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1. Introduction

Many concepts in algebra are easy to formulate but in concrete situations
it is not easy to make computations involving them. For example, if M is a
submodule of the free module Am, where A = R[x1, . . . , xn] and R is a Noe-
therian commutative ring, a presentation of M is defined by the quotient
As/K, where s is the number of generators of M and K is the kernel of the
canonical homomorphism As −→ M that sends the canonical vectors of As

into the generators of M . However, for concrete examples the computation
of K is not an easy task. For instance, if M =< f 1, f 2 >⊆ (Z10[x, y])2,
where f 1 = (3x2y + 3x, xy − 2y) and f 2 = (7xy2 + y, y2 − 4x) then a direct
computation of K without a Computer Algebra System, or at least without
an algorithmic procedure, is a very extensive an complicated exercise. Per-
haps the most important algorithmic tools for solving this kind of problems
are the Gröbner bases introduced in the sixties by Bruno Buchberger (see
[3]). Gröbner bases play a key role in computational commutative algebra
and let us to solve many problems that are practically impossible to attack
with traditional theoretical methods.
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Gröbner bases have been studied intensively in the last years, and there
are a lot of interesting applications in many branches of mathematics such
as in homological algebra, commutative algebra, algebraic geometry, dif-
ferential algebra, graph theory, etc. Gröbner bases have been also used
in applied sciences as statistics ([4]), robotic ([6]), linear control systems
([5],[14]), etc. There are excellent monographs that study the theory and
applications of Gröbner bases. In particular, we can mention the recent
works of Lorenzo Robbiano and Martin Kreuzer (see [11],[12] and also [9]),
the monograph of Pfister and Greuel ([8]) that includes the package SIN-
GULAR ([10]), the monographs of Cox et al with applications in Algebraic
Geometry ([6], [7]), the classical book of Becker and Weispfenning ([2]),
and the textbook of Adams and Loustaunau ([1]).

In this paper we present some applications of Gröbner bases of mod-
ules in homological algebra. Thus, if R is a Noetherian commutative ring,
A = R[x1, . . . , xn], and Am is the free module of vector columns of length
m ≥ 1 with entries in R[x1, . . . , xn], we will compute presentations of
HomA(M,N), M⊗AN , ExtrA(M,N) and TorA

r (M,N), where M is a given

submodule of Am and N is a given submodule of Al, with m, l ≥ 1 and
r ≥ 0. The technique we will use is very simple, we compute presentations
of submodules of Am using syzygies and Gröbner bases, and with this, we
compute free resolutions and the correspondent modules of homology.

The theory and methods of Gröbner bases for modules are well known.
For example, in [1] is presented the theory of Gröbner bases for ideals of
A and for submodules of (K[x1, . . . , xn])m, where K is a field (see also the
Chapter 2 of [8], and Chapters 2 and 3 of [11]). In [13] and [15] the theory
was extended for submodules of Am, in particular, in [13] was presented
and proved the algorithm of Buchbeger for computing Gröbner bases of
submodules of Am. In the present paper we will use the Buchberger’s
algorithm of [13] for computing all Gröbner bases needed in the examples
that illustrate our results and procedures below. Moreover, we will use the
usual terminology about monomial orders on A and Am (see [1] and [8]),
in particular, we will use the POTREV order on monomials of Am defined
as in [13], i.e., given a monomial order > on Mon(A) (monomials of A), we
define the following natural order on Mon(Am) (monomials of Am).

Definition 1. Let X = Xei and Y = Y ej ∈ Mon(Am), where X,Y ∈
Mon(A) and {e1, . . . , em} is the canonical basis of Am. The POTREV
order is defined by

X > Y ⇐⇒






i < j

or

i = j and X > Y.
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Note that for this monomial order

e1 > e2 > · · · > em.

If f 6= 0 is a vector of Am, then we may write f as a sum of terms in the
following way

f = c1X 1 + · · · + ctX t,

where c1, . . . , ct ∈ R − 0 and X 1 > X 2 > · · · > X t are monomials of
Mon(Am).

Definition 2. With the above notation, we say that

(i) lt(f) = c1X1 is the leading term of f.
(ii) lc(f) = c1 is the leading coefficient of f.
(iii) lm(f) = X1 is the leading monomial of f.

With the above terminology we recall the definition of Gröbner basis for
submodules of Am (see [13]): Let G 6= 0 be a non empty subset of Am, then

Lt(G) =< lt(g)|g ∈ G >

is the submodule of Am generated for the leading terms of vectors of G.
Let M 6= 0 be a submodule of Am and let G 6= 0 be a non empty finite
subset of M , we say that G is a Gröbner basis for M if Lt(M) = Lt(G).
Taking m = 1 we get the definition of Gröbner basis for ideals of A. An
effective method for computing Gröbner bases of ideals and submodules
over commutative polynomials rings is the the Buchberger’s algorithm that
can be found in [1] or [13]. For more details about the general theory of
Gröbner bases of ideals and modules see [1], [8] and [13].

The paper in divided in four sections. The second section is dedicated
to compute syzygies of modules, the presentation of a given module and
the kernel and the image of a homomorphism between modules. In the
third section we compute the modules HomA(M,N) and M ⊗A N , and
also we will compute a free resolution of a given submodule M of Am.
The last section is dedicated to compute presentations for ExtrA(M,N)
and TorA

r (M,N). All computations will be illustrated with examples. We
remark that in the literature is difficult to find such illustrative examples.

2. Elementary applications of Gröbnes bases

In this section we will list the most basic applications of Gröbner bases
in module theory that we will use later. We will compute syzygies of mod-
ules, the presentation of a given module, the kernel and the image of a
homomorphism between modules. All of these computations are analogues
of those for ideals of R[x1, . . . , xn] or submodules of K[x1, . . . , xn]m, and

São Paulo J.Math.Sci. 3, 1 (2009), 25–59



28 Oswaldo Lezama

the proofs have been adapted (see Chapters 3 and 4 in [1], and Chapter 2
of [8]).

2.1. Syzygy of a module. We start computing the syzygy of a submodule
M =< f 1, . . . , f s > of Am. For this we consider the matrix F = [f 1 · · · f s]
and we recall that Syz(F ) consists of vectors h = (h1, . . . , hs) ∈ As such
that

h1f 1 + · · · + hsf s = 0,

i.e., Fh = 0. We note that Syz(F ) is a submodule of As and we also define
Syz(M) := Syz(F ).

In order to compute Syz(M) we need the following preliminary result
(see Lemma 2.8.2 in [8]).

Theorem 3. Let F = {f1, . . . , fs} be a set of non-zero vectors of Am and
G a Gröbner basis for M =< F > with respect to POTREV order on
Mon(Am). Then, for any k = 0, . . . ,m−1, G∩(

⊕m
i=k+1 Aei) is a Gröbner

basis for M ∩ (
⊕m

i=k+1 Aei).

The key for computing syzygies is the following theorem.

Theorem 4. Let F = {f1, . . . , fs} be a set of non-zero vectors of Am.
Consider the canonical embedding

A
m −→ A

m+s

and the canonical projection

π : A
m+s −→ A

s
.

Let G = {g1, . . . , gt} be a Gröbner basis for < f1 + em+1, . . . , fs + em+s >

with respect to the POTREV order on Mon(Am+s). If G∩(
⊕m+s

i=m+1 Aei) =
{g1, . . . , gl}, then Syz(F ) =< π(g1), . . . , π(gl) >.

Proof. If K is a field the proof of the Lemma 2.5.3 of [8] for A =
K[x1, . . . , xn] applies in our general situation. We will adapt this proof
using a matrix notation. Let M =< f 1 + em+1, . . . , f s + em+s >, by the
previous theorem {g 1, . . . , g l} is a Gröbner basis for M ∩ (

⊕m+s
i=m+1 Aei).

For 1 ≤ v ≤ l, let

gv =





0
...
0

gm+1,v
...

gm+s,v





.
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We know that during the process of computing a Gröbner basis we can
express each g i as a combination of generators of M (see [13]), thus there
exist elements h1, . . . , hs ∈ A such that

gv = h1





f11
...

fm1
1
0
...
0





+ · · · + hs





f1s
...

fms

0
0
...
1





,

where by the canonical embedding

f i =





f1i
...

fmi

0
...
1
...
0





.

then hi = gm+i,v for each 1 ≤ i ≤ s and also

h1




f11
...

fm1



 + · · · + hs




f1s
...

fms



 = 0,

i.e., gm+1,vf 1 + · · · + gm+s,vf s = 0, and hence, π(gv) ∈ Syz(F ) for each
1 ≤ v ≤ l. This proves that < π(g1), . . . , π(g l) >⊆ Syz(F ).

Conversely, let h = (h1, . . . , hs) ∈ Syz(F ), then h1f 1 + · · · + hsf s = 0
and hence
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h1





f11
...

fm1
1
0
...
0





+ · · · + hs





f1s
...

fms

0
0
...
1





=





0
...
0
h1
h2
...

hs





∈ M ∩ (
⊕m+s

i=m+1 Aei).

Since {g1, . . . , g l} is a Gröbner basis for M ∩ (
⊕m+s

i=m+1 Aei), there exist
p1, . . . , pl ∈ A such that





0
...
0
h1
...

hs





= p1





0
...
0

gm+1,1
...

gm+s,1





+ · · · + pl





0
...
0

gm+1,l
...

gm+s,l





,

hence h ∈< π(g 1), . . . , π(g l) >. This complete the proof. �

The following example illustrates the elimination method described in
the previous theorem.

Example 5. In [13] we computed a Gröbner basis for M =< f 1, f 2 >

with respect to POTREV order on Mon(A2), where f 1 = 3ix2ye1 + (1 +
i)ze1+2ixy2e2+5ze2, f 2 = (2+i)x2ze1+ye1+3xy2e2+y2e2+4ize2 and
A = Z[i][x, y, z]. On Mon(A) we used the order deglex with x > y > z. The
Gröbner basis we computed is G = {f 1, f 2, f 3, f 4}, where f 3 = 3y2e1 +
(−3+i)z2e1+9xy3e2+(−4−2i)xy2ze2+3y3e2+12iyze2+(−5+10i)z2e2

and f 4 = 9x3y3e2 + (−4 − 2i)x3y2ze2 + 3x2y3e2 + 12ix2yze2 + (−5 +
10i)x2z2e2−2xy3e2 +(3−3i)xy2ze2 +(1− i)y2ze2 +5iyze2 +(4+4i)z2e2.
Using again the algorithm of Buchberger presented in the Theorem 23 of
[13] we compute a Gröbner basis G′ for F ′ = {f 1 + e3, f 2 + e4},

G′ = {g ′
1, g

′
2, g

′
3, g

′
4},

where g ′
1 = f 1 + e3, g ′

2 = f 2 + e4, g ′
3 = f 3 + (−1 + 2i)ze3 + 3ye4 and

g ′
4 = f 4 + (−1 + 2i)x2ze3 + iye3 + 3x2ye4 + (1 − i)ze4. We observe that

G′ ∩ (Ae3 ⊕ Ae4) = ∅, and hence Syz(f 1, f 2) = 0.

São Paulo J.Math.Sci. 3, 1 (2009), 25–59



Some applications of Gröbner bases in homological algebra 31

2.2. Presentation of a module. Let M =< f 1, . . . , f s > be a submodule
of Am, there exists a natural surjective homomorphism πM : As −→ M

defined by πM(e i) = f i, where {e i}1≤i≤s is the canonical basis of As. If
KM = ker(πM ), then we have the isomorphism πM : As/KM

∼= M , defined
by πM(e i) = f i, where e i = e i + KM . We note that KM =< h1, . . . , hs1

>

is also a finitely generated module and we have the exact sequence

A
s1

δM−−→ A
s πM−−→ M −→ 0, (2.1)

with δM = iM ◦ π′
M , where iM is the inclusion of KM in As and π′

M is
the natural surjective homomorphism from As1 to KM . We recall that the
quotient module As/KM , or equivalently, the exact sequence (2.1), is a
presentation of M . We observe that KM = Syz(M) = Syz(F ), where F =
[f 1 · · · f s], and consequently, the Theorem 4 gives a method for computing
a presentation of a module. On the other hand, let ∆M be the matrix of
δM in the canonical bases of As1 and As, then the columns of ∆M are the
generators of Syz(F ) since Im(δM ) = ker(πM ). We will also say that ∆M

is a matrix presentation of M .

The next example will be used often in this paper.

Example 6. Let M =< f 1, f 2 >⊆ (Z10[x, y])2 and N =< g1, g2, g 3 >⊆
(Z10[x, y])2, where f 1 = (3x2y +3x, xy−2y), f 2 = (7xy2 +y, y2 −4x), g 1 =
(0, x) and g2 = (y, x) and g3 = (2x, x), then applying the Theorem 4 with
order deglex on Mon(Z[x, y]) and x > y, we get presentations for M and
N ,

M ∼= A2/Syz(M), N ∼= A3/Syz(N),

where

Syz(M) =< (5y, 5x) >, Syz(N) =< (5, 0, 5), (2x + 9y, 8x, y) >.

Presentations of quotient modules could be also computed. In fact, let
N ⊆ M be submodules of Am, M =< f 1, . . . , f s >, N =< g1, . . . , g t >,
M/N =< f 1, . . . , f s >, then we have a canonical surjective homomorphism
δ : As −→ M/N such that a presentation of M/N is given by M/N ∼=
As/Syz(M/N). But Syz(M/N) can be computed in the following way. h =
(h1, . . . , hs) ∈ Syz(M/N) if and only if h1f 1 + · · · + hsf s ∈< g1, . . . , g t >

if and only if there exist hs+1, . . . , hs+t ∈ A such that h1f 1 + · · · + hsf s +
hs+1g1 + · · · + hs+tg t = 0 if and only if (h1, . . . , hs, hs+1, . . . , hs+t) ∈
Syz(H), where

H = [f 1 · · · f s g1 · · · g t].

Thus we have the following well know result.
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Theorem 7. With the notation above, a presentation of M/N is given
by As/Syz(M/N), where a set of generators of Syz(M/N) are the first s

coordinates of generators of Syz(H).

2.3. Kernel and image of a homomorphism. Let M ⊆ Am and N ⊆ Al

be modules, M =< f 1, . . . , f s >, N =< g1, . . . , g t >, and let φ : M −→ N

be a homomorphism. Then, there exists a matrix Φ = [φji] of size t × s

with entries in A defined by

φ(f i) = φ1ig1 + · · · + φtig t,

for each 1 ≤ i ≤ s. We compute now a system of generators and a pre-
sentation for ker φ and Im(φ). We assume that the homomorphism φ is
well-defined and it is given by the matrix Φ. Using the notation of the
previous subsection, let As/Syz(M) and At/Syz(N) be presentations of
M and N . We consider the canonical isomorphisms

πM : As/Syz(M) −→ M , πN : At/Syz(N) −→ N

defined by πM (e i) = f i, 1 ≤ i ≤ s, πN (e ′
j) = g j , 1 ≤ j ≤ t, where

{e i}1≤i≤s is the canonical basis of As and {e ′
j}1≤j≤t is the canonical basis

of At. Then, we have the following commutative diagram

M
φ

−−−−→ N
y

y

As/Syz(M)
φ

−−−−→ At/Syz(N)

(2.2)

where the vertical arrows are the isomorphisms (πM )−1 and (πN )−1. Hence,

φ(e i) = (πN )−1 ◦ φ ◦ πM (e i) = φ1ie
′
1 · · · + φtie

′
t, for each 1 ≤ i ≤ s. We

observe that the matrix of φ coincides with the matrix of φ, ker(φ) ∼= ker(φ)
and Im(φ) ∼= Im(φ).

Let h1f 1 + · · · + hsf s ∈ ker(φ), then (πN )−1(φ(h1f 1 + · · · + hsf s)) =
0 = φ((πM )−1(h1f 1 + · · · + hsf s))= φ(h1e1 + · · · + hses) = h1φ(e1) +

· · · + hsφ(es) = h1(φ11e
′
1 + · · · + φt1e

′
t)+ · · · + hs(φ1se

′
1 + · · · + φtse

′
t) =

(h1φ11 + · · · + hsφ1s)e ′
1 + · · · + (h1φt1 + · · · + hsφts)e ′

t. This implies that
(h1φ11 + · · · + hsφ1s)e

′
1 + · · · + (h1φt1 + · · · + hsφts)e

′
t ∈ Syz(N). We

assume that we have computed a system of generators for Syz(N) =<

u1, . . . ,u t1 >⊆ At (Theorem 4). Hence, there exist hs+1, . . . , hs+t1 ∈ A

such that
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h1




φ11
...

φt1



 + · · · + hs




φ1s
...

φts



 + hs+1u1 + · · · + hs+t1u t1 = 0.

From these computations we also can conclude that

h1f 1 + · · · + hsf s ∈ ker(φ) ⇔ (h1, . . . , hs) ∈ ker(φ).

Thus, we have proved the following theorem.

Theorem 8. With the notation above, let

H = [Φ1 · · · Φs u1 · · · ut1 ],

where Φi is the ith column of the matrix Φ, 1 ≤ i ≤ s. Then,

(h1, . . . , hs, hs+1, . . . , hs+t1) ∈ Syz(H) ⇔ h1f1 + · · · + hsfs ∈ ker(φ).

Thus, if {z1, . . . , zv} ⊂ As+t1 is a system of generators of Syz(H), let z′k ∈
As be the vector obtained from zk when omitting the last t1 components,
1 ≤ k ≤ v, then {z′1, . . . , z

′
v} is a system of generators for ker(φ). Moreover,

if

z′1 = (h11, . . . , h1s), . . . , z
′
v = (hv1, . . . , hvs),

then {h11f1 + · · ·+ h1sfs, . . . , hv1f1 + · · ·+ hvsfs} is a system of generators
for ker(φ).

A presentation of ker(φ) is given in the following way.

Corollary 9. With the notation of this section, a presentation of ker(φ) is
given by Av/K, where

K = Syz(ker(φ)) = Syz [h11f1 + · · · + h1sfs · · · hv1f1 + · · · + hvsfs].

Example 10. In the Step 6 of Section 3.1 we will prove that the function
φ defined by

M
φ
−→ N

f 1 7→ xg3

f 2 7→ yg1

is an homomorphism, where M and N are as in the Example 6. Now we
will calculate a system of generators for ker(φ). We note that the matrix
of φ is

Φ =

[
0 y

0 0
x 0

]

,
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thus, we must compute Syz(H) where

H =

[
0 y 5 2x + 9y
0 0 0 8x
x 0 5 y

]
.

For this we apply the Theorem 4 and we get

Syz(H) =< (0, 0, 2, 0), (0, 0,−y, 5) >.

By the Theorem 8, we omit the last two components of (0, 0, 2, 0),
(0, 0,−y, 5) and we get that ker(φ) = 0.

An explicit presentation for ker(φ) could be also given. We assume that
we have computed a system of generators for Syz(M) =< w1, . . . ,w s1

>⊆
As. We know that a presentation of ker(φ) is given by ker(φ) ∼= Av/K ′,

where K ′ = Syz(ker(φ)) = Syz(< z ′
1, . . . , z

′
v >). But, (l1, . . . , lv) ∈ Syz(<

z ′
1, . . . , z

′
v >) if and only if there exist lv+1, . . . , lv+s1

∈ A such that l1z
′
1 +

· · ·+ lvz
′
v + lv+1w1+ · · ·+ lv+s1

w s1
= 0. Thus, we have proved the following

corollary.

Corollary 11. With the notation above, let

L = [z′1 · · · z′v w1 · · · ws1
],

if {l1, . . . , lq} ⊂ Av+s1 is a system of generators of Syz(L), let l′k ∈ Av be the
vector obtained from lk when omitting the last s1 components, 1 ≤ k ≤ q,
then {l′1, . . . , l

′
q} is a system of generators for K ′, and hence, a presentation

of ker(φ) is given by Av/K ′.

We consider now the image of homomorphism φ : M −→ N in (2.2).
Then the following result is clear from the above discussion.

Corollary 12. A system of generators for Im(φ) is given by

Im(φ) =< φ11g1 + · · · + φt1gt, . . . , φ1sg1 + · · · + φtsgt >.

A presentation of Im(φ) is As/I, where

I = Syz [φ11g1 + · · · + φt1gt . . . φ1sg1 + · · · + φtsgt].

Example 13. Let φ be as in the Example 10, then by the previous corol-
lary, Im(φ) =< (2x2, x2), (0, xy) >. A presentation of Im(φ) is given by
Syz(I), where

I =

[
2x2 0
x2 xy

]
,

so we apply again the Theorem 4 and we get Syz(I) =< (5y, 5x) >. Thus,
Im(φ) ∼= A2/ < (5y, 5x) >. This conclusion of course coincides with the
results of the Examples 6 and 10 since Im(φ) ∼= M .
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We conclude this section showing an explicit presentation of Im(φ).

We know that Im(φ) =< φ11e
′
1 + · · · + φt1e

′
t, . . . , φ1se

′
1 + · · · + φtse

′
t >,

thus a presentation of Im(φ) is given by Im(φ) ∼= As/Syz(Im(φ)). Let
(h1, . . . , hs) ∈ Syz(Im(φ)), then there exist hs+1, . . . , hs+t1 ∈ A such that

h1




φ11
...

φt1



 + · · · + hs




φ1s
...

φts



 + hs+1u1 + · · · + hs+t1u t1 = 0.

Thus, we have proved the following corollary.

Corollary 14. Let H be the matrix in the Theorem 8. If {z1, . . . , zv} ⊂
As+t1 is a system of generators of Syz(H), let z′k ∈ As be the vector ob-
tained from zk when omitting the last t1 components, 1 ≤ k ≤ v, then
{z′1, . . . , z

′
v} is a system of generators for Syz(Im(φ)) and As/Syz(Im(φ))

is a presentation of Im(φ).

3. Computing Hom, ⊗ and free resolutions

The main goal of the paper is to compute the modules Ext and Tor,
in this section we will compute the particular cases Ext0A(M,N) =

HomA(M,N) and TorA
0 (M,N) = M ⊗A N . We also show how to compute

free resolutions.

3.1. Computation of Hom. In this subsection we show a procedure for
computing HomA(M,N), where M is a submodule of Am and N is a sub-
module of Al. By computing HomA(M,N) we mean to find a presentation
of HomA(M,N) and to find an specific set of generators for HomA(M,N).
For fields, i.e., when A = K[x1, . . . , xn], where K is a field, the computa-
tion of HomA(M,N) can be found in [1], [8] and [11]. The constructions
there apply to our more general situation when the ring of coefficients of
A is a Noetherian commutative ring R, however we will add the explicit
definition of some homomorphisms and we will prove the commutativity of
some diagrams omitted in the literature.

We will illustrate the theory and steps of the procedure through the
following particular example: M =< f 1, f 2 >⊆ (Z10[x, y])2 and N =<

g1, g2, g3 >⊆ (Z10[x, y])2, where f 1 = (3x2y + 3x, xy − 2y), f 2 = (7xy2 +
y, y2 − 4x), g 1 = (0, x) and g2 = (y, x) and g3 = (2x, x) (see the Example
6).

Let M and N be submodules of Am and Al, respectively, then M and N

are finitely generated modules, M =< f 1, . . . , f s >, N =< g1, . . . , g t >.
In our concrete example, A = Z10[x, y], and we choose the POTREV order

São Paulo J.Math.Sci. 3, 1 (2009), 25–59



36 Oswaldo Lezama

for the monomials of A2. The order in Mon(A) is deglex with x > y. So, in
this illustrative example, R = Z10, A = Z10[x, y], m = 2, s = 2, l = 2, t = 3.
We divide the procedure in some steps.

Step 1. Presentations of M and N . In order to compute a presentation
of HomA(M,N) we first compute presentations of M and N as we saw in
the second section:

M ∼= A
s
/KM , N ∼= A

t
/KN ,

where KM and KN are the kernels of natural homomorphisms πM : As −→
M and πN : At −→ N defined by πM (e i) = f i, πN (e ′

j) = g j , 1 ≤ i ≤ s,

1 ≤ j ≤ t ({e i}1≤i≤s is the canonical basis of Am and {e ′
j}1≤j≤t is the

canonical basis of Al). Then, HomA(M,N) ∼= HomA(As/KM , At/KN ),
and we can compute a presentation and a system of generators of
HomA(As/KM , At/KN ) instead of HomA(M,N). However, in the last
step of the procedure we will use the system of generators of
HomA(As/KM , At/KN ) for giving an explicit system of generators of
HomA(M,N).

We recall that KM and KN are computed by the syzygies of the matrices

FM = [f 1 · · · f s] , FN = [g1 · · · g t] ,

i.e., KM = Syz(FM ) = Syz(M),KN = Syz(FN ) = Syz(N). In our exam-
ple,

M ∼= A
2
/Syz(M), N ∼= A

3
/Syz(N),

and by the Example 6,

Syz(M) =< (5y, 5x) >,Syz(N) =< (5, 0, 5), (2x + 9y, 8x, y) >.

Hence,

HomA(M,N) ∼=

∼= HomA(A2
/ < (5y, 5x) >,A

3
/ < (5, 0, 5), (2x + 9y, 8x, y) >).

Step 2. HomA(As/Syz(M), At/Syz(N)) as a kernel. Since R is a
Noetherian ring, Syz(M) and Syz(N) are finitely generated A-modules,
Syz(M) is generated by s1 elements and Syz(N) is generated by t1 el-
ements. Thus, we also have surjective homomorphisms π′

M : As1 −→
Syz(M) and π′

N : At1 −→ Syz(N), and hence the following sequences
are exact

As1
δM−−−−→ As jM−−−−→ As/Syz(M) −−−−→ 0 (3.1)

At1
δN−−−−→ At jN−−−−→ At/Syz(N) −−−−→ 0 (3.2)

where δM = iM ◦ π′
M , δN = iN ◦ π′

N , iM , iN denote inclusions, and jM , jN

are natural homomorphisms. From (3.1) we get the exact sequence
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0 → HomA(As/Syz(M), At/Syz(N))
p
−→ HomA(As, At/Syz(N))

d
−→

HomA(As1 , At/Syz(N)),

where

d(α) = α ◦ δM for α ∈ HomA(As, At/Syz(N))

and p is defined in the same way. Thus,

HomA(As
/Syz(M), At

/Syz(N)) ∼= ker(d). (3.3)

Step 3. Computation of HomA(As, At/Syz(N)) and
HomA(As1 , At/Syz(N)). According to (3.3), we must compute presenta-
tions of HomA(As, At/Syz(N)) and HomA(As1 , At/Syz(N)). Let ∆M be
the matriz presentation of M and ∆N the matrix presentation of N .

In our example, s1 = 1, t1 = 2 and

∆M =

[
5y
5x

]
, ∆N =

[
5 2x + 9y
0 8x
5 y

]
.

Let Mt1s(A) be the ring of matrices with t1 rows and s columns with entries
in A, in the same way we define Mts(A). Then, from (3.2) we get the
diagram

HomA(As, At1)
dN−−−−→ HomA(As, At)

pN−−−−→ HomA(As, At/Syz(N))
y

y

Mt1s(A) Mts(A)
y

y

At1s
d∗

N−−−−→ Ats

(3.4)
where dN is the natural homomorphism induced by δN , i.e.,

dN (β) = δN ◦ β for β ∈ HomA(As, At1)

and pN is surjective and defined in the same way. The first row is exact
since As is projective. At1s is the free module of vector columns of size
t1s obtained by concatenating the columns of matrices of Mt1s(A). Ats

is defined in the same way, thus the vertical arrows are natural isomor-
phisms. The left vertical compose isomorphism is noted by Φs,t1 and the
right compose isomorphism is noted by Φs,t. d∗N is induced by dN and the

vertical isomorphisms, d∗N = Φs,t ◦ dN ◦ Φ−1
s,t1

. Then, the following diagram
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is commutative:

HomA(As, At1)
dN−−−−→ HomA(As, At)

Φs,t1

y
yΦs,t

At1s
d∗

N−−−−→ Ats

We can explicit how acts the homomorphism d∗N , in fact, if

a = (a11, . . . , at11, . . . , a1s, . . . , at1s) ∈ At1s

and ∆N = [∆ij ] is the matrix of δN in the canonical bases of At1 and At,
then

d
∗
N (a) = (

t1∑

k=1

∆1kak1, . . . ,

t1∑

k=1

∆tkak1, . . . ,

t1∑

k=1

∆1kaks, . . . ,

t1∑

k=1

∆tkaks)

(3.5)

Thus, in the canonical bases of At1s and Ats the matrix of d∗N is

Is ⊗ ∆N

where Is is the identical matrix of size s× and ⊗ means tensor product.
Thus, d∗N (a) = (Is ⊗ ∆N )aT . From the exact sequence (3.4) we get that

HomA(As, At/Syz(N)) ∼= HomA(As, At)/Im(dN ),

but
Im(dN ) ∼= Im(d∗N ) =< Is ⊗ ∆N >,

where < Is ⊗ ∆N > is the module generated by the columns of Is ⊗ ∆N .

Hence a presentation of HomA(As, At/Syz(N)) is

HomA(As
, A

t
/Syz(N)) ∼= A

ts
/ < Is ⊗ ∆N > . (3.6)

This isomorphism is defined as follow. Let f ∈ HomA(As, At/Syz(N)) and

f(ei) = (f1i, . . . , fti), 1 ≤ i ≤ s, then

HomA(As, At/Syz(N))
θs,t

−−→ Ats/ < Is ⊗ ∆N >

is defined by

θs,t(f) = (f11, . . . , ft1, . . . , f1s, . . . , fts).

We observe that θs,t is a surjective homomorphism. We have to prove that
θs,t is injective. If θs,t(f) = 0, then (f11, . . . , ft1, . . . , f1s, . . . , fts) ∈
< Is ⊗ ∆N > and consequently

(f11, . . . , ft1, . . . , f1s, . . . , fts) = d∗N (a)
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for some a = (a11, . . . , at11, . . . , a1s, . . . , at1s). Thus,

(f11, . . . , ft1, . . . , f1s, . . . , fts) = Φs,t ◦ dN ◦ Φ−1
s,t1

(a)

= Φs,t ◦ dN (a)

= Φs,t(δN ◦ a),

where a ∈ HomA(As, At1) is defined by a(e i) = (a1i, . . . , at1i), 1 ≤ i ≤
s. But for each 1 ≤ i ≤ s, (δN ◦ a)(e i) ∈< ∆N >= Syz(N), hence

(f1i, . . . , fti) = 0 for each 1 ≤ i ≤ s. This means that f = 0.

In the same way, but using HomA(As1 , ), we obtain

HomA(As1 , A
t
/Syz(N)) ∼= A

ts1/ < Is1
⊗ ∆N >, (3.7)

and the explicit isomorphism

HomA(As1, At/Syz(N))
θs1,t

−−−→ Ats1/ < Is1
⊗ ∆N >

is defined by

θs1,t(h) = (h11, . . . , ht1, . . . , h1s1
, . . . , hts1

),

where h ∈ HomA(As1 , At/Syz(N)).

In the example we have

< I2 ⊗ ∆N >=





5 2x + 9y 0 0
0 8x 0 0
5 y 0 0
0 0 5 2x + 9y
0 0 0 8x
0 0 5 y




, < I1 ⊗ ∆N >=

[
5 2x + 9y
0 8x
5 y

]

,

and hence

HomA(A2, A3/ < (5, 0, 5), (2x + 9y, 8x, y) >) ∼= A6/ < I2 ⊗ ∆N >,

HomA(A,A3/ < (5, 0, 5), (2x + 9y, 8x, y) >) ∼= A3/ < I1 ⊗ ∆N >.

Step 4. Computing the matrix U . As in the previous step, the homomor-
phism δM in the sequence (3.1) induces the natural homomorphism dM ,
and this one induces the homomorphism d∗M defined by dM and the natu-
ral vertical isomorphisms of the following commutative diagram

HomA(As, At)
dM−−−−→ HomA(As1, At)

Φs,t

y
yΦs1,t

Ats
d∗

M−−−−→ Ats1
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Since HomA( , At) inverts the sense of arrows, in the canonical bases the
matrix of d∗M is

∆T
M ⊗ It = (∆M ⊗ It)

T
,

where ∆T
M is the transpose of the matrix ∆M . In the example,

(∆M ⊗ I3)
T =

[
5y 0 0 5x 0 0
0 5y 0 0 5x 0
0 0 5y 0 0 5x

]

.

As in the equation (3.5), we can explicit the homomorphism d∗M . Let u =

(u11, . . . , ut1, . . . , u1s, . . . , uts), then d∗M (u) = (∆M ⊗ It)
TuT , and hence

d
∗
M (u) = (

s∑

k=1

u1kδk1, . . . ,

s∑

k=1

utkδk1, . . . ,

s∑

k=1

u1kδks1
, . . . ,

s∑

k=1

utkδks1
)

(3.8)
where ∆M = [δvz ].

We observe that d∗M (< Is ⊗∆N >) ⊆< Is1
⊗∆N >. In fact, it is enough

to prove that d∗M (u) ∈< Is1
⊗ ∆N >, where u is any column of Is ⊗ ∆N .

But the form of u is

u = (0, . . . , 0, . . . ,∆1j , . . . ,∆tj , . . . , 0, . . . , 0)

where (∆1j , . . . ,∆tj) is the j-column of ∆N , 1 ≤ j ≤ t1. We note that
(∆1j , . . . ,∆tj) can be located in s different places within u , so we suppose
that (∆1j, . . . ,∆tj) is located in the l-position within u , 1 ≤ l ≤ s. Thus,

d∗M (u) = (∆M ⊗ It)
TuT =





δl1∆1j
...

δl1∆tj
...

δls1
∆1j
...

δls1
∆tj





= δl1





∆1j
...

∆tj

0
...
0





+ · · · + δls1





0
...
0

∆1j
...

∆tj





i.e., d∗M (u) ∈< Is1
⊗ ∆N >.
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The homomorphism d∗M induces the homomorphism d∗M and we have the
commutative diagram

HomA(As, At)
dM−−−−→ HomA(As1 , At)

Φs,t

y
yΦs1,t

Ats
d∗

M−−−−→ Ats1

j

y
yj1

Ats/ < Is ⊗ ∆N >
d∗

M−−−−→ Ats1/ < Is1
⊗ ∆N >

where j and j1 are the canonical homomorphisms. We define the matrix
U where its columns are the generators of ker(j1 ◦ d∗M ), i.e., < U >=
ker(j1◦ d∗M ). We observe that the matrix of homomorphism j1◦d

∗
M coincides

with the matrix of homomorphism d∗M , then by the Theorem 8,

columns of U =first st coordinates of generators of

Syz ([(∆M ⊗ It)
T |Is1

⊗ ∆N )])

(the enhanced matrix obtained from A adding the columns of B is denoted
by [A|B]). For our illustrative example, we have computed Syz([(∆M ⊗
I3)

T |I1 ⊗ ∆N )]) using Theorem 4. Additionally, we computed a minimal
Gröbner basis for Syz([(∆M ⊗I3)

T |I1⊗∆N )]) and then we selected the first
six coordinates of elements of this basis, the result of these computations
was

U =





1 0 0 0 0 0 0 0
0 x 2 0 0 0 0 0
1 0 0 x 2 0 0 0
0 0 0 y 0 1 0 0
0 9y 0 0 0 0 2 0
0 0 0 0 0 1 0 2




.

Step 5. Presentation of HomA(As/Syz(M), At/Syz(N)). From the
above results we have the following commutative diagram

HomA(As, At/Syz(N))
d

−−−−→ HomA(As1, At/Syz(N))

θs,t

y
yθs1,t

Ats/ < Is ⊗ ∆N >
d∗

M−−−−→ Ats1/ < Is1
⊗ ∆N > .

In fact, let f ∈ HomA(As, At/Syz(N)) with matrix F = [fji] given by

f(ei) = (f1i, . . . , fti), 1 ≤ i ≤ s. Then,
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d(f) = f ◦ δM = h ∈ HomA(As1 , At/Syz(N)),

and hence,

θs1,t(h) =

(
∑s

k=1 f1kδk1, . . . ,
∑s

k=1 ftkδk1, . . . ,
∑s

k=1 f1kδks1
, . . . ,

∑s
k=1 ftkδks1

).

On the other hand,

d∗M (θs,t(f)) = d∗M ((f11, . . . , ft1, . . . , f1s, . . . , fts))

= d∗M ((f11, . . . , ft1, . . . , f1s, . . . , fts)

= (∆T
M ⊗ It)(f11, . . . , ft1, . . . , f1s, . . . , fts)

= (

s∑

k=1

f1kδk1, . . . ,

s∑

k=1

ftkδk1, . . . ,

s∑

k=1

f1kδks1
, . . . ,

s∑

k=1

ftkδks1
).

Hence, ker(d) ∼= ker(d∗M ), and from (3.3), a presentation of ker(d∗M ) gives
a presentation of HomA(As/Syz(M), At/Syz(N)). Let u ∈ Ats, then

u ∈ ker(d∗M ) ⇐⇒ d∗M (u) = 0 ⇐⇒ d
∗
M (u) ∈< Is1

⊗ ∆N >⇐⇒

(∆M ⊗ It)
TuT ∈< Is1

⊗ ∆N >⇐⇒

the first st coordiantes of u belong to Syz ([(∆M ⊗ It)
T |Is1

⊗ ∆N )]) ⇐⇒

u ∈< U > / < Is ⊗ ∆N >,

where < U > is the column module of matrix U . Thus, we have proved
that ker(d∗M ) =< U > / < Is ⊗ ∆N >, and we get the following theorem.

Theorem 15. With the notation above,

HomA(M,N) ∼=< U > / < Is ⊗ ∆N >, (3.9)

and presentation of < U > / < Is ⊗ ∆N > is a presentation for
HomA(M,N).

In the example we have HomA(M,N) ∼= A8/K, where K is the module
generated by the first 8 entries of generators of Syz([U |I2 ⊗ ∆N ]) (see the
Theorem 7). We computed a minimal Gröbner basis for the syzygy of
the matrix [U |I2 ⊗ ∆N ] and then we selected the first eight entries of the
elements of this basis. The result was

HomA(M,N) ∼= A
8
/ < v1, v2,v3, v 4, v 5, v6, v 7, v 8, v9 >
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where

v1 =< 5, 0, 0, 0, 0, 0, 0, 0 >

v2 =< 8x + y, 0, 6x, 0, x + 4y, 0, 0, 0 >

v3 =< 0, 0, 5, 0, 0, 0, 0, 0 >

v4 =< 0, 8, x, 0, 0, 0, 4y, 0 >

v5 =< 0, 0, 0, 0, 5, 0, 0, 0 >

v6 =< 0, 0, 0, 8, x, 2y, 0, 0 >

v7 =< 0, 0, 0, 0, 0, 0, 5, 0 >

v8 =< 0, 0, 0, 0, 0, 0, 0, 5 >

v9 =< 0, 0, 0, 0, 0, 4x + 8y, 8x, y > .

Step 6. We conclude this section computing an explicit set of generators
for HomA(M,N) in our illustrative example. We know that

HomA(M,N) ∼=

HomA(A2
/ < (5y, 5x) >,A

3
/ < (5, 0, 5), (2x + 9y, 8x, y) >).

Each element φ ∈ HomA(M,N) can be represented by an unique element
a ∈ A8/ < v 1, . . . , v 9 > with a = a1e1 + · · · + a8e8 ∈ A8. We consider
the column i of U , Ue i,1 ≤ i ≤ 8, the six entries of this column could be
disposed into a 3×2 matrix, denoted by Ui, taking the first three entries as
column one and the next three entries as column two. Thus, Ui represents
an A-homomorphism defined by

A
2 Ui−→ A

3

z 7→ Uiz

and it induces an A-homomorphism also denoted by Ui

A
2
/KM

Ui−→ A
3
/Syz(N)

z 7→ Uiz .

It is easy to verify that each Ui is well defined, i.e. Ui(KM ) ⊆ KN , 1 ≤ i ≤
8. The eight matrices are

U1 =

[
1 0
0 0
1 0

]
, U2 =

[
0 0
x 9y
0 0

]
U3 =

[
0 0
2 0
0 0

]
, U4 =

[
0 y

0 0
x 0

]

U5 =

[
0 0
0 0
2 0

]

U6 =

[
0 1
0 0
0 1

]

U7 =

[
0 0
0 2
0 0

]

U8 =

[
0 0
0 0
0 2

]

.
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The isomorphisms

A
2
/KM

∼= M A
3
/KN

∼= N

e i 7→ f i e ′
j 7→ g j

describe the eight homomorphisms of HomA(M,N),

M
φ1

−→ N

f 1 7→ e1 7→ U1e1 = e ′
1 + e ′

3 = g1 + g3

f 2 7→ e2 7→ U1e2 = 0

M
φ2

−→ N M
φ3

−→ N M
φ4

−→ N

f 1 7→ xg2 f 1 7→ 2g2 f 1 7→ xg3

f 2 7→ 9yg2 f 2 7→ 0 f 2 7→ yg1

M
φ5

−→ N M
φ6

−→ N M
φ7

−→ N

f 1 7→ 2g3 f1 7→ 0 f 1 7→ 0

f 2 7→ 0 f 2 7→ g1 + g3 f 2 7→ 2g2

M
φ8

−→ N

f 1 7→ 0

f 2 7→ 2g 3

3.2. Computation of M ⊗ N . For M =< f 1, . . . , f s >⊆ Am and N =<

g1, . . . , g t >⊆ Al we now compute a presentation of M ⊗ N . This com-
putation has been also considered in [8] using exact sequences (see [8],
Corollary 2.7.8). Our presentation is given as a quotient module of M ⊗N

and showing an explicit set of generators for Syz(M ⊗ N). We start with
a preliminary proposition ( see [8], Proposition 2.7.10).

Proposition 16. Let S be an arbitrary commutative ring and M,N mod-
ules over S. Let mj ∈ M, gj ∈ N , 1 ≤ j ≤ t such that N =< g1, . . . , gt >.
Then, m1⊗g1+· · ·+mt⊗gt = 0 if and only if there exist elements m′

v ∈ M

and hjv ∈ S, such that mj =
∑r

v=1 hjvm
′
v and

∑t
j=1 hjvgj = 0 for each

1 ≤ v ≤ r, 1 ≤ j ≤ t. In a matrix notation,
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[m1 · · ·mt] = [m′
1 · · ·m

′
r]H

T , HT [g1 · · · gt] = 0,

where H = [hjv] and the module expanded by the columns of H is contained
in Syz(N).

Theorem 17. Let M and N be submodules as above. Then,

M ⊗ N ∼= A
st

/Syz(M ⊗ N)

where
Syz(M ⊗ N) =< [Syz(M) ⊗ It | Is ⊗ Syz(N)] > .

Proof. It is clear that

M ⊗ N =< f 1 ⊗ g1, . . . , f 1 ⊗ g t, . . . , f s ⊗ g1, . . . , f s ⊗ g t > . (3.10)

Let Syz(M) =< f ′
1, . . . , f

′
r > and Syz(N) =< g ′

1, . . . , g
′
p >, with

f ′
1 = (f11, . . . , fs1), . . . , f

′
r = (f1r, . . . , fsr)

and
g ′

1 = (g11, . . . , gt1), . . . , g
′
p = (g1p, . . . , gtp).

In a matrix notation,

Syz(M) =




f11 . . . f1r
... . . .

...
fs1 . . . fsr



 , Syz(N) =




g11 . . . g1p
... . . .

...
gt1 . . . gtp



.

Then,

f11f 1 + · · · + fs1f s = 0
...

f1rf 1 + · · · + fsrf s = 0

and

g11g1 + · · · + gt1g t = 0
...

g1pg1 + · · · + gtpg t = 0.

We note that any of the following tr vectors has st entries and belongs to
Syz(M ⊗ N)
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(f11, 0, . . . , 0, . . . , fs1, 0, . . . , 0)
...

(0, 0, . . . , f11, . . . , 0, 0, . . . , fs1)
...

(f1r, 0, . . . , 0, . . . , fsr, 0, . . . , 0)
...

(0, 0, . . . , f1r, . . . , 0, 0, . . . , fsr).

In the same way, any of the following ps vectors has st entries and belongs
to Syz(M ⊗ N)

(g11, . . . , gt1, . . . , 0, . . . , 0)
. . .

(0, . . . , 0, . . . , g11, . . . , gt1)
...

(g1p, . . . , gtp, . . . , 0, . . . , 0)
. . .

(0, . . . , 0, . . . , g1p, . . . , gtp).

We can dispose these tr + ps vectors by columns in a matrix [C | B] of size
st × (tr + ps), where

C =





f11 . . . 0 . . . f1r . . . 0
. . . . . .

. . .
0 . . . f11 . . . 0 . . . f1r

... . . .
...

fs1 . . . 0 . . . fsr . . . 0
. . . . . .

. . .
0 . . . fs1 . . . 0 . . . fsr





= Syz(M) ⊗ It

B =





g11 . . . 0 . . . g1p . . . 0
...

...
... . . .

...
...

...
gt1 . . . 0 . . . gtp . . . 0
...

. . .
... . . .

...
. . .

...
0 . . . g11 . . . 0 . . . g1p
...

...
... . . .

...
...

...
0 . . . gt1 . . . 0 . . . gtp





.
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But B can be changed by





g11 . . . g1p . . . 0 . . . 0
...

...
... . . .

...
...

...
gt1 . . . gtp . . . 0 . . . 0
...

...
...

. . .
...

...
...

0 . . . 0 . . . g11 . . . g1p
...

...
... . . .

...
...

...
0 . . . 0 . . . gt1 . . . gtp





= Is ⊗ Syz(N).

Thus, we have proved that < [Syz(M)⊗ It | Is ⊗Syz(N)] >⊆ Syz(M ⊗
N).

Now we assume that h = (h11, . . . , h1t, . . . , hs1, . . . , hst) ∈ Syz(M ⊗ N),
then

h11(f 1⊗g1)+ · · ·+h1t(f 1⊗g t)+ · · ·+hs1(f s⊗g1)+ · · ·+hst(f s⊗g t) = 0.

From this we get that

m1 ⊗ g1 + · · · + m t ⊗ g t = 0,

where

m j = h1jf 1 + · · · + hsjf s ∈ M ,

with 1 ≤ j ≤ t. From the Proposition 16, there exist polynomials ajv ∈ A

and vectors m ′
v ∈ M such that mj =

∑r
v=1 ajvm

′
v and

∑t
j=1 ajvg j = 0 for

each 1 ≤ v ≤ r. This means that (a1v, . . . , atv) ∈ Syz(N) for each 1 ≤ v ≤
r. Since m ′

v ∈ M there exist quv ∈ A such that m ′
v = q1vf 1 + · · · + qsvf s,

and then
∑s

i=1 hi1f i = a11(q11f 1 + · · · + qs1f s) + · · · + a1r(q1rf 1 + · · · + qsrf s)
...∑s

i=1 hitf i = at1(q11f 1 + · · · + qs1f s) + · · · + atr(q1rf 1 + · · · + qsrf s).

From this we get that
∑s

i=1(hi1 − (a11qi1 + · · · + a1rqir))f i = 0
...∑s

i=1(hit − (at1qi1 + · · · + atrqir))f i = 0

i.e.,
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(h11 − (a11q11 + · · · + a1rq1r), . . . , hs1 − (a11qs1 + · · · + a1rqsr)) ∈ Syz(M)
...

(h1t − (at1q11 + · · · + atrq1r), . . . , hst − (at1qs1 + · · · + atrqsr)) ∈ Syz(M).

This implies that

(h11, . . . , hs1) − (a11q11 + · · · + a1rq1r, . . . , a11qs1 + · · · + a1rqsr) ∈ Syz(M)
...

(h1t, . . . , hst) − (at1q11 + · · · + atrq1r, . . . , at1qs1 + · · · + atrqsr) ∈ Syz(M).

Then,

(hi1)
s
i=1 = (a11q11 + · · · + a1rq1r, . . . , a11qs1 + · · · + a1rqsr) + (f11, . . . , fs1)

...
(hit)

s
i=1 = (at1q11 + · · · + atrq1r, . . . , at1qs1 + · · · + atrqsr) + (f1t, . . . , fst),

with (f11, . . . , fs1), . . . , (f1t, . . . , fst) ∈ Syz(M). From this we get

h11 = f11 + a11q11 + · · · + a1rq1r
...

h1t = f1t + at1q11 + · · · + atrq1r
...

hs1 = fs1 + a11qs1 + · · · + a1rqsr
...

hst = fst + at1qs1 + · · · + atrqsr,

and hence h is a linear combination of columns of the following matrix

[Syz(M) ⊗ It | D]

where

D =





a11 . . . a1r . . . 0 . . . 0
...

...
... . . .

...
...

...
at1 . . . atr . . . 0 . . . 0
...

...
...

. . .
...

...
...

0 . . . 0 . . . a11 . . . a1r
...

...
... . . .

...
...

...
0 . . . 0 . . . at1 . . . atr





.
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But < D >⊆< Is ⊗ Syz(N) >, and hence, h ∈< [Syz(M) ⊗ It | Is ⊗
Syz(N)] >. This completes the proof of the proposition. �

Example 18. Let M and N be submodules as in the Example 6, then

Syz(M ⊗ N) = [Syz(M) ⊗ I3 | I2 ⊗ Syz(N)],

i.e.,

Syz(M ⊗ N) =





5y 0 0 5 2x + 9y 0 0
0 5y 0 0 8x 0 0
0 0 5y 5 y 0 0
5x 0 0 0 0 5 2x + 9y
0 5x 0 0 0 0 8x
0 0 5x 0 0 5 y




.

3.3. Computing free resolutions. In this subsection we will compute
free resolutions for submodules of Am. Let M be a submodule of Am, we
recall that a free resolution of M is an exact sequence of free modules

· · ·
Fr+2

−−−→ Asr
Fr−→ Asr−1

Fr−1

−−−→ · · ·
F2−→ As1

F1−→ As0
F0−→ M −→ 0,

with si ≥ 0 for each i ≥ 0. We assume that A0 = 0. The following
proposition describes a simple procedure for constructing a free resolution
of M .

Theorem 19. Let M =< f
(0)
1 , . . . , f

(0)
s0

> be a submodule of the free module

Am. Let F0 be the matrix whose columns are f
(0)
1 , . . . , f

(0)
s0

, and for i ≥ 1 let

Fi = Syz(Fi−1) = [f
(i)
1 · · · f

(i)
si

].

Then,

· · ·
Fr+2
−−−→ Asr

Fr−→ Asr−1
Fr−1

−−−→ · · ·
F2−→ As1

F1−→ As0
F0−→ M −→ 0,

is a free resolution of M , where

Fie
(i)
ji

= f
(i)
ji

and {e
(i)
ji
}1≤ji≤si

is the canonical basis of Asi.

Proof. Each homomorphism Fi is represented by a matrix, and hence, a
resolution of M is described as a sequence of matrices {Fi}i≥0, where the
columns of Fi are the generators of Syz(Fi−1), i ≥ 1. The columns of F0

are the generators of M . We note that Im(Fi) = Syz(Fi−1) = ker(Fi−1)
for each i ≥ 1, and moreover F0 is a surjective homomorphism. �

We can illustrate this procedure in the following example.
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Example 20. Let M and N be as in the Example 6, we will compute
free resolutions for M and N . According to the Proposition 19, we must
compute the matrices Fi, i ≥ 0, and for this, we will use the Theorem 4.

We start with M , in this case we have

F0 = [f 1 f 2] =

[
3x2y + 3x 7xy2 + y

xy − 2y y2 − 4x

]
,

F1 = Syz(F0) =

[
5y
5x

]
, F2 = Syz(F1) = [2] , F3 = Syz(F2) = [5] , . . .

hence, for r ≥ 1

F2r = [2], F2r+1 = [5].

Thus, a free resolution for M is

· · · → A
[5]

−−−−→ A
[2]

−−−−→ A

[
5y
5x

]

−−−−→ A2

[
3x2y + 3x 7xy2 + y

xy − 2y y2 − 4x

]

−−−−−−−−−−−−−−−−−−→ M → 0.
For N we have

G0 = [g1 g2 g3] =

[
0 y 2x
x x x

]
, G1 = Syz(G0) =

[
5 2x + 9y
0 8x
5 y

]
,

G2 = Syz(G1) =

[
2 y

0 5

]
, G3 = Syz(G2) =

[
5 y

0 8

]
,

G4 = Syz(G3) =

[
2 y

0 5

]
, . . .

hence, for r ≥ 1

G2r =

[
2 y

0 5

]
, G2r+1 =

[
5 y

0 8

]
.

Thus, a free resolution for N is

· · · → A2

[
5 y

0 8

]

−−−−−→ A2

[
2 y

0 5

]

−−−−−→ A2

A2




5 2x + 9y
0 8x
5 y





−−−−−−−−−−→ A3

[
0 y 2x
x x x

]

−−−−−−−−−→ N → 0
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4. Computation of Ext and Tor

Now we will present the main computations of this paper, the modules
ExtrA(M) and TorA

r (M,N).

4.1. Computation of Ext. Using syzygies and the results of previous
sections we now describe an easy procedure for computing the A-modules
ExtrA(M,N) for r ≥ 0, where M = < f 1, . . . , f s >⊆ Am and N =<

g1, . . . , g t >⊆ Al. By computing we mean to find a presentation and a
system of generators of ExtrA(M,N) (compare with [1], Section 3.10). For
r = 0, Ext0A(M,N) = HomA(M,N) and the computation is given by the
results of Section 3. So we assume that r ≥ 1.

Presentation of ExtrA(M,N), r ≥ 1:

Step 1. We compute presentations of M and N ,

M ∼= As/Syz(M), N ∼= At/Syz(N),

and we know how to compute Syz(M) and Syz(N).

Step 2. Using Theorem 19 we compute a free resolution of As/Syz(M),

· · ·
Fr+2

−−−→ Asr+1
Fr+1

−−−→ Asr
Fr−→ Asr−1

Fr−1

−−−→ · · ·
F2−→ As1

F1−→ As0
F0−→

As/Syz(M) −→ 0.

Thus, using syzygies we can compute the matrices Fr, for r ≥ 1.

Step 3. We consider the complex

0 −→ HomA(As0 , At/Syz(N))
F ∗

1−−→ · · ·
F ∗

r−−→ HomA(Asr , At/Syz(N))
F ∗

r+1

−−−→

HomA(Asr+1, At/Syz(N))
F ∗

r+2

−−−→ · · ·

and we recall that

Ext
r
A(M,N) ∼= Ext

r
A(As

/Syz(M), At
/Syz(N)) = ker(F ∗

r+1)/Im(F ∗
r ).
(4.1)

However, by (3.6), for each r ≥ 1 a presentation of HomA(Asr , At/Syz(N))
is

HomA(Asr , At/Syz(N)) ∼= Atsr/ < Isr
⊗ Syz(N) >.
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Step 4. We compute the matrices F ∗ in the following way: as we saw in
(2.2), we have the following commutative diagram

HomA(Asr , At/Syz(N))
F ∗

r+1

−−−−→ HomA(Asr+1, At/Syz(N))
y

y

Atsr/Kr

F ∗

r+1

−−−−→ Atsr+1/Kr+1

where Kr =< Isr
⊗ Syz(N) > and vertical arrows are isomorphisms ob-

tained concatenating the columns of matrices of HomA(Asr , At/Syz(N)),
moreover, the matrices of homomorphisms F ∗

r+1 and F ∗
r+1 coincides. So,

we can replace the above complex for the following equivalent complex

0 −→ Ats0/K0
F ∗

1−−→ · · ·
F ∗

r−−→ Atsr/Kr

F ∗

r+1

−−−→ Atsr+1/Kr+1

F ∗

r+2

−−−→ · · · .

We will compute the matrix F ∗
r+1: let {e1, . . . , e tsr

} be the canonical basis
of Atsr , then for each 1 ≤ i ≤ tsr, the element e i = e i +Kr can be replaced
by its corresponding canonical matrix Gi, and since F ∗

r+1(G) = GFr+1 for

each G ∈ HomA(Asr , At/Syz(N)), then we conclude that

F ∗
r+1 = It ⊗ F T

r+1.

Step 5. By (4.1), a presentation of ExtrA(M,N) is given by a presentation
of ker(F ∗

r+1)/Im(F ∗
r ). Hence, we can apply the Theorem 7, let pr be the

number of generators of ker(F ∗
r+1) = Syz(F ∗

r+1) = Syz(It⊗F T
r+1), we know

how to compute this syzygy, and hence, we know how to compute pr. We
also know how to compute the matrix F ∗

r = It ⊗F T
r . Then, a presentation

of ExtrA(M,N) is given by

Ext
r
A(M,N) ∼= A

pr/Syz(ker(F ∗
r+1)/Im(F ∗

r )), (4.2)

where a set of generators of Syz(ker(F ∗
r+1)/Im(F ∗

r )) are the first pr coor-
dinates of the generators of

Syz[ker(F ∗
r+1)|Im(F ∗

r ))] = Syz[Syz[It ⊗ F
T
r+1]|It ⊗ F

T
r ]. (4.3)

System of generators of ExtrA(M,N), r ≥ 1: By (4.1), a system of gen-
erators for ExtrA(M,N) is defined by a system of generators of ker(F ∗

r+1) =

Syz(F ∗
r+1) = Syz(It ⊗ F T

r+1), hence if

Syz[It ⊗ F T
r+1] = [h1 · · ·hpr

],

then

ExtrA(M,N) =< h̃1, . . . , h̃pr
>,
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where h̃u = hu + Im(F ∗
r ), 1 ≤ u ≤ pr.

In the next example we will illustrate these procedures.

Example 21. Let M and N be submodules as in the Example 6, we will
compute ExtrM (M,N), for r ≥ 1. We will use the free resolution of M that
we computed in the Example 20. For r = 1, we compute

Syz[I3 ⊗ F T
2 ] = Syz

[
2 0 0
0 2 0
0 0 2

]
=

[
5 0 0
0 5 0
0 0 5

]
,

and hence, the value of p1 in (4.2) is 3. Moreover,

I3 ⊗ F T
1 =

[
5y 5x 0 0 0 0
0 0 5y 5x 0 0
0 0 0 0 5y 5x

]

.

Next we must compute

S1 = Syz[Syz[I3 ⊗ F
T
2 ]|I3 ⊗ F

T
1 ] =

= Syz

[
5 0 0 5y 5x 0 0 0 0
0 5 0 0 0 5y 5x 0 0
0 0 5 0 0 0 0 5y 5x

]
,

and we get that

S1 =



2 9y 9x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 9y 9x 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 9y 9x 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 2 0 x 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 2 9y 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 2 0 x 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 2 9y 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 x

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 9y





.

In this matrix we choose the first three entries of each column and we get
the generators of S1, moreover, since 9 is invertible in Z10, then

u1 = (2, 0, 0),u 2 = (y, 0, 0),u3 = (x, 0, 0)

u4 = (0, 2, 0),u 5 = (0, y, 0),u6 = (0, x, 0)

u7 = (0, 0, 2),u 8 = (0, 0, y),u9 = (0, 0, x).

Thus,

Ext1A(M,N) ∼= A3/ < u1,u2,u3,u4,u5,u6,u7,u8,u9 >.
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Moreover,

Ext1A(M,N) =< h̃1, h̃2, h̃3 >,

where

h̃1 = 5e1+ < [I3 ⊗ F T
1 ] >, h̃2 = 5e2+ < [I3 ⊗ F T

1 ] >,

h̃3 = 5e3+ < [I3 ⊗ F T
1 ] >.

For r = 2 we have

Syz[I3 ⊗ F T
3 ] = Syz

[
5 0 0
0 5 0
0 0 5

]

=

[
2 0 0
0 2 0
0 0 2

]

,

so p2 = 3, moreover,

I3 ⊗ F T
2 =

[
2 0 0
0 2 0
0 0 2

]

,

and hence ker(F ∗
3 ) = Im(F ∗

2 ), i.e.,

Ext2A(M,N) = 0.

We can check this result using (4.3), thus we compute

S2 = Syz[Syz[I3 ⊗ F T
3 ]|I3 ⊗ F T

2 ] = Syz

[
2 0 0 2 0 0
0 2 0 0 2 0
0 0 2 0 0 2

]

,

and we get that

S2 =





5 9 0 0 0 0 0 0 0
0 0 5 9 0 0 0 0 0
0 0 0 0 5 9 0 0 0
0 1 0 0 0 0 5 0 0
0 0 0 1 0 0 0 5 0
0 0 0 0 0 1 0 0 5




,

thus the generators of S2 are

v 1 = (5, 0, 0), v 2 = (9, 0, 0),

v 3 = (0, 5, 0), v 4 = (0, 9, 0),

v 5 = (0, 0, 5), v 6 = (0, 0, 9).

But, < v 2, v 4, v6 >= A3, and hence, Ext2A(M,N) ∼= A3/ < v 1, . . . , v 6 >=

0. Moreover, Ext2A(M,N) =< l̃1, l̃ 2, l̃3 >, where l̃1 = 2e1+ < [I3⊗F T
2 ] >=

0̃, l̃2 = 2e2+ < [I3 ⊗ F T
2 ] >= 0̃ and l̃3 = 2e3+ < [I3 ⊗ F T

2 ] >= 0̃.
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For r = 3 we have

Syz[I3 ⊗ F T
4 ] = Syz

[
2 0 0
0 2 0
0 0 2

]
=

[
5 0 0
0 5 0
0 0 5

]
,

so p2 = 3, moreover,

I3 ⊗ F T
3 =

[
5 0 0
0 5 0
0 0 5

]

,

and hence ker(F ∗
4 ) = Im(F ∗

3 ), i.e.,

Ext3A(M,N) = 0.

We can check this result using (4.3), thus we compute

S3 = Syz[Syz[I3 ⊗ F T
4 ]|I3 ⊗ F T

3 ] = Syz

[
5 0 0 5 0 0
0 5 0 0 5 0
0 0 5 0 0 5

]

,

and we get that

S3 =





2 9 0 0 0 0 0 0 0
0 0 2 9 0 0 0 0 0
0 0 0 0 2 9 0 0 0
0 1 0 0 0 0 2 0 0
0 0 0 1 0 0 0 2 0
0 0 0 0 0 1 0 0 2




,

thus the generators of S3 are

w1 = (2, 0, 0),w 2 = (9, 0, 0),

w3 = (0, 2, 0),w 4 = (0, 9, 0),

w5 = (0, 0, 2),w 6 = (0, 0, 9).

But, < w2,w 4,w6 >= A3, and hence, Ext3A(M,N) ∼= A3/ < w1, . . . ,w6 >

= 0. Moreover, Ext3A(M,N) =< m̃1, m̃2, m̃3 >, where m̃1 = 5e1+ <

[I3 ⊗ F T
3 ] >= 0̃, m̃2 = 5e2+ < [I3 ⊗ F T

3 ] >= 0̃ and m̃3 = 5e3+ <

[I3 ⊗ F T
3 ] >= 0̃.

We conclude that

ExtrA(M,N) = 0 , for r ≥ 2.

4.2. Computation of Tor. Using syzygies and some previous results we
now describe an easy procedure for computing the A-modules TorA

r (M,N)
for r ≥ 0, where M =< f 1, . . . , f s >⊆ Am and N =< g1, . . . , g t >⊆ Al.
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By computing we mean to find a presentation and a system of generators
of TorA

r (M,N), r ≥ 0 (compare with [8], Proposition 7.1.3). For r = 0, the
computation is given by the Theorem 17. So we assume that r ≥ 1.

Presentation of TorA
r (M,N), r ≥ 1:

Step 1. We compute presentations of M and N ,

M ∼= As/Syz(M), N ∼= At/Syz(N),

Step 2. We compute a free resolution of At/Syz(N) using theorem 19,

· · ·
Gr+2

−−−→ Atr+1
Gr+1

−−−→ Atr Gr−−→ Atr−1
Gr−1

−−−→ · · ·
G2−−→ At1 G1−−→ At0 G0−−→

At/Syz(N) −→ 0.

Step 3. We consider the complex

· · ·
i⊗Gr+2

−−−−−→ As/Syz(M) ⊗ Atr+1
i⊗Gr+1

−−−−−→ As/Syz(M) ⊗ Atr i⊗Gr−−−→ · · ·
i⊗G2−−−→

As/Syz(M) ⊗ At1 i⊗G1−−−→ As/Syz(M) ⊗ At0 −→ 0,

where i is the identical of As/Syz(M) and then

TorA
r (M,N) ∼= TorA

r (As/Syz(M), At/Syz(N)) =
ker(1 ⊗ Gr)/Im(1 ⊗ Gr+1),

but the matrix of i ⊗ Gr is Is ⊗ Gr, so ker(i ⊗ Gr) = ker(Is ⊗ Gr) =
Syz(Is ⊗ Gr) and we get

Tor
A
r (M,N) ∼= ker(Is ⊗ Gr)/Im(Is ⊗ Gr+1). (4.4)

Step 3. Let qr be the number of generators of Syz(Is ⊗Gr), then by the
Theorem 7, a presentation of TorA

r (M,N) is given by

Tor
A
r (M,N) ∼= A

qr/Syz(ker(Is ⊗ Gr)/Im(Is ⊗ Gr+1)), (4.5)

where a set of generators of Syz(ker(Is ⊗Gr)/Im(Is ⊗Gr+1)) are the first
qr coordinates of generators of

Syz[Syz[Is ⊗ Gr]|Is ⊗ Gr+1]. (4.6)

System of generators of TorA
r (M,N), r ≥ 1: By (4.4), a system of gener-

ators of TorA
r (M,N) is given by a system of generators of ker(i ⊗ Gr) =

Syz(Is ⊗ Gr). Thus, if

Syz[Is ⊗ Gr] = [h1 · · ·hqr
],

then

TorA
r (M,N) =< h̃1, . . . , h̃qr

>,
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where h̃v = hv + Im(Is ⊗ FGr+1), 1 ≤ v ≤ qr.

In the next example we will illustrate these procedures.

Example 22. Let M and N be submodules as in the Example 6, we will
compute TorA

r (M,N), for r ≥ 1. We will use the free resolution of N that
we computed in the Example 20. For r = 1, we compute

ker(I2 ⊗ G1) = Syz[I2 ⊗ G1] = Syz





5 2x + 9y 0 0
0 8x 0 0
5 y 0 0
0 0 5 2x + 9y
0 0 0 8x
0 0 5 y




=





2 y 0 0
0 5 0 0
0 0 2 y

0 0 0 5



 ,

but

I2 ⊗ G2 =





2 y 0 0
0 5 0 0
0 0 2 y

0 0 0 5



,

hence ker(I2 ⊗ G1) = Im(I2 ⊗ G2), and by (4.4),

TorA
1 (M,N) = 0.

For r = 2 we have

ker(I2 ⊗ G2) = Syz[I2 ⊗ G2] = Syz





2 y 0 0
0 5 0 0
0 0 2 y

0 0 0 5



 =





5 y 0 0
0 8 0 0
0 0 5 y

0 0 0 8



 ,

but

I2 ⊗ G3 =





5 y 0 0
0 8 0 0
0 0 5 y

0 0 0 8



,

hence

TorA
2 (M,N) = 0.

We conclude that

TorA
r (M,N) = 0 , for r ≥ 1.
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It is well known (see [16]) that TorA
r (M,N) could be also computed using

a free resolution of M . In this case (4.6) should be replaced by

Syz[Syz[Fr ⊗ It]|Fr+1 ⊗ It]. (4.7)

So, for r = 1 we have

ker(F1 ⊗ I3) = Syz[F1 ⊗ I3] = Syz





5y 0 0
0 5y 0
0 0 5y
5x 0 0
0 5x 0
0 0 5x




=

[
2 0 0
0 2 0
0 0 2

]

,

but

F2 ⊗ I3 =

[
2 0 0
0 2 0
0 0 2

]
,

hence ker(F1 ⊗ I3) = Im(F2 ⊗ I3) and

TorA
1 (M,N) = 0.

For r = 2 we have

ker(F2 ⊗ I3) = Syz[F2 ⊗ I3] = Syz

[
2 0 0
0 2 0
0 0 2

]
=

[
5 0 0
0 5 0
0 0 5

]
,

but

F3 ⊗ I3 =

[
5 0 0
0 5 0
0 0 5

]

,

hence

TorA
2 (M,N) = 0.

We conclude again that

TorA
r (M,N) = 0 , for r ≥ 1.
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