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Rafael H. Villarreal1
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Abstract. Let C be a uniform clutter and let I = I(C) be its edge
ideal. We prove that if C satisfies the packing property (resp. max-flow
min-cut property), then there is a uniform Cohen-Macaulay clutter C1

satisfying the packing property (resp. max-flow min-cut property) such
that C is a minor of C1. For arbitrary edge ideals of clutters we prove
that the normality property is closed under parallelizations. Then we
show some applications to edge ideals and clutters which are related
to a conjecture of Conforti and Cornuéjols and to max-flow min-cut
problems.
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1. Introduction

Let R = K[x1, . . . , xn] be a polynomial ring over a field K and let I

be an ideal of R minimally generated by a finite set F = {xv1 , . . . , xvq}
of square-free monomials. As usual we use the notation xa := x

a1

1 · · · xan

n ,
where a = (a1, . . . , an) is in N

n. The support of a monomial xa is given by
supp(xa) = {xi | ai > 0}. For technical reasons we shall assume that each
variable xi occurs in at least one monomial of F .

A clutter with finite vertex set X is a family of subsets of X, called
edges, none of which is included in another. The set of vertices of a clutter
C is denoted by V (C) and the set of edges of C is denoted by E(C). A
clutter is called d-uniform if all its edges have exactly d vertices. We
associate to the ideal I a clutter C by taking the set of indeterminates
X = {x1, . . . , xn} as vertex set and E = {S1, . . . , Sq} as edge set, where Sk

is the support of xvk . The vector vk is called the characteristic vector of Sk.
The assignment I 7→ C gives a natural one to one correspondence between
the family of square-free monomial ideals and the family of clutters. The
ideal I is called the edge ideal of C. To stress the relationship between
I and C we will use the notation I = I(C). Edge ideals of graphs were
introduced and studied in [24, 29]. Edge ideals of clutters also correspond
to simplicial complexes via the Stanley-Reisner correspondence [25] and to
facet ideals [9, 32]. The Cohen-Macaulay property of edge ideals has been
recently studied in [3, 10, 16, 22, 27] using a combinatorial approach based
on the notions of shellability, linear quotients, unmixedness, acyclicity and
transitivity of digraphs, and the König property.

The aim of this note is to study the behavior, under certain operations, of
various algebraic and combinatorial optimization properties of edge ideals
and clutters such as the Cohen-Macaulay property, the normality, the tor-
sion freeness, the packing and the max-flow min-cut properties. The study
of edge ideals from the combinatorial optimization point of view was ini-
tiated in [1, 26] and continued in [6, 8, 13, 14, 15, 31], see also [17]. The
Cohen-Macaulay and normality properties are two of the most interesting
properties an edge ideal can have, see [2, 10, 25, 30] and [19, 28] respectively.

Recall that the integral closure of Ii, denoted by Ii, is the ideal of R

given by

Ii = ({xa ∈ R| ∃ p ≥ 1; (xa)p ∈ I
pi}).

An ideal I is called normal if Ii = Ii for all i. A clutter obtained from
C by a sequence of deletions and duplications of vertices is called a paral-
lelization of C and a clutter obtained from C by a sequence of deletions and
contractions of vertices is called a minor of C, see Section 2. It is known
that the normality of I(C) is closed under minors [8]. One of our main
results shows that the normality of I(C) is closed under parallelizations:
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Theorem 2.3 Let C be a clutter and let C′ be a parallelization of C. If I(C)
is normal, then I(C′) is normal.

The ideal I = I(C) is called normally torsion free if Ii = I(i) for all i,

where I(i) is the ith symbolic power of I. As an application we prove that
if I(C) is normally torsion free and C′ is a parallelization of C, then I(C′)
is normally torsion free (Corollary 2.12). Let A be the incidence matrix of
C, i.e., A is the matrix with column vectors v1, . . . , vq. A clutter C satisfies
the max-flow min-cut (MFMC) property if both sides of the LP-duality
equation

min{〈w, x〉|x ≥ 0;xA ≥ 1} = max{〈y,1〉| y ≥ 0;Ay ≤ w}

have integral optimum solutions x and y for each non-negative integral
vector w. A remarkable result of [15] (cf. [14, Theorem 4.6]) shows that I(C)
is normally torsion free if and only if C has the max-flow min-cut property.
This fact makes a strong connection between commutative algebra and
combinatorial optimization. It is known [23, Chapter 79] that a clutter C
satisfies the max-flow min-cut property if and only if all parallelizations of
the clutter C satisfy the König property (see Definition 2.7). As another
application we give a proof of this fact using that the integrality of the
polyhedron {x|x ≥ 0;xA ≥ 1} is closed under parallelizations and minors
and using that the normality of I(C) is preserved under parallelizations and
minors (Corollary 2.16).

A clutter C satisfies the packing property (PP for short) if all minors of
C satisfy the König property. We say that a clutter C is Cohen-Macaulay
if R/I(C) is a Cohen-Macaulay ring, see [21]. The other main result of this
note is:

Theorem 3.3 Let C be a d-uniform clutter on the vertex set X. Let

Y = {yij | 1 ≤ i ≤ n; 1 ≤ j ≤ d − 1}

be a set of new variables, and let C′ be the clutter with vertex set V (C′) =
X ∪ Y and edge set

E(C′) = E(C) ∪ {{x1, y11, . . . , y1(d−1)}, . . . , {xn, yn1, . . . , yn(d−1)}}.

Then the edge ideal I(C′) is Cohen-Macaulay. If C satisfies PP (resp. max-
flow min-cut), then C′ satisfies PP (resp. max-flow min-cut).

It is well known that if C satisfies the max-flow min-cut property, then
C satisfies the packing property [5] (see Corollary 2.10). Conforti and
Cornuéjols [4] conjecture that the converse is also true. Theorem 3.3 is
interesting because it says that for uniform clutters it suffices to prove the
conjecture for Cohen-Macaulay clutters, which have a rich structure. The

São Paulo J.Math.Sci. 3, 1 (2009), 61–75



64 Luis A. Dupont, Rafael H. Villarreal, and Enrique Reyes

Conforti-Cornuéjols conjecture has been studied in [7, 14, 15] using an al-
gebraic approach based on certain algebraic properties of blowup algebras.

2. Normality is preserved under parallelizations

Let C be a clutter on the vertex set X = {x1, . . . , xn} and let I = I(C) =
(xv1 , . . . , xvq) be its edge ideal. The incidence matrix of C, denoted by
A = (aij), is the n×q matrix whose (i, j) entry is given by aij = 1 if xi ∈ gj

and aij = 0 otherwise, where g1, . . . , gq are the edges of C. Notice that the
column vectors of A are v1, . . . , vq, where vi =

∑
xj∈gi

ej for 1 ≤ i ≤ q. As

usual ej denotes the jth unit vector in R
n. Recall that the Rees algebra of

I is given by:

R[It] := R ⊕ It ⊕ · · · ⊕ I
i
t
i ⊕ · · · ⊂ R[t],

where t is a new variable. The Rees algebra of I can be written as

R[It] = K[{xa
t
b| (a, b) ∈ NA′}]

where A′ = {(v1, 1), . . . , (vq, 1), e1, . . . , en} and NA′ is the subsemigroup of
N

n+1 spanned by A′. In other words R[It] is equal to K[NA′], the semigroup
ring of NA′, see [12]. On the other hand according to [30, Theorem 7.2.28]
the integral closure of R[It] in its field of fractions can be expressed as

R[It] = K[{xa
t
b| (a, b) ∈ ZA′ ∩ R+A

′}]

= R ⊕ It ⊕ I2t
2 ⊕ · · · ⊕ Iit

i ⊕ · · · ,

where Ii is the integral closure of Ii, R+A
′ is the cone spanned by A′, and

ZA′ is the subgroup spanned by A′. Notice that ZA′ = Z
n+1. Hence R[It]

is normal if and only if any of the following two equivalent conditions hold:

(a) NA′ = Z
n+1 ∩ R+A

′.
(b) Ii = Ii for all i ≥ 1.

If the second condition holds we say that I is a normal ideal.

Let C be a clutter on the vertex set X = {x1, . . . , xn} and let xi ∈ X.
Then duplicating xi means extending X by a new vertex x′

i and replacing
E(C) by

E(C) ∪ {(e \ {xi}) ∪ {x′
i}|xi ∈ e ∈ E(C)}.

The deletion of xi, denoted by C \ {xi}, is the clutter formed from C by
deleting the vertex xi and all edges containing xi. A clutter obtained from
C by a sequence of deletions and duplications of vertices is called a par-
allelization. If w = (wi) is a vector in Nn, we denote by Cw the clutter
obtained from C by deleting any vertex xi with wi = 0 and duplicating
wi − 1 times any vertex xi if wi ≥ 1. The map w 7→ Cw gives a one to one
correspondence between N

n and the parallelizations of C.
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Example 2.1. Let G be the graph whose only edge is {x1, x2} and let
w = (3, 3). Then Gw = K3,3 is the complete bipartite graph with bipartition

V1 = {x1, x
2
1, x

3
1} and V2 = {x2, x

2
2, x

3
2}. Notice that xk

i is a vertex, i.e., k

is an index not an exponent.

The following notion of minor comes from combinatorial optimization
[4, 23] and it is not apparently related to the minors (subdeterminants) of
A.

Definition 2.2. Let X ′ = {xi1 , . . . , xir , xj1, . . . , xjs
} be a subset of X. A

minor of I is a proper ideal I ′ of R′ = K[X \X ′] obtained from I by making
xik = 0 and xj`

= 1 for all k, `. The ideal I is considered itself a minor. A
minor of C is a clutter C′ whose edge ideal is I ′.

Notice that the generators of I ′ are obtained from the generators of I

by making xik = 0 and xj`
= 1 for all k, `. This means that C′ is obtained

from C by shrinking some edges and deleting some other edges. Also notice
that C′ is obtained from I ′ by considering the unique set of square-free
monomials of R′ that minimally generate I ′. If I ′ is the ideal obtained
from I by making xi = 0, then I ′ = I(C \ {xi}), i.e., making a variable
equal to zero corresponds to a deletion. If I ′ is the minor obtained from
I by making xi = 0 for 1 ≤ i ≤ r and xi = 1 for r + 1 ≤ i ≤ s, then in
algebraic terms I ′ can be expressed as

(I ∩ K[xr+1, . . . , xn])p = I
′
K[xr+1, . . . , xn]p,

where (I ∩ K[xr+1, . . . , xn])p and K[xr+1, . . . , xn]p are localizations at the
prime ideal p generated by the variables xs+1, . . . , xn.

It is known that the normality of I(C) is closed under minors [8]. A
main result of this section shows that the normality of I(C) is closed under
parallelizations.

Theorem 2.3. Let C be a clutter and let C′ be a parallelization of C. If
I(C) is normal, then I(C′) is normal.

Proof. From [8] we obtain that if I(C) is normal and C′ is a minor of C, then
I(C′) is also normal. Thus we need only show that the normality of I(C)
is preserved when we duplicate a vertex of C. Let V (C) = {x2, . . . , xn} be
the vertex set of C and let C′ be the clutter obtained from C by duplicating
the vertex x2, i.e., we extend V (C) by a new vertex x′

2 as explained before
Example 2.1. For convenience we set x1 = x′

2. We may assume that

I = I(C) = (x2x
w1 , . . . , x2x

wr , x
wr+1, . . . , x

wq),

where xwi ∈ K[x3, . . . , xn] for all i. We must show that the ideal

I(C′) = I + (x1x
w1 , . . . , x1x

wr)
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is normal. Consider the sets
A ={e2, . . . , en, (0, 1, w1, 1), . . . , (0, 1, wr , 1), (0, 0, wr+1 , 1), . . . ,

(0, 0, wq , 1)},

A′ =A∪ {e1, (1, 0, w1, 1), . . . , (1, 0, wr , 1)}.

By hypothesis Z
n+1 ∩ R+A = NA. We must prove that Z

n+1 ∩ R+A
′ =

NA′. It suffices to show that the left hand side is contained in the right
hand side because the other inclusion always holds. Take an integral vector
(a, b, c, d) in R+A

′, where a, b, d ∈ Z and c ∈ Z
n−2. Then

(a, b, c, d) =

r∑

i=1

αi(0, 1, wi, 1) +

q∑

i=r+1

αi(0, 0, wi, 1) +

r∑

i=1

βi(1, 0, wi, 1)

+
n∑

i=1

γiei

for some αi, βi, γi in R+. Comparing entries one has

a = β1 + · · · + βr + γ1,

b = α1 + · · · + αr + γ2,

c =

r∑

i=1

(αi + βi)wi +

q∑

i=r+1

αiwi +

n∑

i=3

γiei,

d =

r∑

i=1

(αi + βi) +

q∑

i=r+1

αi.

Consequently we obtain the equality

(0, a + b, c, d) =
r∑

i=1

(αi + βi)(0, 1, wi, 1) +

q∑

i=r+1

αi(0, 0, wi, 1) + (γ1 + γ2)e2

+
n∑

i=3

γiei,

that is, the vector (0, a + b, c, d) is in Z
n+1 ∩ R+A = NA. Thus there are

λi, µi in N such that.

(0, a + b, c, d) =

r∑

i=1

µi(0, 1, wi, 1) +

q∑

i=r+1

µi(0, 0, wi, 1) +

n∑

i=2

λiei.
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Comparing entries we obtain the equalities

a + b = µ1 + · · · + µr + λ2,

c = µ1w1 + · · · + µqwq + λ3e3 + · · · + λnen,

d = µ1 + · · · + µq.

Case (I): b ≤
∑r

i=1 µi. If b < µ1, we set b = µ′
1, µ′

1 < µ1, and define
µ′′

1 = µ1 − µ′
1. Otherwise pick s ≥ 2 such that

µ1 + · · · + µs−1 ≤ b ≤ µ1 + · · · + µs

Then b = µ1 + · · · + µs−1 + µ′
s, where µ′

s ≤ µs. Set µ′′
s = µs − µ′

s. Notice
that

a + b = µ1 + · · · + µr + λ2 = a + µ1 + · · · + µs−1 + µ
′
s,

a = µs + · · · + µr + λ2 − µ
′
s = µs+1 + · · · + µr + µ

′′
s + λ2.

Then

(a, b, c, d) =
s−1∑

i=1

µi(0, 1, wi, 1) + µ
′
s(0, 1, ws, 1) +

q∑

i=r+1

µi(0, 0, wi, 1)

+µ
′′
s(1, 0, ws, 1) +

r∑

i=s+1

µi(1, 0, wi, 1) + λ2e1 +
n∑

i=3

λiei,

that is, (a, b, c, d) ∈ NA′.

Case (II): b >
∑r

i=1 µi. Then b =
∑r

i=1 µi + λ′
2. Since

a + b = µ1 + · · · + µr + λ2 = a + µ1 + · · · + µr + λ
′
2

we get a = λ2 − λ′
2. In particular λ2 ≥ λ′

2. Then

(a, b, c, d) =

r∑

i=1

µi(0, 1, wi, 1) +

q∑

i=r+1

µi(0, 0, wi, 1) + ae1 + λ
′
2e2 +

n∑

i=3

λiei

that is, (a, b, c, d) ∈ NA′. 2

Our next goal is to present some applications of this result, but first we
need to prove a couple of lemmas and we need to recall some notions and
results.

Definition 2.4. A subset C ⊂ X is a minimal vertex cover of the clutter
C if: (i) every edge of C contains at least one vertex of C, and (ii) there
is no proper subset of C with the first property. If C satisfies condition (i)
only, then C is called a vertex cover of C.
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Definition 2.5. Let A be the incidence matrix of C. The clutter C satisfies
the max-flow min-cut (MFMC) property if both sides of the LP-duality
equation

min{〈w, x〉|x ≥ 0;xA ≥ 1} = max{〈y,1〉| y ≥ 0;Ay ≤ w} (1)

have integral optimum solutions x and y for each non-negative integral vec-
tor w.

Let A be the incidence matrix of C whose column vectors are v1, . . . , vq.
The set covering polyhedron of C is given by:

Q(A) = {x ∈ R
n|x ≥ 0; xA ≥ 1},

where 1 = (1, . . . , 1). This polyhedron was studied in [14, 15] to charac-
terize the max-flow min-cut property of C and to study certain algebraic
properties of blowup algebras. A clutter C is said to be ideal if Q(A) is an
integral polyhedron, i.e., it has only integral vertices. The integral vertices
of Q(A) are precisely the characteristic vectors of the minimal vertex covers
of C [14, Proposition 2.2].

Theorem 2.6 ([8, 14, 15, 18]). The following conditions are equivalent:

(i) grI(R) = R[It]/IR[It] is reduced, i.e., grI(R) has no non-zero
nilpotent elements.

(ii) R[It] is normal and Q(A) is an integral polyhedron.

(iii) Ii = I(i) for i ≥ 1, where I(i) is the ith symbolic power of I.
(iv) C has the max-flow min-cut property.

If condition (iii) is satisfied we say that I is normally torsion free. A set
of edges of the clutter C is independent or stable if no two of them have a
common vertex. We denote the smallest number of vertices in any minimal
vertex cover of C by α0(C) and the maximum number of independent edges
of C by β1(C). These numbers are related to min-max problems because
they satisfy:

α0(C) ≥ min{〈1, x〉|x ≥ 0;xA ≥ 1}

= max{〈y,1〉| y ≥ 0;Ay ≤ 1} ≥ β1(C).

Notice that α0(C) = β1(C) if and only if both sides of the equality have
integral optimum solutions. These two numbers can be interpreted in terms
of invariants of I. By [14] the height of the ideal I, denoted by ht(I),
is equal to the vertex covering number α0(C) and the edge independence
number β1(C) is equal to the maximum r such that there exists a regular
sequence of r monomials inside I.

Definition 2.7. If α0(C) = β1(C) we say that the clutter C (or the ideal I)
has the König property.
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Definition 2.8. The clutter C (or the ideal I) satisfy the packing property
(PP for short) if all its minors satisfy the König property, i.e., α0(C

′) =
β1(C

′) for any minor C′ of C.

Theorem 2.9. (A. Lehman; see [5, Theorem 1.8]) If C has the packing
property, then Q(A) is integral.

Corollary 2.10 ([5]). If the clutter C has the max-flow min-cut property,
then C has the packing property.

Proof. Assume that the clutter C has the max-flow min-cut property.
This property is closed under taking minors. Thus it suffices to prove that
C has the König property. We denote the incidence matrix of C by A. By
hypothesis the LP-duality equation

min{〈1, x〉|x ≥ 0;xA ≥ 1} = max{〈y,1〉| y ≥ 0;Ay ≤ 1}

has optimum integral solutions x, y. To complete the proof notice that the
left hand side of this equality is α0(C) and the right hand side is β1(C). 2

Conforti and Cornuéjols conjecture that the converse is also true:

Conjecture 2.11. ([4]) If the clutter C has the packing property, then C
has the max-flow min-cut property.

To the best of our knowledge this conjecture is open, see [5, Conjec-
ture 1.6].

Corollary 2.12. Let C be a clutter and let C′ be a parallelization of C. If
I(C) is normally torsion free, then I(C′) is normally torsion free.

Proof. Let A and A′ be the incidence matrices of C and C′ respectively.
By Theorem 2.6 the ideal I(C) is normal and Q(A) is integral. From Theo-
rem 2.3 the ideal I(C′) is normal, and since the integrality of Q(A) is closed
under minors and parallelizations (see [14] and [23]) we get that Q(A′) is
again integral. Thus applying Theorem 2.6 once more we get that I(C′) is
normally torsion free. 2

Corollary 2.13. Let C be a clutter and let C′ be a parallelization of C. If
C has the max-flow min-cut property, then C′ has the König property. In
particular Cw has the König property for all w ∈ N

n.

Proof. By Corollary 2.12 the clutter C′ has the max-flow min-cut property.
Thus applying Corollary 2.10 we obtain that C′ has the König property. 2

Lemma 2.14. Let C be a clutter and let A be its incidence matrix. If
w = (wi) is a vector in N

n, then

β1(C
w) ≤ max{〈y,1〉| y ∈ N

q; Ay ≤ w}.
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Proof. We may assume that w = (w1, . . . , wm, 0, . . . , 0), where wi ≥ 1 for
i = 1, . . . ,m. Recall that for each i the vertex xi is duplicated wi−1 times.
We denote the duplications of xi by x2

i , . . . , x
wi

i and set x1
i = xi. Thus the

vertex set of Cw is equal to

V (Cw) = {x1
1, . . . , x

w1

1 , . . . , x
1
i , . . . , x

wi

i , . . . , x
1
m, . . . , x

wm

m }.

There are f1, . . . , fβ1
independent edges of Cw, where β1 = β1(C

w). Each
fi has the form

fk = {x
jk1

k1
, x

jk2

k2
, . . . , x

jkr

kr
} (1 ≤ k1 < · · · < kr ≤ m; 1 ≤ jki

≤ wki
).

We set gk = {x1
k1

, x1
k2

, . . . , x1
kr
} = {xk1

, xk2
, . . . , xkr

}. By definition of Cw

we get that gk ∈ E(C) for all k. We may re-order the fi so that

g1 = g2 = · · · = gs1︸ ︷︷ ︸
s1

, gs1+1 = · · · = gs2︸ ︷︷ ︸
s2−s1

, . . . , gsr−1+1 = · · · = gsr︸ ︷︷ ︸
sr−sr−1

and gs1
, . . . , gsr

distinct, where sr = β1. Let vi be the characteristic vector
of gsi

. Set y = s1e1 +(s2− s1)e2 + · · ·+(sr − sr−1)er. We may assume that
the incidence matrix A of C has column vector v1, . . . , vq. Then y satisfies

〈y,1〉 = β1. For each ki the number of variables of the form x`
ki

that occur
in f1, . . . , fβ1

is at most wki
because the fi are pairwise disjoint. Hence for

each ki the number of times that the variable x1
ki

occurs in g1, . . . , gβ1
is at

most wki
. Then

Ay = s1v1 + (s2 − s1)v2 + · · · + (sr − sr−1)vr ≤ w.

Therefore we obtain the required inequality. 2

Let C be a clutter. For use below we denote the set of minimal vertex
covers of C by Υ(C).

Lemma 2.15. Let C be a clutter and let A be its incidence matrix. If
w = (wi) is a vector in N

n, then

min





∑

xi∈C

wi

∣∣∣∣∣∣
C ∈ Υ(C)




 = α0(C
w).

Proof. We may assume that w = (w1, . . . , wm, wm+1, . . . , wm1
, 0, . . . , 0),

where wi ≥ 2 for i = 1, . . . ,m, wi = 1 for i = m + 1, . . . ,m1, and wi = 0
for i > m1. Thus for i = 1, . . . ,m the vertex xi is duplicated wi − 1 times.
We denote the duplications of xi by x2

i , . . . , x
wi

i and set x1
i = xi.

We first prove that the left hand side is less or equal than the right
hand side. Let C be a minimal vertex cover of Cw with α0 elements, where
α0 = α0(C

w). We may assume that C ∩{x1, . . . , xm1
} = {x1, . . . , xs}. Note
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that x1
i , . . . , x

wi

i are in C for i = 1, . . . , s. Indeed since C is a minimal
vertex cover of Cw, there exists an edge e of Cw such that e ∩ C = {x1

i }.

Then (e \ {x1
i }) ∪ {xj

i} is an edge of Cw for j = 1, . . . , wi. Consequently

x
j
i ∈ C for j = 1, . . . , wi. Hence

w1 + · · · + ws ≤ |C| = α0. (2)

On the other hand the set C ′ = {x1, . . . , xs} ∪ {xm1+1, . . . , xn} is a vertex
cover of C. Let D be a minimal vertex cover of C contained in C ′. Let eD

denote the characteristic vector of D. Then, since wi = 0 for i > m1, using
Eq. (2) we get

〈w, eD〉 =
∑

xi∈D

wi =
∑

xi∈D∩{x1,...,xs}

wi ≤
∑

xi∈{x1,...,xs}

wi ≤ α0.

This completes the proof of the asserted inequality.

Next we show that the right hand side of the inequality is less or equal
than the left hand side. Let C be a minimal vertex cover of C. Note that
the set

C
′ = ∪xi∈C{x

1
i , . . . , x

wi

i }

is a vertex cover of Cw. Indeed any edge ew of Cw has the form ew =

{xj1
i1

, . . . , x
jr

ir
} for some edge e = {xi1 , . . . , xir} of C and since e is covered

by C, we have that ew is covered by C ′. Hence α0(C
w) ≤ |C ′| =

∑
xi∈C wi.

As C was an arbitrary vertex cover of C we get the asserted inequality. 2

Corollary 2.16. [23, Chapter 79] Let C be a clutter. Then C satisfies the
max-flow min-cut property if and only if β1(C

w) = α0(C
w) for all w ∈ N

n.

Proof. If C has the max-flow min-cut property, then Cw has the König
property by Corollary 2.13. Conversely if Cw has the König property for
all w ∈ N

n, then by Lemmas 2.14 and 2.15 both sides of the LP-duality
equation

min{〈w, x〉|x ≥ 0;xA ≥ 1} = max{〈y,1〉| y ≥ 0;Ay ≤ w}

have integral optimum solutions x and y for each non-negative integral
vector w, i.e., C has the max-flow min-cut property. 2

3. Cohen-Macaulay ideals with max-flow min-cut

One of the aims here is to show how to construct Cohen-Macaulay clut-
ters satisfying max-flow min-cut, PP, and normality properties. Let C be
a uniform clutter. A main result of this section proves that if C satisfies
PP (resp. max-flow min-cut), then there is a uniform Cohen-Macaulay
clutter C1 satisfying PP (resp. max-flow min-cut) such that C is a minor
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of C1. In particular for uniform clutters we prove that it suffices to show
Conjecture 2.11 for Cohen-Macaulay clutters (see Corollary 3.4).

Let R = K[x1, . . . , xn] be a polynomial ring over a field K and let C
be a clutter on the vertex set X. As usual, in what follows, we denote
the edge ideal of C by I = I(C). Recall that p is a minimal prime of
I = I(C) if and only if p = (C) for some minimal vertex cover C of C [30,
Proposition 6.1.16]. Thus the primary decomposition of the edge ideal of
C is given by

I(C) = (C1) ∩ (C2) ∩ · · · ∩ (Cp),

where C1, . . . , Cp are the minimal vertex covers of C. In particular observe
that the height of I(C), denoted by ht I(C), is equal to the minimum car-
dinality of a minimal vertex cover of C. Also notice that the associated
primes of I(C) are precisely the minimal primes of I(C).

Proposition 3.1. Let R[z1, . . . , z`] be a polynomial ring over R. If I is a
normal ideal of R, then J = (I, x1z1 · · · z`) is a normal ideal of R[z1, . . . , z`].

Proof. By induction on p we will show Jp = Jp for all p ≥ 1. If p = 1,
then J = J because J is square-free (see [30, Corollary 7.3.15]). Assume

J i = J i for i < p and p ≥ 2. Let y be a monomial in Jp, then ym ∈ Jpm,

for some m > 0. Since Jp ⊂ Jp−1 = Jp−1 we can write

y = z
t1
1 · · · zt`

` (x1z1 · · · z`)
r
Mf1 · · · fp−r−1,

where M is a monomial with zi /∈ supp(M) for all i and the fi’s are mono-
mials in J with zi /∈ supp(fj) for all i, j. We set h = Mf1 · · · fp−r−1. It
suffices to show that y ∈ Jp. Since ym ∈ Jpm we have

y
m = z

mt1
1 · · · zmt`

` (x1z1 · · · z`)
rm

h
m = N(x1z1 · · · z`)

s
g1 · · · gmp−s, (3)

where N is a monomial, zi /∈ supp(gj) for all i, j, and the gi’s are monomials
in J . We distinguish two cases:

Case (a): Assume ti = 0 for some i, then s ≤ rm because zrm
i is the

maximum power of zi that divides ym. Making zj = 1 for j = 1, . . . , ` in
Eq. (3) we get

x
rm−s
1 h

m = N
′
g1 · · · gmp−s.

Thus hm ∈ I(mp−s)−(rm−s) = Im(p−r). Therefore we get h ∈ Ip−r = Ip−r

and y = z
t1
1 · · · zt`

` (x1z1 · · · z`)
rh ∈ Jp.

Case (b): If ti > 0 for all i, we may assume x1 /∈ supp(M), otherwise
y ∈ Jp. We may also assume x1 /∈ supp(fi) for all i, otherwise it is not
hard to see that we are back in case (a). Notice that s ≤ rm, because

x1 /∈ supp(h). From Eq. (3) it follows that h ∈ Ip−r = Ip−r and y =

z
t1
1 · · · zt`

` (x1z1 · · · z`)
rh ∈ Jp. 2
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Lemma 3.2. Let R[z1, . . . , z`] be a polynomial ring over R and let I1 be
the ideal obtained from I by making x1 = 0. Then: (a) if I and I1 satisfy
the König property, then the ideal J = (I, x1z1 · · · z`) satisfies the König
property, and (b) if I satisfies PP, then J satisfies PP.

Proof. (a): If ht(I) = ht(J), then J satisfies König because I does.
Assume that g = ht(I) < ht(J). Then ht(J) = g + 1. Notice that every
associated prime ideal of I of height g cannot contain x1. We claim that
ht(I1) = g. If r = ht(I1) < g, pick a minimal prime p of I1 of height r.
Then p + (x1) is a prime ideal of height at most g containing both I and
x1, a contradiction. This proves the claim. Since I1 satisfies König, there
are g independent monomials in I1. Hence h1, . . . , hg, x1z1 · · · z` are g + 1
independent monomials in J , as required. Part (b) follows readily from
part (a). 2

Theorem 3.3. Let C be a d-uniform clutter on the vertex set X. Let

Y = {yij | 1 ≤ i ≤ n; 1 ≤ j ≤ d − 1}

be a set of new variables, and let C′ be the clutter with vertex set V (C′) =
X ∪ Y and edge set

E(C′) = E(C) ∪ {{x1, y11, . . . , y1(d−1)}, . . . , {xn, yn1, . . . , yn(d−1)}}.

Then the edge ideal I(C′) is Cohen-Macaulay. If C satisfies PP (resp. max-
flow min-cut), then C′ satisfies PP (resp. max-flow min-cut).

Proof. Set S = K[X∪Y ] and I ′ = I(C′). The clutter C′ is a grafting of C as
defined by Faridi in [10]. Then I ′ is Cohen-Macaulay by [10, Theorem 8.2].
If C satisfies PP, then from Lemma 3.2(b) it follows that C′ satisfies PP.
Assume that C satisfies MFMC. By Proposition 3.1 S[I ′t] is normal. Since
C′ satisfies PP, by Lehman’s theorem we get that Q(A′) is integral, where
A′ is the incidence matrix of C′. Therefore using Theorem 2.6 we conclude
that C′ has MFMC. 2

Recall that a clutter C is called Cohen-Macaulay (CM for short) if R/I(C)
is a Cohen-Macaulay ring. Since C is a minor of C′ we obtain:

Corollary 3.4. Let C be a uniform clutter. If C satisfies PP (resp. max-
flow min-cut), then there is a uniform Cohen-Macaulay clutter C1 satisfying
PP (resp. max-flow min-cut) such that C is a minor of C1.

This result is interesting because it says that for uniform clutters it
suffices to prove Conjecture 2.11 for Cohen-Macaulay clutters, which have
a rich structure.
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