢r vectors has st entries and belongs to

Syz(M & N)
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(f11,0,...,0,..., fs1,0,...,0)
(0,0,..., f11,---,0,0,..., fs1)
(f1r,0,...,0,..., fsr,0,...,0)

(0,0,..., firy---,0,0,..., for).

In the same way, any of the following ps vectors has st entries and belongs
to Syz(M @ N)

(gu,...,gﬂ,...,o,...,0)
(0,...,0,...,911,...,gt1)
(glpa"'7gtp>"'>07"'70)

(O,...,O,---;glpy---agtp)'

We can dispose these tr + ps vectors by columns in a matrix [C' | B] of size
st x (tr + ps), where

_fll 0 flr 07

0 ... fir ... 0 ... fir
¢= : : = Syz(M) @ I,
fs1 oo 0 ... fo ... 0

0 s fa e O fad
(911 ... 0 cee G1p - 07
g1 -~ 0 .. gp ... O

O ... gu ... 0 ... gp

L0 ... gn .. 0 .o gyl
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But B can be changed by

911 .- gip --- 0 ... 07
g1 .- Gyp ... 0 ... 0
: : el : t | = I, ® Syz(N).
O O gi1 glp
_0 0 gi1 gtp_

Thus, we have proved that < [Syz(M)® I | Iy ® Syz(N)] >C Syz(M ®
N).

Now we assume that h = (hyy,...,h1g, ..., hs1, ..., hg) € Syz(M ® N),
then

hu(f1©g1)+ - +hu(f1®g)+ - +ha(fs®g1)+ - +ha(f;®g,) =0.
From this we get that

m®g+---+meg, =0,
where

m; = hyf1+--+hgifs €M,

with 1 < j <¢. From the Proposition 16, there exist polynomials a;, € A
and vectors m/, € M such that m; =>"" _; a;,m/ and E;Zl ajvg; = 0 for
each 1 < v < r. This means that (ayy,...,aw) € Syz(N) for each 1 < v <

r. Since m!, € M there exist q,, € A such that m} = q1,f1 + -+ + ¢suf s»
and then

Yoiyhaf; = aunlgunfi+-+agafs) +-+an(qefi+ +qsfs)

i haf; = an(qufi+-+aafs) o Fan(qefi + - +qsnfs)

From this we get that

S (b = (a11gin + -+ a1rqir))f; = 0

Soizi(hie — (anga + - + ageqir))f; = 0

ie.,
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(h11 — (@11q11 + - - + a1rqir)s - -, hs1 — (@11gs1 + -+ + a1rqsr)) € Syz(M)

(hlt - (athu + -+ atrer)a ceey hst - (atl(,ZSl + -+ atrer)) € SyZ(M)
This implies that

(hi1, ..., hs1) — (@111 + -+ + a1r @i, - - -, @11Gs1 + -+ + a1rqsr) € Syz(M)

(hity -y hst) — (anqur + -+ + @ Qir, - - -y ap1Gs1 + - -+ + i qsy) € Syz(M).
Then,

(hi1)j—y = (a11qi1 + -+ + a10Qips - - - s 011Gs1 + -+ + a1rqsr) + (f11,-- -, fs1)

(hit)i—1 = (apnqi1 + - + @ Qurs - -y 001Gs1 + -+ + aprqse) + (fres -+ -5 fst),
with (fi1,..., fs1)y--os (fits -+, fst) € Syz(M). From this we get

hi1 = fui1 +anqun + - - + arqur
hit = fie +apnqun + - - + aprqur
hs1 = fsl + a11¢s1 + -+ - + a1-Qsr

hst = fst +a11qs1 + - -+ + apqsr,
and hence h is a linear combination of columns of the following matrix

[Syz(M) © I | D]

where
fa11 ... a1y ... 0 0 T
aty ... Aty ... 0 0
D: . .
0 0 ai; ... Ay
_0 0 a1 iy |
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But < D >C< I; ® Syz(N) >, and hence, h €< [Syz(M)® I; | I, ®
Syz(N)] >. This completes the proof of the proposition. O

Example 18. Let M and N be submodules as in the Example 6, then
Syz(M @ N) = [Syz(M) ® I | I @ Syz(N)],

ie.,
59 0 0 5 2x+4+9y O 0
0 5y 0 0 8 0 0
|0 0 by 5 Yy 0 0
SyzM@N)=15 0 0 0 0 5 22+
0 52 00 0 0 8z
0 0 520 0 5 gy

3.3. Computing free resolutions. In this subsection we will compute
free resolutions for submodules of A™. Let M be a submodule of A™, we
recall that a free resolution of M is an exact sequence of free modules

Fy

Frez pgse Erp o pspoa ot

CBgs iASO&)M_)[L

with s; > 0 for each i > 0. We assume that A° = 0. The following
proposition describes a simple procedure for constructing a free resolution
of M.

Theorem 19. Let M =< f<10), . ,fﬁ? > be a submodule of the free module

A™. Let Iy be the matriz whose columns are f<10), el s?)), and fori>1 let

F;, = Syz(F;—1) = [f(lz) . fg)]
Then,

FT+2 Fr—l

F, F: F F{
Asr 25, Asr—1 C =3 ASt 5 A% 5 M — 0,

s a free resolution of M, where

Fej) = ;!

and {eg'i)}léjiész- is the canonical basis of A%:.

Proof. Each homomorphism F; is represented by a matrix, and hence, a
resolution of M is described as a sequence of matrices {F;};>0, where the
columns of F; are the generators of Syz(F;_1), i > 1. The columns of Fj
are the generators of M. We note that Im(F;) = Syz(F;—1) = ker(Fi_1)
for each ¢ > 1, and moreover Fj is a surjective homomorphism. O

We can illustrate this procedure in the following example.
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Example 20. Let M and N be as in the Example 6, we will compute
free resolutions for M and N. According to the Proposition 19, we must
compute the matrices F;, ¢ > 0, and for this, we will use the Theorem 4.

We start with M, in this case we have
. 8322y + 3z Txy? 4y
Ro=lf fal= [P0t T
5
Fy = Syz(Fy) = [533} JFy = Syz(Fy) = [2], F3 = Syz(Fy) = [5),...
hence, for r > 1
Fyr = [2], For 1 = [5].

Thus, a free resolution for M is

5y 322y + 3z Twy? + y}
5 -2 24
A (5] A 2] A Z A2 Ty —2y Yy x o
For N we have
5 2z + 9y
0 2
Go=1[91 92 93]= [a: z :ﬂ ,G1 = Syz(Go) = [g 8z ,

Yy

2 5
Go = SyZ(Gl) = [0 Zg] ,G3 = SyZ(GQ) = [0 38/] s

2
G4 = Syz(G3) = [o g}

hence, for r > 1

2 )
G2r = |:0 :g:| 7G2r+1 = |:0 g:| .

Thus, a free resolution for IV is

oY Y
g 0 8 2 0 5 12

5 249y

0 8x 0 y 2z

5 r T x
A2 LANENE N—0
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4. Computation of Fxt and Tor

Now we will present the main computations of this paper, the modules
Ext" (M) and Tor (M, N).

4.1. Computation of Fxt. Using syzygies and the results of previous
sections we now describe an easy procedure for computing the A-modules
Ext’,(M,N) for r > 0, where M = < f,...,f, >C A™ and N =<
gi,.-.,9; >C Al. By computing we mean to find a presentation and a
system of generators of Ext" (M, N) (compare with [1], Section 3.10). For
r =0, ExtY(M,N) = Homa(M,N) and the computation is given by the
results of Section 3. So we assume that r > 1.
Presentation of Ext’y(M,N), r > 1:

Step 1. We compute presentations of M and N,
M = A%/Syz(M), N = At/Syz(N),
and we know how to compute Syz(M) and Syz(N).
Step 2. Using Theorem 19 we compute a free resolution of A®/Syz(M),

P B g B s B,

M ASr+1 ﬂ Asr EAN Asr—1
A®/Syz(M) — 0.

Thus, using syzygies we can compute the matrices F., for r > 1.

Step 3. We consider the complex
0 — Hom (A%, A/Syz(N)) i, E, Hom (A%, At/Syz(N)) Fro,

Homa(As+1, At/ Syz(N)) =2, ..

and we recall that

Ext’y(M,N) 2 Ext’y(A*/Syz(M), A" /Syz(N)) = ker(F,,)/Im(E}).

' "(a1)
However, by (3.6), for each r > 1 a presentation of Hom (A%, At/Syz(N))

1S

Hom (A%, At/Syz(N)) = At/ < I, @ Syz(N) >.
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Step 4. We compute the matrices F* in the following way: as we saw in
(2.2), we have the following commutative diagram

F*
Hom (A%, AY/Syz(N)) —== Homa(A%+1, A'/Syz(N))

| l

F*
Atsr /Kr T—Jrl’ Atsr+l/Kr+1
where K, =< I, ® Syz(N) > and vertical arrows are isomorphisms ob-
tained concatenating the columns of matrices of Hom (A%, At/Syz(N)),

moreover, the matrices of homomorphisms F’,; and FY, ; coincides. So,
we can replace the above complex for the following equivalent complex

* F*
0 — At /Ky L5 B gt e, D g e, D2

We will compute the matrix F}*, ;: let {ey,..., ez, } be the canonical basis

of A then for each 1 < i < ts,., the element €; = e; + K, can be replaced
by its corresponding canonical matrix G;, and since F",(G) = GF11 for

each G € Hom (A%, A'/Syz(N)), then we conclude that
Fra=LoF,

Step 5. By (4.1), a presentation of Ext’y (M, N) is given by a presentation
of ker(F, )/Im(Fy). Hence, we can apply the Theorem 7, let p, be the

number of generators of ker(F, ;) = Syz(F*, ;) = Syz(I; @ F", ), we know
how to compute this syzygy, and hence, we know how to compute p,. We
also know how to compute the matrix F¥ = I; ® FI'. Then, a presentation
of Ext’y(M,N) is given by

Exty(M,N) = AP /Syz(ker(F}, 1) /Im(F})), (4.2)

where a set of generators of Syz(ker(F, )/Im(F))) are the first p, coor-
dinates of the generators of

Syzlker(Ey )| Im(E))] = Syz[Syz[l; @ 1[I ® F]. (4.3)

System of generators of Ext’y(M,N), r > 1: By (4.1), a system of gen-
erators for Ext’y (M, N) is deﬁned by a system of generators of ker(F, ) =

Syz(Frq) = Syz(I; ® F1,), hence if

Syzlly ® Bl = [k by, ],
then
Eat"(M,N) =< hy,..., hy >,
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where hy, = h, + Im(F), 1 <u<p,.

In the next example we will illustrate these procedures.

Example 21. Let M and N be submodules as in the Example 6, we will
compute Ext)y, (M, N), for r > 1. We will use the free resolution of M that
we computed in the Example 20. For r = 1, we compute

2 000 [500
SyzlI; ® FT] = Syz |0 2 0| =[0 5 0],
002 [005

and hence, the value of p; in (4.2) is 3. Moreover,

5 52 0 0 0 0
0 0 5y 52 0 0

I;® FL = )
0 0 0 0 5y bz

Next we must compute
S = Syz[Syz[I3 ® Fi|Is ® FI] =

500 b5y b2 0 0 O O
=Syz|0 5 0 0 0 b5y bz 0 0],
005 0 0 0 0 by 5z

and we get that

coocococococowN
cococoroof
coocorococof
coocoococownvo
coorococofo
corocococofo
coocoococnwoo
or~rocococofoo
»—nooooogoo&)
coocoomnmooco
coocomvmoooo
coocofrocoo
coocmvmoocooco
comvmoococooco
cofysococooo
cnvooococoo o
coococococoo
T oco0cocococoo

[\S)
=}
I@

In this matrix we choose the first three entries of each column and we get
the generators of S7, moreover, since 9 is invertible in Zjq, then

u; = (2,0,0), u2 = (y,0,0), ug = (2,0,0)

ug = (0,2,0), u5 = (0,y,0), ug = (0,2,0)

ur = (0,0,2), ug = (0,0,y), ug = (0,0, x).
Thus,

1 ~ A3
El‘tA(M, N) ~ A / < uip, U2, U3, Uyg, U5, Ug, U7, U, U9 >.
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Moreover,
Exth(M,N) =< hy, hy, hs >,
where
hi=5ei+ < [Is® FL] > hy = 5ey+ < [[3® FT] >,
hs = bes+ < [[3® FI] >.

For r = 2 we have

5 0 0 2 00
Syz[[;),@F?)T]:Syz 0 5 0|=10 2 0f,
0 0 5 0 0 2
SO pg = 3, moreover,
2 00
LeFl =10 2 0,
0 0 2

and hence ker(F3) = Im(Fy), i.e.,
Ext%(M,N) = 0.

We can check this result using (4.3), thus we compute

200 200

Sy = Syz[Syz[I3 ® Fi|Is ® Ff] = Syz [O 2 00 2 0],

00 200 2

and we get that

59 00 00000
005900000
g, — 000059 000O0
27101000050 0
0001O0O0O0S5O0
00 0O0O0O1O0O0S5

thus the generators of Sy are

v1 = (5,0,0),v2 = (9,0,0),

vy = (0,5,0),v4 = (0,9,0),

v = (0,0,5),v6 = (0,0,9).
But, < va,v4,v6 >= A3, and hence, Ext3(M,N) 2 A3/ < vi,...,v6 >=
0. Moreover, Ext? (M, N) =< l~1, l~2, L >, where I, =2e1+ < [RF]] >=
0,15 = 2e9+ < [Is ® FT] >=0 and I3 = 2es+ < [I3 ® F¥] >=0.
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For r = 3 we have
00 5 0 0
Syz[ls @ Fl]=Syz |0 2 0| =0 5 0],
0 0 0
SO po = 3, moreover,

13®F3T:

and hence ker(F)) = Im(F3), i.e.,
Ext3 (M,N) = 0.
We can check this result using (4.3), thus we compute

5 0 0 5 00
Sy = Syz[Syz[l3® Fl)|I3® Ff]=Syz|0 5 0 0 5 0],
005005

and we get that

S3 =

SO OoOON
[Nl NN iNo)
SO OO NO
O OO WO
SOOI O O
OO OVoOo
SO NOOO
ONODO OO
NOODOOO

thus the generators of S3 are

wi = (2,0,0),ws = (9,0,0),

ws = (0,2,0), w4 = (0,9,0),

ws = (0,0,2), ws = (0,0,9).
But, < wa, w4, wg >= A3, and hence, Ext3 (M, N) 2 A3/ < w1,..., we >
= 0. Moreover, Ext3(M,N) =< my, m3, m3 >, where m; = 5e;+ <
I3 @ Ff] >= 0,my = Sest < [® FJ] >= 0 and m3 = beg+ <
I3 ® F]] >=0.

We conclude that

Exty(M,N) =0, for r > 2.

4.2. Computation of Tor. Using syzygies and some previous results we

now describe an easy procedure for computing the A-modules Tor (M, N)
for r > 0, where M =< f1,...,fs >C A™ and N =< g4,...,9, >C AL
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By computing we mean to find a presentation and a system of generators
of TorA(M,N), r > 0 (compare with [8], Proposition 7.1.3). For r = 0, the
computation is given by the Theorem 17. So we assume that r > 1.

Presentation of TorA(M,N), r > 1:
Step 1. We compute presentations of M and N,
M = A%/Syz(M),N = At/Syz(N),
Step 2. We compute a free resolution of A’/Syz(N) using theorem 19,
Gz ptegs Gt gt G gty GrotGrqn Ga gt GO,
At/Syz(N) — 0.
Step 3. We consider the complex

15O, A5 Syz(M) @ At EOT A5 fSyn(M) @ Al 2, L B,

A% /Syz(M) ® Al 186G, A% /Syz(M) @ Al — 0,
where i is the identical of A°/Syz(M) and then
TorA(M,N) = Tor(A%/Syz(M), At /Syz(N)) =
ker(1® G,)/Im(1 @ Gyr41),

but the matrix of i ® G, is Iy ® G, so ker(i ® G,) = ker(ly ® G,) =
Syz(Is ® G,) and we get

Tor (M, N) = ker(I, ® G,)/Im(I; @ Gyy1). (4.4)

Step 3. Let g, be the number of generators of Syz(I; ® G,), then by the
Theorem 7, a presentation of T' or;f‘(M ,N) is given by

Tord(M,N) = A% /Syz(ker(I; ® G)/Im(Iy @ Gyry1)), (4.5)

where a set of generators of Syz(ker(ls ® Gy)/Im(Is ® Gy11)) are the first
gr coordinates of generators of

Syz[Syz[Is @ Gpl|Is @ Gry1]. (4.6)

System of generators of Tor (M, N), r > 1: By (4.4), a system of gener-

ators of Tor(M,N) is given by a system of generators of ker(i ® G,) =
Syz(Is ® Gy). Thus, if

Syzlls ® Gy = [hy -+~ k],
then
Tord(M,N) =< hy,..., hg >,
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where E; =hy,+Im(ls @ FGry1), 1 <v < gq,.

In the next example we will illustrate these procedures.

Example 22. Let M and N be submodules as in the Example 6, we will
compute T' or,’f‘(M ,N), for r > 1. We will use the free resolution of N that
we computed in the Example 20. For r» = 1, we compute

5 2049 0 0

0 8x 0 0
5 0 0
ker(lo ® G1) = Syz[lo ® G1] = Syz 0 ’g 5 2 +9y| =
0 0 0 8x
O 0 5 g
2 y 00
0500
0 0 2 y|”
0 0 0 5
but
2 y 00
05 00
Letz=1g ¢ 2 4|
0 0 0 5
hence ker(Iy ® G1) = Im(l2 ® G2), and by (4.4),
Tor{*(M,N) =
For r = 2 we have
2 y 00 5 y 0 0
05 00 0 8 00
ker(I, ® Ga) = Syz[ls ® G| = Syz 002yl =005 y|
0 0 0 5 0 0 0 8
but
5y 0 0
0 8 00
LaGs=1g g 5 4|
0 0 0 8
hence

Tori(M,N) = 0.
We conclude that
Tord(M,N) =0, for r > 1.
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It is well known (see [16]) that Tor(M, N) could be also computed using
a free resolution of M. In this case (4.6) should be replaced by

Syz[Syz[F, @ I]|Fry1 ® L. (4.7)
So, for r = 1 we have
5 0 0
0w D 2 0 0
ker(Fy ® I3) = Syz[Fi ® Is] = Syz |, Oy =10 2 of,
0 5¢ 0 002
0 0 b5z

but
2 00
Fely=|0 2 0f,
0 0 2
hence ker(F; ® I3) = Im(F, ® I3) and
Tor{"(M,N) = 0.

For r = 2 we have

2 00 5 0 0
ker(Fo ® I3) = Syz[Fo ® Is] = Syz |0 2 0| =1]0 5 0],
0

0 0 2 0 5
but
5 0 0
FsI3= |0 5 0f,
0 0 5
hence

Tory(M,N) = 0.
We conclude again that

TorA(M,N) =0, forr > 1.
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